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IMPACT

SINCE 2010, WE have been editing 
articles from all over the world for 
this column. The theme has essentially 
been the same—where does software 
appear, in what quantity, and using 
what technologies? We have had a vast 
range of responses, from the realms of 
the very large (space exploration) to 
the very small (the search for the Higgs 
boson). In between, we have touched 
on many practical systems, such as air-
traffic control, banking in emerging 
nations, navigation, and general auto-
mobile systems.

One common factor repeatedly 
emerges, surprising even us, who have 
had careers working with software-
based systems: the sheer size—or what-
ever other word you would choose—of 
software that has been deployed. Thirty 
years ago, systems of more than a mil-
lion lines of source code were compar-
atively rare. They were rare for good 
reason, because they present formidable 
challenges to development and, later in 
their life, to their maintenance and par-
ticularly their reliability. We have re-
peatedly tried to present the economic 
consequences of such systems.3 As these 

columns have shown, however, million-
line systems written in various technol-
ogies are now commonplace. Indeed, 
with the growth of software stacks that 
combine rich functionality, we are see-
ing systems of tens of millions of lines 
of code.8,15 

This begs an interesting question. 
Have our testing procedures and meth-
ods of defect elimination kept up with 
the inexorable growth of around 20% 
per year?4 We will discuss this in one 
particular manifestation, the problem 
of reproducibility, because it appears 
to be exacerbating an existing crisis in 
the scientific world. Reproducibility is a 
very simple concept. In essence, all we 
ask in science is that the results can be 
independently repeated to some accept-
able level of significance. This is how 
trust in a result grows. Reproducibility 
causes sufficient problems in science on 
its own, even without including the ef-
fects of computation, but we are now 
adding a deep and unquantifiable layer 
of uncertainty to this with the grow-
ing influence of computation in scien-
tific discovery.

The Scientific Method
The scientific method emerged in the 
last 200 years or so, and it led to a 

revolution in science. However, it is 
widely misunderstood and is now 
in danger of being trampled under-
foot by the growth of social media 
platforms, with their up-and-down 
voting systems and pseudonumeric 
statistically illiterate conclusions, the 
relentless effects of which have ele-
vated opinion to the same level as ev-
idence. Because social media is used 
increasingly to discuss science, there 
is a particular danger in this.

Perhaps the cleanest insight into 
the scientific method came from the 
philosophers of the 20th century, such 
as Popper14 and Kuhn.7 In particular, 
Popper14 reiterated the essence of the 
scientific method, which is to promote 
falsifiability. A scientific experiment 
develops a theory to predict some out-
come and then attempts to falsify it by 
using experimental data. Failure to fal-
sify it means the theory lives to fight 
another day. If the results cannot be 
independently reproduced to some ac-
ceptable level of statistical significance, 
the theory is falsified. Over subsequent 
years and decades, good theories con-
tinue because additional experimental 
evidence fails to falsify them. Bad theo-
ries get broken and fall by the wayside. 
This does not, of course, mean that the 
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“good” theories are correct—it was 
centuries before Newtonian physics 
was found wanting by relativistic ar-
guments—but it does mean that they 
accumulate trust. Newtonian physics 
is a good enough approximation of 
the world we live in, and nearly all our 
engineering structures depend on it in 
some way. It fails only when our world 
intrudes on the very large or very small 
(e.g., as occurs with GPS satellite navi-
gation systems), where the general rela-
tivistic effects and time dilation have to 
be taken into account.

Even without considering software, 
science has a problem with reproduc-
ibility. The estimated cost of irrepro-
ducible biomedical research is US$28 
billion/year,2 and “Currently, many 
published research findings are false 
or exaggerated, and an estimated 85% 
of research resources are wasted.”6 
Irreproducible results can have pro-
found effects in the medical world, 
where they may lead to questionable 
protocols and, in some cases, signifi-
cant loss of life.5 

So what further complications does 
software introduce?

Computational Reproducibility
Like all of the disparate products we 
have covered in these columns, software 
written to support scientific enterprise 
has been growing rapidly for exactly 
the same reasons—cheap and extremely 
powerful hardware; the explosive 
growth of open source software, includ-
ing compilers for languages, such as C, 
C++, Ada, and Fortran, and interpret-
ers for the new(er) ones on the block, 
Python, Perl, and Java; and the wide-
spread availability of excellent libraries. 
Parsing a protein sequence or analyzing 
an email now is a matter of a few hun-
dred lines of Python. Added to this, we 
have higher-level and very sophisticated 
open source systems for handling data-
bases, such as MySQL (itself written in 

mountains of C), so we can store and 
apply computation to vast quantities of 
data. Perhaps even more significantly, 
we have open source statistical analysis 
programs of great sophistication, such 
as R (also written in mountains of C), 
which include the ability to produce the 
kind of wonderfully elaborate 3D plots 
that have become de rigueur in scien-
tific publications. As a result of this 
effort by volunteers around the world, 
writing such analysis and data capture 
software is precisely what scientists 
have been doing for the last decade or 
two—and in huge quantities—in fields 
as diverse as space research10,11 and the 
search for the Higgs boson.13 There is a 
problem, however.

The Problem With Software
Perhaps 30 years ago, we had a wide 
understanding of Popperian falsifi-
ability in the field of software testing. 
Indeed, the whole point of testing was 
not to affirm that software behaved 
correctly but to find those circum-
stances and conditions under which it 
failed to perform correctly—to falsify 
its premise of working correctly. As 
Myers10 states, “Testing is the process 
of executing a program with the inten-
tion of finding errors.” The whole idea 
was to break it and hand the pieces 
back to the developer (trying very hard 
not to be smug about it).

We seem to have taken a step back-
ward from this. Perhaps overwhelmed 
by the massive and continuing growth 
of software, we have invented agile 
and other methodologies whose in-
tention is primarily to converge on an 
acceptable solution for the end user, 
which may have little to do with the 
end user’s original aspirations, either 
in its delivered or its future behav-
ior. This may be acceptable when the 
software supports functions, such as 
publishing a picture on a timeline or 
sending a message from one user to 

another. It is not good enough if the 
function is to control a robot operat-
ing on a patient or an autonomous car 
in city traffic. Software technologies 
have unfortunately been burdened 
with an arcane vocabulary all their 
own, obscuring the clinical essence of 
falsifiability. As a result, many still 
believe—erroneously—that testing, 
insofar as it exists at all, is there to 
prove that the software works.

We need to be quite blunt about 
this. Computer science has no tech-
nology to guarantee the absence of 
defect; we never have had such a tech-
nology, and in all likelihood we never 
will. We don’t even have any easily 
applicable technologies to quantify 
the impact of residual defects, which 
we inevitably introduce and fail to 
remove before delivery, and yet the 
amount of software source code gen-
erally continues to grow by about 
20% per year. We can therefore as-
sert that scientific experiments that 
rely heavily on computation cannot 
follow the scientific method unless 
the complete means to reproduce the 
computational results independently 
is provided as an essential part of the 
whole. Paraphrasing the wise words 
of the geophysicist Jon Claerbout at 
Stanford, without the means to repro-
duce them, the results are merely an 
advertisement of scholarship and not 
the scholarship itself.1 To be really 
blunt about it, they are not science in 
the sense of the scientific method.

What does the complete means to 
reproduce actually mean? It seems 
to us that unless a scientific article 
allows the reader to reproduce every 
table, diagram, and statistical result 
using code, for which the source and 
means to run it are provided,16 then 
the results are unquantifiably in er-
ror. Of course, nobody expects every 
line to be pored over for every sci-
entific article, but for really critical 
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results, we might have to do exactly 
that. The whole stack needs to be 
open—the knock-on effects of incor-
rect results can be hugely expensive.

This is no mere quibble. Even with 
an open stack, it is inconceivable for 
one reader to verify a scientific result. 
Instead, readers must confine them-
selves to inspecting some part of the 
analysis or statistics code, leaving ev-
erything deeper to others. Figure 1 
gives some idea of this, although it is 
not to scale. The bit that most scien-
tists have to write is typically a few 
thousand up to a million or so lines 
of code and is shown in yellow. The 
next bit down is the applications we 
use, such as the language interpreters 
or compilers, the database software, 
the graphics, or the statistical analysis 
software. This is colored in green and 
will typically be around 1–5 million 
lines of code. The purple section at 
the bottom is tens of millions of lines 
of code, corresponding to the oper-
ating system and all of the C librar-
ies; although larger, software lower 
down the stack tends to be more re-
liable because its usage is proportion-
ately much higher. The most we can 
reasonably ask for is that enough 
people read the yellow parts. This is 
the science.

We conclude by saying that 
science has a ser ious 
and growing problem. 

Science is beginning to appreciate the 
size of the problem,12 but it is shared by 
all consumers of software, as the num-
bers of failures in established systems 
will testify. (The reader might like to 
type “software failures” into a browser 
of choice—be prepared for a shock.) 
The humble and amusing bug of 30 years 
ago has grown into a system- and ca-
reer-wrecking monster. It is within our 
powers to reign back this inexorable 

growth, but not until we remember 
what falsifiable really means.

A Call for Columns
At the start of the 10th year of the 
“Impact” department in IEEE Soft-
ware, we would like to invite you to 
discuss the impact of your own soft-
ware. We have published more than 40 
“Impact” departments so far, and you 
will be in good company with authors 
from large and small institutions who 
went before you. There are only three 
requirements: an interesting read for 
the IEEE Software audience and some 
metrics about size, volume of shipment 
if relevant, and how you address the 
maintenance. We have published de-
partments  from all continents except 
Antarctica, but we would welcome 
more contributions from software 
powerhouses in the East. Also, finan-
cial applications have eluded us so far, 
so don’t be shy. Your software does 
not have to be millions of lines of code 
or be associated with a high-profile 
phenomenon, such as the Mars Rover, 

the Higgs boson discovery, or “Die-
selgate.” We have a short and painless 
review process (no endless cycles; we 
are too busy for that), and although we 
can’t promise fame, we can promise 
that your experiences will help enrich 
the practical knowledge of how soft-
ware systems perform in myriad ways 
we ask them to. 
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FIGURE 1. An illustration of a typical 

software stack in computational science.
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