
	 JANUARY/FEBRUARY 2019 | IEEE SOFTWARE� 11

FOCUS: GUEST EDITORS’ INTRODUCTION

The Social Developer:
The Future of Software
Development
Tom Mens, University of Mons

Marcelo Cataldo, Uber Advanced Technologies Group

Daniela Damian, University of Victoria

Digital Object Identifier 10.1109/MS.2018.2874316
Date of publication: 8 January 2019

12	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

CONTEMPORARY SOFTWARE EN­
GINEERING has inevitably become
much more so c i a l . Due to t he
size, complexity, and diversity of to-
day’s software systems, there is a need
to interact across organizational, geo-
graphical, cultural, and socioeconomic
boundaries. Large-scale software de-
velopment now implies active user
involvement and requires close cooper-
ation and collaboration between team
members and all types of development
activities. Members of software proj-
ects across all roles must communi-
cate and interact continuously with
other project members as well as with
a variety of stakeholders, such as
users, analysts, suppliers, custom-
ers, and business partners. This theme
issue aims to inform software engi-
neering practitioners about current
trends and recent advances in research
and practice of sociotechnical analy-
sis and support for large-scale soft-
ware development.

Mirroring Hypothesis
The idea that the structure of a sys-
tem is in some way related to the
structure of the organization build-
ing it has been studied for decades
across many industries.9 In software
systems, Melvin Conway argued that
the structure of a system mirrors the
structure of the organization that de-
signed it, as an inevitable consequence
of the communication needs of the
people involved in developing the sys-
tem.2 Twenty years ago, Herbsleb and
Grinter studied Conway’s law spe-
cifically in the context of geographi-
cally distributed development teams
and found the lack of sociotechni-
cal congruence to be a major driver
of project failure.6 This observation
has become even more relevant today,
with the omnipresence of open source
and mixed-source software develop-
ment as well as development projects

that need to adapt to fast-changing
environments.9

Social Coding
Interestingly, a popular myth tells
that software developers act as
lone wolfs, creating software sys-
tems in isolation without much in-
teraction with the outside world.
In today’s world of complex soft-
ware systems, the inverse is true. The
need for coordination and collabo-
ration has led, among other factors,
to the phenomenon of social coding,
in which team members rely on in-
tegrated platforms and collaborative
authoring tools for enabling and im-
proving their communication and
interaction. In that context, soft-
ware project members rely on tools
like wikis, bug and issue trackers,
discussion forums, code reposito-
ries, Q&A websites, mailing lists,
commenting and reviewing mecha-
n isms , and many more. Dur ing
the past decade, researchers have
studied social coding platforms and
have found, for instance, that issue
trackers have become essential col-
laboration instruments;1 social cod-
ing practices can evolve into effective
strategies for coordinating work;4
and through mechanisms that lever-
age and enhance the inherent trans-
parency, social coding platforms can
become very valuable collaborative
environments for large projects.6

When embarking into developing
such large-scale software systems,
the social aspects and their relation-
ship to the technical dimension of
projects cannot be underestimated.
This theme issue focuses on the cur-
rent trends and advances in the re-
search and the practice related to
the social and sociotechnical as-
pects of software development. We
aim to provide useful guidelines
and recommendations to software

developers on how to embrace the
social side of software development.

Social Factors and the
Evolving Landscape of
Software Projects
The understanding of the role of so-
cial factors in software development
projects has evolved significantly dur-
ing past decades. The trend toward
geographically distributed develop-
ment in the 1990s drew attention
to communication and coordina-
tion problems. In the late 1990s and
early 2000s, cultural diversity and
the various dimensions of geographic
dispersion as well as the structure of
collaboration patterns also started to
surface as critical forms of social fac-
tors. The world continues to evolve,
and today we are faced with projects
that operate in an open source envi-
ronment, in traditional corporate
settings, in corporate settings but fol-
lowing open source or community-
based approaches, and any possible
blend of those various approaches.

Mixing open source and proprie-
tary software strategies is increasingly
seen as beneficial by software-pro-
ducing companies. By combining the
best of both worlds, companies could
benefit from the advantages of both
business models. However, signifi-
cant disconnects may occur: the
open source community may be re-
sistant to company involvement; the
company may impose its strategic vi-
sion too much on the developer com-
munity; there may be incompatible
work practices and processes leading
to communication and collaboration
problems. A well-known illustration
of what such problems can lead
to was the fork of the open source
OpenOffice software suite into LibreOf-
fice in 2011. When Sun Microsystems
(who owned OpenOffice) was taken
over by Oracle Corporation, it led to

	 JANUARY/FEBRUARY 2019 | IEEE SOFTWARE� 13

a reduced openness of OpenOffice, re-
sulting in the LibreOffice fork. This
fork is still very much alive today and
is perceived by its community as sup-
portive, diversified, and independent.5

As projects become larger and
open source and proprietary software
strategies blend together, the social
aspects of diversity and inclusion are
becoming increasingly important.
Large communities can benefit from a
high diversity of contributors, regard-
less of the dimension of diversity con-
sidered (e.g., cultural diversity, gender
diversity, seniority, inclusion of people
with disabilities, and positive discrimi-
nation to address underrepresentation
of minority groups). Vasilescu et al.7
studied the effect of gender and ten-
ure diversity and found them to be
positive and significant predictors of
productivity of open source develop-
ment teams. Codes of conduct are
becoming commonplace in major
software development communities
and distributed platforms. As a recent
example, Stack Overflow updated its
code of conduct in August 2018 to
encourage kindness and constructive
feedback and to enforce mutual re-
spect and repress unacceptable behav-
ior and other kinds of misconduct.

All of this clearly illustrates the
importance of the social phenomenon
in large-scale software development,
motivating the need and timeliness of
this special issue.

In This Issue
We received 21 submissions for this
theme issue. Of these, eight were in-
vited to prepare a revised version,
based on their relevance to software
practitioners. Five of those were se-
lected for inclusion in the theme issue.
They cover a wide variety of top-
ics related to sociotechnical factors
of software development. It should
not come as a surprise that many of

these studies focus on the software
ecosystem point of view, because it is
at this level that contributors of dif-
ferent but interrelated software proj-
ects need to interact and collaborate,
making it more likely for sociotechni-
cal problems to emerge.

In “Designing Corporate Hack-
athons with a Purpose,” Than et al.
focus on the use of corporate hack-
athons. Such hackathons are tradi-
tionally seen as a way of addressing
technical challenges and achieving
such business needs as product inno-
vation in relatively short periods of
time. In addition to this, they can also
be a very efficient tool to achieve a va-
riety of social goals, such as enriching
intracompany social networks, facili-
tating collaborative learning, and pre-
paring employees for future changes
and positions. If designed carefully,
hackathons can achieve several of
these goals.

In “Self-Managing: An Empirical
Study of the Practice in Agile Teams,”
Gutiérrez et al. investigate the value
of the agile technique of self-manage-
ment in software development teams.
Through a survey conducted with
247 mostly Hispanic subjects across
22 countries, they reveal that teams
with a high perception of autonomy
perceive a high level of self-manage-
ment through their leadership styles
and the language used to describe
their tasks. This study may help prac-
titioners in diagnosing the degree of
self-management in their own orga-
nizations and carrying out the nec-
essary steps to further increase this
self-management, if desired.

In the “OpenStack Gender Diver-
sity Report,” Izquierdo et al. focus on
the sociotechnical aspects of diversity
and inclusion of underrepresented mi-
norities by analyzing the current state
of gender diversity within the open
source community of OpenStack

contributors. The analyzed data in-
clude both code and noncode contri-
butions. The importance of this
article lies in the awareness of the
need to embrace diversity as well as
the way in which such diversity can
be measured and promoted. Initia-
tives like Linux Foundation’s CHA-
OSS community will help to achieve
these goals.

In “Toward Solving Social and
Technical Problems in Open Source
Software Ecosystem,” Marsan et al.
carried out a cause-and-effect analy-
sis for identifying typical problems
during large-scale distributed devel-
opment of open source software sys-
tems. Based on in-depth interviews
with 10 contributors to open source
ecosystems, they found loss of con-
tributors to be one of the most im-
portant social problems and poor
code quality to be one of the major
technical problems, with both prob-
lems resulting from complex socio-
technical interrelations of causes.

In “What Characterizes an Influ-
encer in Software Ecosystems?” Far-
ias et al. focus on JavaScript’s npm
package management ecosystem.
The authors conducted a survey with
242 developers who contributed to
GitHub repositories for npm pack-
ages. By doing so, they gather in-
sights on how developers influence
the ecosystem in which they take
part and turn this into actionable
advice for ecosystem managers, inte-
grators, and collaborators.

Acknowledgments
This work is partially financed by
the Fund for Scientific Research–
Fonds de recherche du Québec–Wal-
lonia collaborative research project
“SECOHealth: Towards an Interdis-
ciplinary, Socio-Technical Method-
ology and Analysis of the Health of
Software Ecosystems.”

14	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

References
	 1.	D. Bertram, A. Voida, S. Greenberg,

and R. Walker, “Communication,

collaboration, and bugs: The social

nature of issue tracking in small, col-

located teams,” in Proc. ACM 2010

Conf. Computer Supported Collab-

orative Work, pp. 291–300.

	 2.	M. E. Conway, “How do committees

invent?” Datamation, vol. 14, no. 4,

pp. 23–28, 1968.

	 3.	K. Crowston. (2005). The social

structure of free and open source

software development. First Mon-

day. [Online]. 10(2). Available:

http: //www.firstmonday.dk

/ojs/index.php/fm/article

/view/1207/1127

	 4.	L. Dabbish, C. Stuart, J. Tsay, and J.

D. Herbsleb, “Social coding in GitHub:

Transparency and collaboration in an

open software repository,” in Proc.

ACM 2012 Conf. Computer Supported

Cooperative Work, pp. 1277–1286.

	 5.	J. Gamalielsson and B. Lundell, “Sus-

tainability of open source software

communities beyond a fork: How

and why has the LibreOffice project

evolved?” J. Syst. Softw., vol. 89, pp.

128–145, Mar. 2014.

	 6.	J. D. Herbsleb and R. E. Grinter, “Ar-

chitectures, coordination, and distance:

Conway’s law and beyond,” IEEE

Softw., vol. 16, no. 5, pp. 63–70, 1999.

	 7.	B. Vasilescu, D. Posnett, B. Ray, M.

G. J. van den Brand, A. Serebrenik, P.

Devanbu, and V. Filkov, “Gender and

tenure diversity in GitHub teams,”

in Proc. ACM Conf. Human Factors

in Computing Systems (CHI), 2015 ,

pp. 3789–3798.

	 8.	S. Datta, “How does developer inter-

action relate to software quality? An

examination of product development

data,” Empirical Softw. Eng., vol.

23, no. 3, pp. 1153–1187, 2018.

	 9.	L. J. Colfer and C. Y. Baldwin,

“The mirroring hypothesis: Theory,

evidence, and exceptions,” Ind.

Corporate Change, vol. 25, no. 5,

pp. 709–738, 2016.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

TOM MENS is a full professor at the University of Mons,

Belgium, with the Department of Computer Science. His

research interests include software evolution, software

modeling, software ecosystems, open source software, and

empirical software engineering. Mens received a Ph.D. in

computer science from the Vrije Universiteit Brussel, Belgium.

He is a Senior Member of the IEEE and a member of the IEEE

Computer Society. Contact him at tom.mens@umons.ac.be.

MARCELO CATALDO is a software engineering manager

with the Uber Advanced Technology Group. His research

interests include geographically distributed software development

with a special focus on the relationship between the software

architecture and the organizational structure in large-scale

software development projects. Cataldo received a Ph.D. in

societal computing from Carnegie Mellon University. Contact

him at chelo.cataldo@gmail.com.

DANIELA DAMIAN is a professor of software engineering

at the University of Victoria with the Department of Computer

Science. Her research interests include software engineering,

requirements engineering, computer-supported cooperative

work, and empirical software engineering. Damian obtained

her Ph.D. in software engineering from the University of

Calgary, Canada. She is a Member of the IEEE. Contact her at

damian.daniela@gmail.com.

Access all your IEEE Computer
Society subscriptions at

computer.org/mysubscriptions

