
0740 -7459 / 19©2019 I EEE 	 MARCH/APRIL 2019 | IEEE SOFTWARE � 137

Editor: Les Hatton
Oakwood Computing Associates
lesh@oakcomp.co.uk

Editor: Michiel van Genuchten
VitalHealth Software
genuchten@ieee.org

IMPACT

SINCE 2010, WE have been editing
articles from all over the world for
this column. The theme has essentially
been the same—where does software
appear, in what quantity, and using
what technologies? We have had a vast
range of responses, from the realms of
the very large (space exploration) to
the very small (the search for the Higgs
boson). In between, we have touched
on many practical systems, such as air-
traffic control, banking in emerging
nations, navigation, and general auto-
mobile systems.

One common factor repeatedly
emerges, surprising even us, who have
had careers working with software-
based systems: the sheer size—or what-
ever other word you would choose—of
software that has been deployed. Thirty
years ago, systems of more than a mil-
lion lines of source code were compar-
atively rare. They were rare for good
reason, because they present formidable
challenges to development and, later in
their life, to their maintenance and par-
ticularly their reliability. We have re-
peatedly tried to present the economic
consequences of such systems.3 As these

columns have shown, however, million-
line systems written in various technol-
ogies are now commonplace. Indeed,
with the growth of software stacks that
combine rich functionality, we are see-
ing systems of tens of millions of lines
of code.8,15

This begs an interesting question.
Have our testing procedures and meth-
ods of defect elimination kept up with
the inexorable growth of around 20%
per year?4 We will discuss this in one
particular manifestation, the problem
of reproducibility, because it appears
to be exacerbating an existing crisis in
the scientific world. Reproducibility is a
very simple concept. In essence, all we
ask in science is that the results can be
independently repeated to some accept-
able level of significance. This is how
trust in a result grows. Reproducibility
causes sufficient problems in science on
its own, even without including the ef-
fects of computation, but we are now
adding a deep and unquantifiable layer
of uncertainty to this with the grow-
ing influence of computation in scien-
tific discovery.

The Scientific Method
The scientific method emerged in the
last 200 years or so, and it led to a

revolution in science. However, it is
widely misunderstood and is now
in danger of being trampled under-
foot by the growth of social media
platforms, with their up-and-down
voting systems and pseudonumeric
statistically illiterate conclusions, the
relentless effects of which have ele-
vated opinion to the same level as ev-
idence. Because social media is used
increasingly to discuss science, there
is a particular danger in this.

Perhaps the cleanest insight into
the scientific method came from the
philosophers of the 20th century, such
as Popper14 and Kuhn.7 In particular,
Popper14 reiterated the essence of the
scientific method, which is to promote
falsifiability. A scientific experiment
develops a theory to predict some out-
come and then attempts to falsify it by
using experimental data. Failure to fal-
sify it means the theory lives to fight
another day. If the results cannot be
independently reproduced to some ac-
ceptable level of statistical significance,
the theory is falsified. Over subsequent
years and decades, good theories con-
tinue because additional experimental
evidence fails to falsify them. Bad theo-
ries get broken and fall by the wayside.
This does not, of course, mean that the

Computational
Reproducibility
The Elephant in the Room

Les Hatton and Michiel van Genuchten

Digital Object Identifier 10.1109/MS.2018.2883805
Date of publication: 22 February 2019

IMPACT

138	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

“good” theories are correct—it was
centuries before Newtonian physics
was found wanting by relativistic ar-
guments—but it does mean that they
accumulate trust. Newtonian physics
is a good enough approximation of
the world we live in, and nearly all our
engineering structures depend on it in
some way. It fails only when our world
intrudes on the very large or very small
(e.g., as occurs with GPS satellite navi-
gation systems), where the general rela-
tivistic effects and time dilation have to
be taken into account.

Even without considering software,
science has a problem with reproduc-
ibility. The estimated cost of irrepro-
ducible biomedical research is US$28
billion/year,2 and “Currently, many
published research findings are false
or exaggerated, and an estimated 85%
of research resources are wasted.”6
Irreproducible results can have pro-
found effects in the medical world,
where they may lead to questionable
protocols and, in some cases, signifi-
cant loss of life.5

So what further complications does
software introduce?

Computational Reproducibility
Like all of the disparate products we
have covered in these columns, software
written to support scientific enterprise
has been growing rapidly for exactly
the same reasons—cheap and extremely
powerful hardware; the explosive
growth of open source software, includ-
ing compilers for languages, such as C,
C++, Ada, and Fortran, and interpret-
ers for the new(er) ones on the block,
Python, Perl, and Java; and the wide-
spread availability of excellent libraries.
Parsing a protein sequence or analyzing
an email now is a matter of a few hun-
dred lines of Python. Added to this, we
have higher-level and very sophisticated
open source systems for handling data-
bases, such as MySQL (itself written in

mountains of C), so we can store and
apply computation to vast quantities of
data. Perhaps even more significantly,
we have open source statistical analysis
programs of great sophistication, such
as R (also written in mountains of C),
which include the ability to produce the
kind of wonderfully elaborate 3D plots
that have become de rigueur in scien-
tific publications. As a result of this
effort by volunteers around the world,
writing such analysis and data capture
software is precisely what scientists
have been doing for the last decade or
two—and in huge quantities—in fields
as diverse as space research10,11 and the
search for the Higgs boson.13 There is a
problem, however.

The Problem With Software
Perhaps 30 years ago, we had a wide
understanding of Popperian falsifi-
ability in the field of software testing.
Indeed, the whole point of testing was
not to affirm that software behaved
correctly but to find those circum-
stances and conditions under which it
failed to perform correctly—to falsify
its premise of working correctly. As
Myers10 states, “Testing is the process
of executing a program with the inten-
tion of finding errors.” The whole idea
was to break it and hand the pieces
back to the developer (trying very hard
not to be smug about it).

We seem to have taken a step back-
ward from this. Perhaps overwhelmed
by the massive and continuing growth
of software, we have invented agile
and other methodologies whose in-
tention is primarily to converge on an
acceptable solution for the end user,
which may have little to do with the
end user’s original aspirations, either
in its delivered or its future behav-
ior. This may be acceptable when the
software supports functions, such as
publishing a picture on a timeline or
sending a message from one user to

another. It is not good enough if the
function is to control a robot operat-
ing on a patient or an autonomous car
in city traffic. Software technologies
have unfortunately been burdened
with an arcane vocabulary all their
own, obscuring the clinical essence of
falsifiability. As a result, many still
believe—erroneously—that testing,
insofar as it exists at all, is there to
prove that the software works.

We need to be quite blunt about
this. Computer science has no tech-
nology to guarantee the absence of
defect; we never have had such a tech-
nology, and in all likelihood we never
will. We don’t even have any easily
applicable technologies to quantify
the impact of residual defects, which
we inevitably introduce and fail to
remove before delivery, and yet the
amount of software source code gen-
erally continues to grow by about
20% per year. We can therefore as-
sert that scientific experiments that
rely heavily on computation cannot
follow the scientific method unless
the complete means to reproduce the
computational results independently
is provided as an essential part of the
whole. Paraphrasing the wise words
of the geophysicist Jon Claerbout at
Stanford, without the means to repro-
duce them, the results are merely an
advertisement of scholarship and not
the scholarship itself.1 To be really
blunt about it, they are not science in
the sense of the scientific method.

What does the complete means to
reproduce actually mean? It seems
to us that unless a scientific article
allows the reader to reproduce every
table, diagram, and statistical result
using code, for which the source and
means to run it are provided,16 then
the results are unquantifiably in er-
ror. Of course, nobody expects every
line to be pored over for every sci-
entific article, but for really critical

IMPACT

	 MARCH/APRIL 2019 | IEEE SOFTWARE � 139

results, we might have to do exactly
that. The whole stack needs to be
open—the knock-on effects of incor-
rect results can be hugely expensive.

This is no mere quibble. Even with
an open stack, it is inconceivable for
one reader to verify a scientific result.
Instead, readers must confine them-
selves to inspecting some part of the
analysis or statistics code, leaving ev-
erything deeper to others. Figure 1
gives some idea of this, although it is
not to scale. The bit that most scien-
tists have to write is typically a few
thousand up to a million or so lines
of code and is shown in yellow. The
next bit down is the applications we
use, such as the language interpreters
or compilers, the database software,
the graphics, or the statistical analysis
software. This is colored in green and
will typically be around 1–5 million
lines of code. The purple section at
the bottom is tens of millions of lines
of code, corresponding to the oper-
ating system and all of the C librar-
ies; although larger, software lower
down the stack tends to be more re-
liable because its usage is proportion-
ately much higher. The most we can
reasonably ask for is that enough
people read the yellow parts. This is
the science.

We conclude by saying that
science has a ser ious
and growing problem.

Science is beginning to appreciate the
size of the problem,12 but it is shared by
all consumers of software, as the num-
bers of failures in established systems
will testify. (The reader might like to
type “software failures” into a browser
of choice—be prepared for a shock.)
The humble and amusing bug of 30 years
ago has grown into a system- and ca-
reer-wrecking monster. It is within our
powers to reign back this inexorable

growth, but not until we remember
what falsifiable really means.

A Call for Columns
At the start of the 10th year of the
“Impact” department in IEEE Soft-
ware, we would like to invite you to
discuss the impact of your own soft-
ware. We have published more than 40
“Impact” departments so far, and you
will be in good company with authors
from large and small institutions who
went before you. There are only three
requirements: an interesting read for
the IEEE Software audience and some
metrics about size, volume of shipment
if relevant, and how you address the
maintenance. We have published de-
partments from all continents except
Antarctica, but we would welcome
more contributions from software
powerhouses in the East. Also, finan-
cial applications have eluded us so far,
so don’t be shy. Your software does
not have to be millions of lines of code
or be associated with a high-profile
phenomenon, such as the Mars Rover,

the Higgs boson discovery, or “Die-
selgate.” We have a short and painless
review process (no endless cycles; we
are too busy for that), and although we
can’t promise fame, we can promise
that your experiences will help enrich
the practical knowledge of how soft-
ware systems perform in myriad ways
we ask them to.

References
	 1.	J. F. Claerbout, “Seventeen years of

super computing and other problems

in seismology,” National Research

Council Meeting on High Performance

Computing in Seismology, Oct. 2,

1994. [Online]. Available: http://

sepwww.stanford.edu/sep/jon/nrc.html

	 2.	L. P. Freedman, I. M. Cockburn, and

T. S. Simcoe, “The economics of re-

producibility in preclinical research,”

PLOS Biology, vol. 13, no. 6,

pp. e1002165, 2015. doi: 10.1371

/journal.pbio.1002165.

	 3.	M. van Genuchten and L. Hatton,

“Software mileage,” IEEE Softw., vol.

28, no. 5, pp. 24–26, Sept.–Oct. 2011.

	 4.	L. Hatton, D. Spinellis, and M. van

Genuchten, “The long-term growth

rate of evolving software: empirical

results and implications,” J. Soft-

ware: Evolution Process, vol. 29,

no. 5, 2017. doi: 10.1002/smr.1847.

	 5.	L. Huston, “New England Journal of

Medicine declines to retract papers from

disgraced research group,” 2014. [On-

line]. Available: https://www.forbes

.com/sites/larryhusten/2014/09/26/

new-england-journal-of-medicine-

declines-to-retract-papers-from-

disgraced-research-group/#7f8405a17228

	 6.	J. P. A. Ioannidis, “How to make

more published research true,”

PLOS Medicine, vol. 11, no. 10, pp.

e1001747, 2014. doi: 10.1371/journal

.pmed.1001747.

FIGURE 1. An illustration of a typical

software stack in computational science.

(continued on page 144)

144	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: Three Park Ave., 17th Floor, New
York, NY 10016-5997. IEEE Computer Society Publications Office: 10662
Los Vaqueros Cir., Los Alamitos, CA 90720; +1 714 821 8380; fax +1 714
821 4010. IEEE Computer Society headquarters: 2001 L St., Ste. 700, Wash-
ington, DC 20036. Subscribe to IEEE Software by visiting www.computer.
org/software.

Postmaster: Send undelivered copies and address changes to IEEE Soft-
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes Lane,
Piscataway, NJ 08854-4141. Periodicals Postage Paid at New York, NY, and
at additional mailing offices. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885. Return undeliverable
Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada.
Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of
this material is permitted without fee, provided such use: 1) is not made
for profit; 2) includes this notice and a full citation to the original work on
the first page of the copy; and 3) does not imply IEEE endorsement of any

third-party products or services. Authors and their companies are per-
mitted to post the accepted version of IEEE-copyrighted material on their
own webservers without permission, provided that the IEEE copyright
notice and a full citation to the original work appear on the first screen of
the posted copy. An accepted manuscript is a version that has been revised
by the author to incorporate review suggestions, but not the published
version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or pro-
motional purposes or for creating new collective works for resale or
redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Office, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2019 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

	 7.	T. S. Kuhn, The Structure of Scien-

tific Revolutions. Chicago, IL: Univ.

of Chicago Press, 1962. doi: 10.1086

/ahr/68.3.700.

	 8.	J. M. Mossinger, “Software in

automotive systems,” IEEE Softw.,

vol. 27, no. 2, pp. 92–94, Mar.–Apr.

2010.

	 9.	G. J. Myers, The Art of Software

Testing. New York: Wiley, 1979.

	10.	J. Nagy, K. Balajthy, S. Szalai, B.

Sódor, I. Horváth, and C. Lipusz,

“Obstanovka: Exploring nearby space,”

IEEE Softw., vol. 33, no. 4,

pp. 101–105, July–Aug. 2016.

	11.	S. P. Zwart and J. Bédorf, “Creating

the virtual universe,” IEEE Softw.,

vol. 33, no. 5, pp. 25–29, Sept.–Oct.

2016.

	12.	Perkel J., “A toolkit for data trans-

parency takes shape,” 2018. [Online].

Available: https://www.nature.com

/articles/d41586-018-05990-5

	13.	D. Rousseau, “The software behind

the Higgs boson discovery,” IEEE

Softw., vol. 29, no. 5, pp. 11–15,

Sept.-Oct. 2012.

	14.	K. Popper, The Logic of Scientific Dis-

covery. New York: Routledge, 1959.

	15.	R. Wester and J. Koster, “The software

behind Moore’s law,” IEEE Softw.,

vol. 32, no. 2, pp. 37–40, Mar.–Apr.

2015.

	16.	L. Hatton and G. Warr, Full-com-

putational reproducibility in biologi-

cal science: methods, software and a

case study in protein biology. 2016.

[Online]. Available: https://arxiv.org/

abs/1608.06897

IMPACT  (continued from page 139)

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

LES HATTON is an emeritus professor of forensic software

engineering at Kingston University, London. Contact him at esh@

oakcomp.co.uk.

MICHIEL VAN GENUCHTEN is a member of the management

team of VitalHealth Software. Contact him at genuchten@ieee.org.

IMPACT

