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MANY MODERN-DAY SOFTWARE 
systems exploit knowledge about 
their user’s preferences and the en-
vironment, to trigger runtime ad-
aptations so that they exhibit smart 
behavior adapted to the current situ-
ation. Such variability must happen 
dynamically at postdeployment time, 
and the variety of runtime scenarios 
is huge. Techniques for modeling 
and managing dynamic variabil-
ity on the basis of context knowl-
edge provide a powerful solution 
for many runtime reconfiguration 
challenges. This special issue pro-
vides an updated perspective on such 
techniques to manage variability1  
at runtime, as a way to make soft-
ware systems smarter and less de-
pendent on human intervention.

Voices from the Industry
Today’s devices are ever-more con-
nected. The number of such devices 
is expected to grow from 12.5 billion 
in 2010 to over 50 billion in 2020.2 
These devices will increasingly use 
information from their environment 
and the Internet to enhance the user 
experience. One example is wearable 
devices that collect medical data and 
compare it with centrally stored in-
formation to provide instant drug 
delivery and give feedback to the 
user and a physician.

Another example is the smart con-
nected car (see Figure 1). Already to-
day, many of its functions are heavily 
software-driven.3 In the future, cars’ 
behavior will be determined increas-
ingly by contextual information pro-
vided by external systems.

In a smart connected car, infor-
mation from the Internet, radar, and 
car-to-car and car-to-infrastructure 
systems is used to find the optimal 
route, gather diagnostics to monitor 
the vehicle’s condition, deliver soft-
ware updates, provide infotainment, 

and so forth.4 In addition, the car’s 
functioning is based on information 
coming from sensors and other car 
components. For instance, the opti-
mal functioning of the engine, either 
combustion or electrical, depends on 
temperature, air pressure, and the 
available power resources. Optimal 
energy recovery needs close informa-
tion exchange between the electrical 
powertrain and braking system.5

A connected car is basically a sys-
tem of systems in which each sub-
system operates independently to a 
certain extent. Both the external and 
internal systems contain variation 
points, some of which are bound at 
design or compile time, whereas oth-
ers operate dynamically. The external 
systems have a different and chang-
ing feature set, depending on the lo-
cation, country, weather conditions, 
driver preferences, or time of day. 
Each internal system contains its own 
variability and uses information from 
sensors and other components, again 
containing variation points, which 
all together constitute the system’s 
context. This means that the context 
differs from car to car and changes 
dynamically as the car is driving. The 
car’s internal software must be able 
to handle this plethora of information 
and adapt to the changing context.

However, not all contextual infor-
mation can be trusted. For example, 
someone might hack a car to gather 
information about its owner or even 
to put the driver in unsafe situations. 
A connected car can become success-
ful only when its security and safety 
are guaranteed. So, the contextual 
information must be analyzed, classi-
fied, and sometimes ignored.

A further complication is that each 
internal system might come from a 
different specialist supplier.6 These 
components support a range of cus-
tomers and application areas and will 

therefore contain variation points that 
might not be relevant for each receiv-
ing party. The receiving parties must 
bind these variation points on the ba-
sis of the context in which the systems 
are used—for example, the type of 
car or the region in which it’s used.7

Challenges in Context-
Aware Systems
Context-aware systems offer a range 
of contextual variability:

•	 simple activation or deactiva-
tion of certain system options 
relevant to a certain context,

•	 mobile applications that adapt 
their mode of operation to data 
coming from a mobile device’s 
sensors,8

•	 web applications that activate 
or deactivate certain features on 
demand,9

•	 sophisticated adaptive software 
(such as in robots and un-
manned vehicles), or

•	 critical infrastructure with strin-
gent monitoring and reconfigu-
ration requirements.

This diversity of runtime scenarios 
leads to the following key questions.

What Is Context?
Different context-aware application 
domains and types of systems use 
different kinds of physical sensors. 
They also have different needs re-
garding what context properties to 
sense and which ones to react to.

How Should a System Adapt?
Different systems have different needs 
regarding how to exhibit smart ad-
aptation or reconfiguration. Not all 
systems require the same degree of 
adaptation. Modern context-aware 
systems should at least be able to ac-
tivate or deactivate certain system 
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features in well-defined predicted sce-
narios and maybe even adapt to un-
foreseen scenarios.

How Should We Model and Manage 
Dynamic Variability?
We need dedicated mechanisms to 
model and manage the variability of 
context-aware systems at runtime. 
These mechanisms also should adapt 
the structural variability on the ba-
sis of context changes10 when func-
tionality is dynamically added to or 
removed from the system. Research-
ers have provided dedicated mod-
eling notations11 or programming 
languages that include the notion of 
context as a key abstraction.12,13

Context Analysis and 
Modeling Strategies
According to Eli Rohn, a system is 
context-aware “if it can extract, in-
terpret and use context information 
and adapt its functionality to the 
current context of use.”14 The grow-
ing need for context-aware software 
systems requires appropriate tech-
niques for modeling, representing, 
and handling context-aware software 

variability. Understanding the key 
properties of and differences between 
different context-aware approaches is 
essential to understanding what ap-
proach best suits a particular class of 
systems.15

Some attempts to model the vari-
ability of context properties7,16 rely 
on traditional feature models. In such 
approaches, context features are han-
dled by traditional software variabil-
ity techniques in which changes to 
the runtime context trigger changes 
to the software’s functionality. Table 
1 summarizes strategies for model-
ing context features using traditional 
software variability techniques.

The transition from closed to open 
variability models means that vari-
ability models can be extended with 
new features after design time for ex-
tensibility and evolvability. Runtime 
variability approaches can be used for 
adding or removing features, unlike 
with static variability models.

Facing Runtime 
Variability Today
Ideally, context-aware, self-adaptive  
systems perform some kind of 

reconfiguration at runtime, but fac-
ing the complexity and diversity of 
runtime scenarios might be chal-
lenging for critical systems. Today, 
many context-aware systems can ac-
tivate and deactivate system options 
or perform updates and complex re-
configurations to adapt the system’s 
behavior to varying scenarios. Man-
aging context variability dynamically 
after postdeployment requires dedi-
cated runtime managers that can an-
alyze and change the state of context 
properties and provide a smart reac-
tion of the system to those properties.  
Table  2 outlines different runtime 
needs that require different solutions 
to manage the context features.

Orthogonal to approaches inspired 
by feature modeling and software 
product lines or by self-adaptive soft-
ware systems, context-oriented pro-
gramming (COP)12 emerged as a way 
to achieve dynamic context-aware soft-
ware variability at the programming- 
language level. Most COP languages 
add a notion of contexts or layers as 
first-class entities to describe behav-
ioral properties associated with par-
ticular contexts. As soon as a context 
becomes active (or inactive), the cor-
responding features are applied (or 
removed), thus making the associated 
behavior available (or unavailable).

In parallel with COP, the feature-
oriented community has started 
looking into language-engineering 
solutions, as exemplified by feature-
oriented programming languages.

In This Issue
This special issue presents a collection 
of high-quality articles that address  
different aspects of contextual- 
variability modeling, implementation, 
and management:

In “Learning Contextual-Vari-
ability Models,” Paul Temple and 
his colleagues state that a system’s 

NFC

V2X

Security

Ethernet

Radar 

FIGURE 1. The smart connected car uses a plethora of sensors and variability to 

react to its environment and driver. V2X 5 vehicle-to-infrastructure; NFC 5 near-field 

communication. (© NXP Semiconductors; used with permission.)
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Table 1. Context-feature-modeling strategies using software variability.

Strategy
No. of variability 

models Description Pros Cons

Two separate 
feature models

2 Context and noncontext 
features are modeled in two 
separate feature models.

Easy to model • � The need to maintain two separate 
models

• � Many dependencies between both 
models

One feature model 
with subbranches

1 Context features are modeled 
as subbranches of a main 
variability model.

• � Easy to model
• � High reusability and 

maintainability of context 
features

Many dependencies between context 
and noncontext features

One feature 
model entangling 
all features

1 Context and noncontext 
features are modeled in one 
combined model.

Fewer dependencies between 
context and noncontext 
features

• � Harder to model
• � Less reusability and 

maintainability of context features

Table 2. Runtime needs using contextual-variability approaches.

Runtime needs using context 
information Effect on context features Effect on the variability model Typical application domains

Activate and deactivate sensors Activate or deactivate features, 
depending on contexts triggered 
by the sensors.

No visible effect. • � Smart homes
• � Wireless sensor networks

Activate and deactivate features Activate or deactivate a context 
feature.

No visible effect. • � Mobile or web applications
• � Software systems providing 

services on demand

Software update Replace one context feature with 
another.

A feature is replaced by another, 
perhaps with a different 
functionality, but the variability 
model’s structure remains the 
same. In more complex cases, an 
entire subbranch of the variability 
model might be replaced.

• � Robots
• � Smart TV sets
• � Smart cars
• � Critical systems that demand 

postdeployment updating and 
reconfiguration

• � OSs

Adding or removing a functionality Add or remove a context feature. The variability model’s structure is 
modified when features are added 
or removed.

• � Critical systems that require 
operations in unattended mode

• � Smart cities
• � Cyber-foraging systems
• � Systems of systems

configuration space depends highly 
on expert knowledge and could be 
error-prone. They argue the potential 
of machine-learning techniques to 
learn which context factors will likely 
activate or deactivate system features.

In “Dynamically Adaptable Soft-
ware Is All about Modeling Con-
textual Variability and Avoiding 
Failures,” Ismayle de Souza Santos and 
his colleagues highlight the limitations 
of context feature modeling to describe 

real-world constraints. They evaluate 
an extended context-aware feature-
modeling technique offering higher ex-
pressiveness and comprehensibility.

In “Group-Based Behavior Adapta-
tion Mechanisms in Object-Oriented 
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Systems,” Patrick Rein and his col-
leagues discuss seven mechanisms that 
allow object-oriented software systems 
to define scopes for behavior adaptation 

that are more detailed than mere class 
definitions. Behavior adaptation can be 
defined on groups of individual objects 
matching certain conditions.

In “Context-Aware Software 
Variability through Adaptable In-
terpreters,” Walter Cazzola and Al-
bert Shaqiri explore a variation of 
COP. Rather than offering context- 
oriented variability through dedi-
cated programming-language ab-
stractions, they move context-aware 
software variability support to the level 
of programming-language interpreters.

C reating software systems 
that can reconfigure at run-
time on the basis of context 

knowledge remains a big challenge. 
However, this special issue presents 
current approaches that exemplify 
the combination of software vari-
ability techniques with context prop-
erties to modify software system 
behavior dynamically.
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