
FOCUS: GUEST EDITORS’ INTRODUCTION

22 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

Release Engineering 3.0
Bram Adams, Polytechnique Montreal

Stephany Bellomo, Software Engineering Institute

Christian Bird, Microsoft

Boris Debić, Google

Foutse Khomh, Polytechnique Montreal

Kim Moir, Mozilla

John O’Duinn, CivicActions.com

FOCUS: GUEST EDITORS’ INTRODUCTION

 MARCH/APRIL 2018 | IEEE SOFTWARE 23

WE’RE HAPPY TO introduce you to
the Release Engineering 3.0 theme
issue of IEEE Software. It builds on
the successful RELENG workshop
series (releng.polymtl.ca) and the
March/April 2015 IEEE Software
issue on Release Engineering. So,
what’s all this fuzz about release en-
gineering, and what about the “3.0”
moniker?

Release Engineering 3.0
Release engineering is the discipline
of code integration, build, test ex-
ecution, deployment, and delivery
of high-quality software releases
to users. First, the code contri-
butions developed independently
by an organization’s developers
must be integrated into a coherent
whole. Then, the source code, li-
braries, and any other resources of
the integrated components must be
transformed (“built”) into a work-
ing set of executables to enable test-
ing and (if all is well) deployment
into the production environment,
such as a cloud, an app store, or
some download server. Finally, the
deployed product can be released
at the right time to the right set of
users. In other words, release engi-
neering forms the vital link between
software’s design and development
phases and the finished product’s
use and maintenance.

Releasing complex software sys-
tems on time with the right quality
requires considerable process and
technical changes.1 This is especially
true when you aim to perform contin-
uous delivery (or even deployment),
in which a software product should
be shippable (or shipped) after each
valid code change, automatically.

For example, continuous-integra-
tion builds and tests must be scaled
up for increasing volumes of code
changes, infrastructure requirements

such as virtual machines or li-
brary dependencies must be cod-
ified using infrastructure-as-code
programming languages, and oper-
ators should be able to roll back to
a safe earlier release at the click of
a button. Furthermore, the release-
engineering team needs to provide
a feedback loop to the development
team to flag architectural or design
issues that inhibit achieving rapid,
robust deployment. For example,
for canary deployment or release,
two versions of the system must
be live at the same moment, which
requires compatibility of APIs and
database schemas.

Even though the practices of
continuous delivery and deploy-
ment have become part of develop-
ers’ vocabulary over the last eight
years, the scope and nature of the
process and technical changes we
mentioned before have been costly
to discover, often by trial and er-
ror. Even at this point, large soft-
ware companies such as Google,
Facebook, and Netflix, who were
at the forefront of modern release-
engineering practices, have a long
list of open challenges and issues—
for example, regarding the long-
term viability and deficiencies of
practices such as A/B testing or dark
launching, or regarding dependency
management in their ecosystems of
autonomously updated microser-
vices. Furthermore, new deploy-
ment platforms such as mobile-app
stores still provide major challenges
in terms of managing releases with-
out having full control.

This brings us to the “3.0” mon-
iker. Release Engineering 1.0 and
2.0 refer, respectively, to traditional
ad hoc release engineering and
today’s highly automated release
engineering for general-purpose
cloud and mobile systems. In

contrast, Release Engineering 3.0
targets the future iteration of release-
engineering processes aimed at sup-
porting small companies, start-ups,
civic organizations, government ad-
ministrations, and safety-critical
industries. For example, the soft-
ware in cars, hospital equipment,
or election software needs updates
to deliver critical bug fixes and new
functionality. However, without
proper precautions, innocent lives
could be at stake. Similarly, how
should we go about continuously
delivering software in new domains
such as the Internet of Things or
swarm robotics, without endanger-
ing people?

Ideally, small companies, start-
ups, civic organizations, government
administrations, and safety-critical
industries (healthcare, the automo-
tive industry, and so on) should be
able to select and adopt a release-
engineering process and tool chain
that fit their needs. Yet, such an
“out-of-the-box” process and tool
chain are far from a reality, and so
are textbooks or experience reports
with empirically validated best
practices for release engineering.
Although many blogs and papers
and some books discuss release en-
gineering for large cloud applica-
tions and (to some extent) mobile
apps, no thorough treatment ex-
ists of today’s challenges and so-
lutions for release engineering of
the “other 80 percent” of software
systems.

In This Issue
This theme issue aims to get the ball
rolling on Release Engineering 3.0
and stimulate both industry prac-
titioners and researchers to reflect
on what such release-engineering
practices and tools could look like
and how they could evolve out of

24 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

BRAM ADAMS is an associate professor

at Polytechnique Montreal, where he heads

the Lab on Maintenance, Construction, and

Intelligence of Software. His research inter-

ests include release engineering in general,

as well as software integration, software

build systems, and infrastructure as code.

Adams obtained his PhD in computer science

engineering from Ghent University. He is a

steering-committee member of the Interna-

tional Workshop on Release Engineering

(RELENG) and coedited the first IEEE Soft-
ware issue on Release Engineering. Contact

him at bram.adams@polymtl.ca.

FOUTSE KHOMH is an associate profes-

sor at Polytechnique Montreal, where

he leads the Software Analytics and

Technology Lab. His research interests

are software maintenance and evolution,

cloud engineering, service-centric software

engineering, empirical software engi-

neering, and software analytics. Khomh

received a PhD in software engineering

from the University of Montreal. He is a

steering-committee member of RELENG

and co-edited the first IEEE Software issue

on Release Engineering. Contact him at

foutse.khomh@polymtl.ca.

STEPHANY BELLOMO is a member of

the technical staff at Carnegie Mellon Uni-

versity’s Software Engineering Institute.

She focuses on empirical research for

improving software delivery and working

with US Department of Defense and gov-

ernment practitioners on software-related

challenges. Bellomo received an MS in

software engineering from George Mason

University. She is a steering-committee

member of RELENG and coedited the first

IEEE Software issue on Release Engineer-

ing. Contact her at sbellomo@sei.cmu.edu.

KIM MOIR is a staff release engineer at

Mozilla. Her interests lie in build optimi-

zation, scaling large infrastructure, and

writing about the complexities of open

source release engineering. Kim received

a bachelor of business administration from

Acadia University. She is a steering-committee

member of RELENG and co-edited the first

IEEE Software issue on Release Engineering.

Contact her at kmoir@mozilla.com; kimmoir

.blog.

CHRISTIAN BIRD is a researcher at

Microsoft Research. He has studied

many aspects of release engineering,

most recently code movement and social

dynamics in build teams. Bird received

a PhD in computer science from the

University of California, Davis. He is a

steering-committee member of RELENG

and coedited the first IEEE Software issue

on Release Engineering. Contact him at

cbird@microsoft.com.

JOHN O’DUINN is a senior strategist at

CivicActions.com and an advisor and a mentor

to geodistributed organizations. His research

interests include how release engineering re-

frames the business of software development

while at the same time improving the lives of

developers and the wider public depending on

these systems. O’Duinn received an MSc in

computer science from Dublin City University.

He’s a steering-committee member of

RELENG. Contact him at john@oduinn.com.

BORIS DEBIĆ is a Google engineer. With

support from NASA’s Ames Research Center,

he also directs the Mars Society’s NorCal

Rover project. His research interests are

release engineering, machine learning (clas-

sification), and privacy. Debić received an

MSc in physics from the University of

Zagreb. He’s a steering-committee member of

RELENG. Contact him at releng@debic.net.

 MARCH/APRIL 2018 | IEEE SOFTWARE 25

more-advanced forms of Release
Engineering 2.0. With these goals
in mind, after at least three experts
from both academia and industry
rigorously reviewed each submis-
sion, IEEE Software accepted the
following four.

In “Continuous Experimentation:
Challenges, Implementation Tech-
niques, and Current Research,” Gerald
Schermann and his colleagues review
the state of the art of, and issues with,
using the release-engineering pipeline
for quick, data-driven experiments
of new product features or tweaks.
Such experiments target user subsets
with a new release for a limited time,
to obtain actual usage feedback (in
production) that can help with de-
cisions about future releases. Con-
tinuous experiments will likely be
an essential component of Release
Engineering 3.0.

In “Correct, Efficient, and Tai-
lored: The Future of Build Systems,”
Guillaume Maudoux and Kim Mens
examine build systems, a critical
ingredient of release-engineering
pipelines. They survey various im-
provements made by different build
system technologies and identify fea-
tures and optimization mechanisms
build systems could implement to
make themselves suitable for Release
Engineering 3.0, thereby improv-
ing the new pipeline’s efficiency and
correctness.

In “Continuous Delivery: Build-
ing Trust in a Large-Scale, Com-
plex Government Organization,”
Rodrigo Siqueira and his colleagues
discuss organizational and technical
challenges related to the introduc-
tion of continuous-delivery prac-
tices in government administrations,
which typically aren’t accustomed
to release-engineering practices.
The authors report their experi-
ence working with a government

institution used to waterfall-like pro-
cesses, and provide advice on how to
implement continuous delivery. This
article is one example of the applica-
tion of Release Engineering 3.0 in a
civic setting.

Finally, in “Over-the-Air Up-
dates for Robotic Swarms,” Vivek
Varadharajan and his colleagues
consider another new domain for
Release Engineering 3.0: robotic
swarms. Such swarms are essen-
tial for supporting humanitarian
missions in rough circumstances,
where robots or drones must au-
tonomously explore and inter-
act with a disaster scene without
global network connectivity, un-
der time pressure. The authors
outline the challenges of perform-
ing over-the-air software updates
in this context and present an ini-
tial gossip-based approach that
spreads updates in peer-to-peer
fashion.

A s is clear from the previ-
ous summaries, each ar-
ticle highlights a different

facet of what Release Engineering
3.0 could look like, with two articles
focusing on fundamental technolo-
gies and practices and two articles
discussing new application domains.
Of course, many unexamined facets
remain; thus, we see this special is-
sue as an initial milestone toward
defining and elaborating Release En-
gineering 3.0.

Finally, we thank all the people
who did a great job writing or re-
viewing the high-quality submis-
sions for this theme issue. We also
thank Editor in Chief Diomidis
Spinellis and his IEEE Soft-
ware crew for their guidance and
support.

Happy reading!

Reference
 1. J. Humble and D. Farley, Continuous

Delivery: Reliable Software Releases

through Build, Test, and Deployment

Automation, 1st ed., Addison-Wesley,

2010.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

