
FOCUS: GUEST EDITORS’ INTRODUCTION

58	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

Modeling and Managing
Context-Aware Systems’
Variability
Kim Mens, Université catholique de Louvain

Rafael Capilla, Rey Juan Carlos University

Herman Hartmann, NXP Semiconductors

Thomas Kropf, Robert Bosch GmbH

FOCUS: GUEST EDITORS’ INTRODUCTION

	 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE� 59

MANY MODERN-DAY SOFTWARE
systems exploit knowledge about
their user’s preferences and the en-
vironment, to trigger runtime ad-
aptations so that they exhibit smart
behavior adapted to the current situ-
ation. Such variability must happen
dynamically at postdeployment time,
and the variety of runtime scenarios
is huge. Techniques for modeling
and managing dynamic variabil-
ity on the basis of context knowl-
edge provide a powerful solution
for many runtime reconfiguration
challenges. This special issue pro-
vides an updated perspective on such
techniques to manage variability1
at runtime, as a way to make soft-
ware systems smarter and less de-
pendent on human intervention.

Voices from the Industry
Today’s devices are ever-more con-
nected. The number of such devices
is expected to grow from 12.5 billion
in 2010 to over 50 billion in 2020.2
These devices will increasingly use
information from their environment
and the Internet to enhance the user
experience. One example is wearable
devices that collect medical data and
compare it with centrally stored in-
formation to provide instant drug
delivery and give feedback to the
user and a physician.

Another example is the smart con-
nected car (see Figure 1). Already to-
day, many of its functions are heavily
software-driven.3 In the future, cars’
behavior will be determined increas-
ingly by contextual information pro-
vided by external systems.

In a smart connected car, infor-
mation from the Internet, radar, and
car-to-car and car-to-infrastructure
systems is used to find the optimal
route, gather diagnostics to monitor
the vehicle’s condition, deliver soft-
ware updates, provide infotainment,

and so forth.4 In addition, the car’s
functioning is based on information
coming from sensors and other car
components. For instance, the opti-
mal functioning of the engine, either
combustion or electrical, depends on
temperature, air pressure, and the
available power resources. Optimal
energy recovery needs close informa-
tion exchange between the electrical
powertrain and braking system.5

A connected car is basically a sys-
tem of systems in which each sub-
system operates independently to a
certain extent. Both the external and
internal systems contain variation
points, some of which are bound at
design or compile time, whereas oth-
ers operate dynamically. The external
systems have a different and chang-
ing feature set, depending on the lo-
cation, country, weather conditions,
driver preferences, or time of day.
Each internal system contains its own
variability and uses information from
sensors and other components, again
containing variation points, which
all together constitute the system’s
context. This means that the context
differs from car to car and changes
dynamically as the car is driving. The
car’s internal software must be able
to handle this plethora of information
and adapt to the changing context.

However, not all contextual infor-
mation can be trusted. For example,
someone might hack a car to gather
information about its owner or even
to put the driver in unsafe situations.
A connected car can become success-
ful only when its security and safety
are guaranteed. So, the contextual
information must be analyzed, classi-
fied, and sometimes ignored.

A further complication is that each
internal system might come from a
different specialist supplier.6 These
components support a range of cus-
tomers and application areas and will

therefore contain variation points that
might not be relevant for each receiv-
ing party. The receiving parties must
bind these variation points on the ba-
sis of the context in which the systems
are used—for example, the type of
car or the region in which it’s used.7

Challenges in Context-
Aware Systems
Context-aware systems offer a range
of contextual variability:

•	 simple activation or deactiva-
tion of certain system options
relevant to a certain context,

•	 mobile applications that adapt
their mode of operation to data
coming from a mobile device’s
sensors,8

•	 web applications that activate
or deactivate certain features on
demand,9

•	 sophisticated adaptive software
(such as in robots and un-
manned vehicles), or

•	 critical infrastructure with strin-
gent monitoring and reconfigu-
ration requirements.

This diversity of runtime scenarios
leads to the following key questions.

What Is Context?
Different context-aware application
domains and types of systems use
different kinds of physical sensors.
They also have different needs re-
garding what context properties to
sense and which ones to react to.

How Should a System Adapt?
Different systems have different needs
regarding how to exhibit smart ad-
aptation or reconfiguration. Not all
systems require the same degree of
adaptation. Modern context-aware
systems should at least be able to ac-
tivate or deactivate certain system

60	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

features in well-defined predicted sce-
narios and maybe even adapt to un-
foreseen scenarios.

How Should We Model and Manage
Dynamic Variability?
We need dedicated mechanisms to
model and manage the variability of
context-aware systems at runtime.
These mechanisms also should adapt
the structural variability on the ba-
sis of context changes10 when func-
tionality is dynamically added to or
removed from the system. Research-
ers have provided dedicated mod-
eling notations11 or programming
languages that include the notion of
context as a key abstraction.12,13

Context Analysis and
Modeling Strategies
According to Eli Rohn, a system is
context-aware “if it can extract, in-
terpret and use context information
and adapt its functionality to the
current context of use.”14 The grow-
ing need for context-aware software
systems requires appropriate tech-
niques for modeling, representing,
and handling context-aware software

variability. Understanding the key
properties of and differences between
different context-aware approaches is
essential to understanding what ap-
proach best suits a particular class of
systems.15

Some attempts to model the vari-
ability of context properties7,16 rely
on traditional feature models. In such
approaches, context features are han-
dled by traditional software variabil-
ity techniques in which changes to
the runtime context trigger changes
to the software’s functionality. Table
1 summarizes strategies for model-
ing context features using traditional
software variability techniques.

The transition from closed to open
variability models means that vari-
ability models can be extended with
new features after design time for ex-
tensibility and evolvability. Runtime
variability approaches can be used for
adding or removing features, unlike
with static variability models.

Facing Runtime
Variability Today
Ideally, context-aware, self-adaptive
systems perform some kind of

reconfiguration at runtime, but fac-
ing the complexity and diversity of
runtime scenarios might be chal-
lenging for critical systems. Today,
many context-aware systems can ac-
tivate and deactivate system options
or perform updates and complex re-
configurations to adapt the system’s
behavior to varying scenarios. Man-
aging context variability dynamically
after postdeployment requires dedi-
cated runtime managers that can an-
alyze and change the state of context
properties and provide a smart reac-
tion of the system to those properties.
Table 2 outlines different runtime
needs that require different solutions
to manage the context features.

Orthogonal to approaches inspired
by feature modeling and software
product lines or by self-adaptive soft-
ware systems, context-oriented pro-
gramming (COP)12 emerged as a way
to achieve dynamic context-aware soft-
ware variability at the programming-
language level. Most COP languages
add a notion of contexts or layers as
first-class entities to describe behav-
ioral properties associated with par-
ticular contexts. As soon as a context
becomes active (or inactive), the cor-
responding features are applied (or
removed), thus making the associated
behavior available (or unavailable).

In parallel with COP, the feature-
oriented community has started
looking into language-engineering
solutions, as exemplified by feature-
oriented programming languages.

In This Issue
This special issue presents a collection
of high-quality articles that address
different aspects of contextual-
variability modeling, implementation,
and management:

In “Learning Contextual-Vari-
ability Models,” Paul Temple and
his colleagues state that a system’s

NFC

V2X

Security

Ethernet

Radar

FIGURE 1. The smart connected car uses a plethora of sensors and variability to

react to its environment and driver. V2X 5 vehicle-to-infrastructure; NFC 5 near-field

communication. (© NXP Semiconductors; used with permission.)

	 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE� 61

Table 1. Context-feature-modeling strategies using software variability.

Strategy
No. of variability

models Description Pros Cons

Two separate
feature models

2 Context and noncontext
features are modeled in two
separate feature models.

Easy to model • � The need to maintain two separate
models

• � Many dependencies between both
models

One feature model
with subbranches

1 Context features are modeled
as subbranches of a main
variability model.

• � Easy to model
• � High reusability and

maintainability of context
features

Many dependencies between context
and noncontext features

One feature
model entangling
all features

1 Context and noncontext
features are modeled in one
combined model.

Fewer dependencies between
context and noncontext
features

• � Harder to model
• � Less reusability and

maintainability of context features

Table 2. Runtime needs using contextual-variability approaches.

Runtime needs using context
information Effect on context features Effect on the variability model Typical application domains

Activate and deactivate sensors Activate or deactivate features,
depending on contexts triggered
by the sensors.

No visible effect. • � Smart homes
• � Wireless sensor networks

Activate and deactivate features Activate or deactivate a context
feature.

No visible effect. • � Mobile or web applications
• � Software systems providing

services on demand

Software update Replace one context feature with
another.

A feature is replaced by another,
perhaps with a different
functionality, but the variability
model’s structure remains the
same. In more complex cases, an
entire subbranch of the variability
model might be replaced.

• � Robots
• � Smart TV sets
• � Smart cars
• � Critical systems that demand

postdeployment updating and
reconfiguration

• � OSs

Adding or removing a functionality Add or remove a context feature. The variability model’s structure is
modified when features are added
or removed.

• � Critical systems that require
operations in unattended mode

• � Smart cities
• � Cyber-foraging systems
• � Systems of systems

configuration space depends highly
on expert knowledge and could be
error-prone. They argue the potential
of machine-learning techniques to
learn which context factors will likely
activate or deactivate system features.

In “Dynamically Adaptable Soft-
ware Is All about Modeling Con-
textual Variability and Avoiding
Failures,” Ismayle de Souza Santos and
his colleagues highlight the limitations
of context feature modeling to describe

real-world constraints. They evaluate
an extended context-aware feature-
modeling technique offering higher ex-
pressiveness and comprehensibility.

In “Group-Based Behavior Adapta-
tion Mechanisms in Object-Oriented

62	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

Systems,” Patrick Rein and his col-
leagues discuss seven mechanisms that
allow object-oriented software systems
to define scopes for behavior adaptation

that are more detailed than mere class
definitions. Behavior adaptation can be
defined on groups of individual objects
matching certain conditions.

In “Context-Aware Software
Variability through Adaptable In-
terpreters,” Walter Cazzola and Al-
bert Shaqiri explore a variation of
COP. Rather than offering context-
oriented variability through dedi-
cated programming-language ab-
stractions, they move context-aware
software variability support to the level
of programming-language interpreters.

C reating software systems
that can reconfigure at run-
time on the basis of context

knowledge remains a big challenge.
However, this special issue presents
current approaches that exemplify
the combination of software vari-
ability techniques with context prop-
erties to modify software system
behavior dynamically.

References
	 1.	R. Capilla, J. Bosch, and K.C. Kang,

Systems and Software Variability

Management: Concepts, Tools and

Experiences, Springer, 2013.

	 2.	D. Evans, The Internet of Things:

How the Next Evolution of the In-

ternet Is Changing Everything, white

paper, Cisco Internet Business Solu-

tions Group, Apr. 2011; www.cisco

.com/c/dam/en_us/about/ac79/docs

/innov/IoT_IBSG_0411FINAL.

pdf.

	 3.	G. Spreitz, A. Zahir, and T. Kropf,

“Software for the Connected Car—a

Secure Open Source Platform for an

App-Centric SW Architecture,” Proc.

17th Int’l Congress Electronics in Ve-

hicles (ELIV 15), 2015, pp. 573–587.

	 4.	T. Kropf, “Connected Infotainment

Systems—the Internet of Things in

a Car,” invited talk, 9th European

Conf. Software Architecture (ECSA

15), 2015; s3.amazonaws.com

/ieeecs.cdn.csdl.public/mags/so/...

/mso2016030029s1.pdf.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

KIM MENS is a professor of computer science at Université

catholique de Louvain, where he leads a research laboratory

on software evolution and software development technology.

His research interests include software development, software

maintenance, software evolution, and context-oriented

programming languages. Mens received a PhD in computer

science from Vrije Universiteit Brussel. Contact him at kim

.mens@uclouvain.be.

RAFAEL CAPILLA is an associate professor of computer

science at Rey Juan Carlos University. His research interests

are software architecture, software-product-line engineering,

software variability management, software sustainability, and

technical debt. Capilla received a PhD in computer science

from Rey Juan Carlos University. Contact him at rafael.capilla

@urjc.es.

HERMAN HARTMANN is a senior enterprise architect at

NXP Semiconductors. His work includes the improvement of

architectural practices in IT and the introduction of applica-

tions to support hardware and software development and

integrated-circuit manufacturing. As part of this work, he

introduced variability management to NXP. Hartmann received

a PhD in computer science from the University of Groningen.

Contact him at herman.hartmann@nxp.com.

THOMAS KROPF is the senior vice president of engineering

at Robert Bosch GmbH and an adjunct professor of computer

science at the University of Tübingen. His research interests

include software product lines with robust reuse concepts;

open source software in high-quality automotive applications;

validation of software with high variability; and adaptive soft-

ware for different users, car lines, countries, or languages.

Kropf received a habilitation in computer science from the

Karlsruhe Institute of Technology. Contact him at thomas

.kropf@uni-tuebingen.de.

	 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE� 63

	 5.	M. Duval-Destin et al., “Impacts of an

Electric Powertrain on the Braking Sys-

tem,” ATZ Worldwide, vol. 113, no. 9,

2011; www.springerprofessional.de/en

/impacts-of-an-electric-powertrain-on

-the-braking-system/6428400.

	 6.	H. Hartmann, T. Trew, and J. Bosch,

“The Changing Industry Structure of

Software Development for Consumer

Electronics and Its Consequences for

Software Architectures,” J. Systems

and Software, vol. 85, no. 1, 2012,

pp. 178–192.

	 7.	H. Hartmann and T. Trew, “Using

Feature Diagrams with Context Vari-

ability to Model Multiple Product

Lines for Software Supply Chains,”

Proc. 12th Int’l Software Product

Lines Conf. (SPLC 08), 2008;

ieeexplore.ieee.org/document

/4626836.

	 8.	S. González et al., “Subjective-C:

Bringing Context to Mobile Platform

Programming,” Proc. 2010 Int’l

Conf. Software Language Eng.

(SLE 10), 2010, pp. 246–265.

	 9.	N. Cardozo et al., “Features on

Demand,” Proc. 8th Int’l Workshop

Variability Modeling of Software-

Intensive Systems, 2014, article 18.

	10.	J. Bosch and R. Capilla, “Dynamic

Variability in Software-Intensive Em-

bedded System Families,” Computer,

vol. 45, no. 10, 2012, pp. 28–35.

	11.	N. Cardozo et al., “Semantics for

Consistent Activation in Context-

Oriented Systems,” Information and

Software Technology, vol. 58, 2015,

pp. 71–94.

	12.	R. Hirschfeld, P. Costanza, and O.

Nierstrasz, “Context-Oriented Pro-

gramming,” J. Object Technology,

vol. 7, no. 3, 2008, pp. 125–151;

www.jot.fm/issues/issue_2008_03

/article4.

	13.	S. González, K. Mens, and A. Cádiz,

“Context-Oriented Programming

with the Ambient Object System,”

J. Universal Computer Science,

vol. 14, no. 20, 2008, pp. 3307–

3332.

	14.	E. Rohn, “Predicting Context-Aware

Computing Performance,” Ubiquity,

Feb. 2003; ubiquity.acm.org/article

.cfm?id5764011.

	15.	K. Mens et al., “A Taxonomy of

Context-Aware Software Variability

Approaches,” Modularity Compan-

ion 2016, 2016, pp. 119–124.

	16.	R. Capilla, O. Ortiz, and M.

Hinchey, “Context Variability for

Context-Aware Systems,” Computer,

vol. 47, no. 2, 2014, pp. 85–87.

For more information on paper submission, featured articles, calls for papers,
and subscription links visit: www.computer.org/tsusc

SUBSCRIBE AND SUBMIT

IEEE TRANSACTIONS ON

SUSTAINABLE COMPUTING
SUBMIT
TODAY

