
Editor: Editor Name
affi l iation
email@email.com

72	 IEEE SOFTWARE  |  PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0  ©  2 0 1 7  I E E E

REQUIREMENTS
Editor: Philippe Kruchten
University of British Columbia 
pbk@ece.ubc.ca

SOUNDING BOARD

The Case for  
Context-Driven Software 
Engineering Research
Generalizability Is Overrated

Lionel Briand, Domenico Bianculli, Shiva Nejati, Fabrizio Pastore, and Mehrdad Sabetzadeh

THIS ARTICLE FOLLOWS up on Li-
onel Briand’s 2012 Sounding Board 
article on the significant disconnect 
between research and industrial needs 
in software engineering.1 Here, we ar-
gue that for software engineering re-
search to increase its impact and steer 
our community toward a more success-
ful future, it must change. Specifically, 
we see the need to foster context-driven  
research. By that, we mean research fo-
cused on problems defined in collabora-
tion with industrial partners and driven 
by concrete needs in specific domains 
and development projects. By analyz-
ing publications from the top software 
engineering research venues, anyone 
could easily conclude that only a small 
proportion of the papers stem from 
such research.

Context-driven research doesn’t try 
to frame a general problem and devise 
universal solutions. Rather, it makes 
clear working assumptions, given a 
precise context, and relies on tradeoffs  
that make sense in that context to 
achieve practicality and scalability. This 
research paradigm applies to any topic 
in software engineering and isn’t meant 

to highlight any particular research 
area. Because context-driven research 
doesn’t produce results that generalize 
easily to any arbitrary software develop-
ment environment, the following ques-
tions arise: Does it have value? How so? 
Is it (engineering) science? This is what 
we discuss in the rest of this article.

The Importance of Context
The main motivation for the proposed 
paradigm shift is that software engi-
neering solutions’ applicability and 
scalability depend largely on contex-
tual factors, whether human (such as 
engineers’ background), organizational 
(such as cost and time constraints), or 
domain-related (such as the level of crit-
icality and compliance with standards). 
For example, whether a verification 
technique’s cost is justified will depend 
on the criticality of the software be-
ing assessed and the standards it must 
comply with. For many safety-critical 
systems, standards require traceability 
between requirements and system test 
cases. This naturally leads to the de-
velopment of techniques supporting the 
definition of requirements enabling the 



SOUNDING BOARD

	 SEPTEMBER/OCTOBER 2017  |  IEEE SOFTWARE � 73

automated or semiautomated deri-
vation of test scenarios.

Testing and verification tech-
niques typically take a specific set of 
inputs—such as a model or source 
code—and make assumptions about 
those inputs’ form and content—
such as a model’s level of precision 
or the constructs in source code. 
Whether such assumptions hold typ-
ically depends on the type of system, 
the development process, the soft-
ware engineers’ background, and the 
cost and time constraints.

These techniques’ outputs usually 
are assumed to be useful to support a 
given development task; whether this 
is true also depends largely on con-
textual factors. For example, many 
software engineering research papers 
on cyber-physical systems (CPSs) as-
sume (often implicitly) that the data 
sent to actuators or received from 
sensors is Boolean (or enumerations), 
or they exclude the notion of time. 
Pure Boolean abstractions are valid 
for a certain class of CPSs and for 

some specific analytical purposes but 
are simplistic in many other cases. 
This leads to overly coarse models 
that enable only shallow analysis of 
CPSs. Such unwarranted simplifica-
tions and generalizations are often 
due to community biases that assume 
any computation is rooted in logic. 
Our experience is that context-driven 
research can correct such biases and 
bring realism to research.

A common misperception is 
that long-term, high-risk research 
(sometimes called basic research) 
must be free of practical consid-
erations. A widespread and some-
times implicit argument is that we, 
as researchers, need to make sim-
plifying assumptions to work out 
the fundamentals, which can then 
be tailored to more realistic con-
texts. However, solutions devel-
oped that way are rarely adaptable 
to any real context. Usually, it’s in-
feasible to modify such an approach 
or technology to relax assumptions 
about its inputs, scale, people’s 

background and capabilities, or any 
other relevant aspect.

No fundamental contradiction 
exists between doing basic research, 
having realistic assumptions, and ac-
counting for context in defining our 
targeted problems. Doing basic re-
search in no way prevents us from 
grounding our work in reality. For 
example, observation of current en-
gineering practices in the CPS do-
main reveals that most analyses rely  
on continuous-time-signal represen-
tations of CPS behaviors. This trig-
gers the need for challenging basic 
research to devise proper modeling 
abstractions and analysis techniques 
for CPSs that account for their con-
tinuous and physics-based aspects.

Nevertheless, someone might ar-
gue that context-driven research 
leads to results that don’t grasp the 
big picture and to solutions of lim-
ited relevance. But what’s the al-
ternative, which has driven much 
of software engineering research 
to date? Research in a vacuum? 



SOUNDING BOARD

74	 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

Research driven by purely academic 
considerations? Based on many years’ 
experience in research and engineer-
ing practice and dozens of collabora-
tive industrial projects, our position 
is that such research has a limited im-
pact on the industry and society it’s 
supposed to eventually serve.

The main reason for this limited 
impact is that research in a vacuum 
relies on assumptions that are un-
likely to ever match any real con-
text and therefore lead to impact. 
In the best cases, such research will 
address the exception rather than the 
most common situations. For exam-
ple, regarding quality assurance for 
natural-language requirements, nu-
merous assumptions can directly af-
fect a technique’s applicability, such as  
the availability of a domain glossary, 
the use of strict templates, or a cer-
tain amount of background knowl-
edge. More specifically, and as an 
instance, if a technique relies on the 
availability of a complete glossary, 
it’s unlikely to be usable in most con-
texts in which such a prerequisite  
isn’t met.

Furthermore, although contextual 
factors strongly drive the applicabil-
ity of techniques and methodologies, 
software development organizations 
tend to be representative of certain 
application domains and develop 
types of systems that are also com-
mon in other organizations. For ex-
ample, the development of control-
lers in embedded systems tends to 
present similar challenges and relies 
on similar technologies across com-
panies and domains, such as mod-
eling in Matlab or Simulink and 
generating code. Also, many infor-
mation systems implement business 
process models and rely on technolo-
gies driven by the Business Process 
Model and Notation, whose cross-
domain adoption has risen steeply 

over the past decade. This implies 
that context-driven research’s results 
tend to be relevant outside the im-
mediate context in which they were 
obtained, usually in some type of in-
dustry or domain.

An additional benefit of context-
driven research is that immersion in 
a domain and context helps identify 
problems that academic research has 
overlooked but that are neverthe-
less important. For example, while 
working on the specification and 
testing of systems with strong legal 
and compliance requirements (for 
instance, a tax or social-security 
system), we observed a serious com-
munication gap between software 
engineers and legal experts. The 
former usually have a superficial 
understanding of the law; the latter 
can’t analyze and understand source 
code and complex formal notations. 
So, it’s important in such contexts 
to devise a domain-specific model-
ing methodology that both types of 
stakeholders can understand.

Because our premise is that con-
textual factors vary widely across 
domains and industries and there-
fore no universal solution exists for 
most software engineering prob-
lems, we suggest that context-driven, 
bottom-up research should play 
a more prominent role. In short, 
this approach entails that we solve 
problems in context, identify com-
monalities and differences across  
contexts, adapt solutions to different 
contexts, and generalize over time by 
building a body of knowledge from  
concrete experience.

What Must Happen
To achieve this vision, several things 
must change in our research com-
munity. First, top journals and con-
ferences must acknowledge that  
context-driven research is needed 

and challenging, and must review 
it accordingly. Guidelines could be 
developed to help educate review-
ers and the research community. For 
example, some of these guidelines 
could focus on how to request evi-
dence and arguments about a pro-
posed approach’s correctness and 
completeness and when to request 
additional case studies.

In reviewing context-driven re-
search, we must distance ourselves 
from the research tradition in com-
puter science that emphasizes proofs 
of correctness and completeness in-
stead of practicality and scalability, 
and that tends to believe in universal 
concepts and solutions. Mathemati-
cally demonstrating the correctness 
and completeness of practical, scal-
able solutions is rarely possible, simi-
larly to proving the correctness of an 
industrial-strength software system. 
A clear rationale and clear argu-
ments, thorough testing, and, when 
possible, the public availability of 
tools are usually the way to go.

Furthermore, funding agencies  
must help promote and reward col-
laborative research with industry, 
thus enabling context-driven re-
search. It’s unrealistic to believe that 
such research will expand if financ-
ing it remains difficult. Finally, hir-
ing and promotion committees must 
move away from counting papers 
and citations and instead emphasize 
and reward evidence of impact on 
engineering practice.

D evising software engineer-
ing solutions in a vacuum, 
in the comfortable set-

ting of academic offices, is unlikely 
to yield the results the software in-
dustry needs. Our research must 
operate in clearly defined contexts, 
enabling us to identify realistic 



SOUNDING BOARD

	 SEPTEMBER/OCTOBER 2017  |  IEEE SOFTWARE � 75

working assumptions and identify 
important, well-defined problems, as 
well as create opportunities for real-
istic evaluations. The fact that solu-
tions and results don’t generalize to 
all contexts shouldn’t be of concern. 
We must accept that we’re an engi-
neering field impacted by human, 
domain, and organizational factors 
and that universal solutions are vir-
tually nonexistent.

Eventually, when developing and 
adapting solutions in various con-
texts, based on empirical results in a 
variety of settings, we’ll be able to 
derive a body of knowledge that 
helps practitioners determine what 
to use in their context. Until we pro-
mote and publish such context-
driven research much more than we 
do now, the gap between academic 
research and industry needs will re-
main, and the former’s impact will 
remain limited. Our proposed para-
digm shift—inspired by the engi-
neering roots of our discipline and 
breaking away from computer sci-
ence research tradition—is a signifi-
cant challenge, like all endeavors re-
quiring a change in mind-set. To 
improve the situation and ensure a 
bright future for our research, we all 
have a role to play, including aca-
demic researchers and leaders, aca-
demic institutions and departments, 
and funding agencies. 

Reference
	 1.	L.C. Briand, “Embracing the Engi-

neering Side of Software Engineer-

ing,” IEEE Software, vol. 29, no. 4, 

2012, pp. 96, 93–95.

Read your subscriptions 
through the myCS 
publications portal at 

http://mycs.computer.org

ABOUT THE AUTHORS

LIONEL BRIAND is the vice director of the Interdisciplinary Centre 

for Security, Reliability and Trust and the lead scientist of the Software 

Verification and Validation department at the University of Luxembourg. 

Contact him at lionel.briand@uni.lu.

DOMENICO BIANCULLI is a research scientist at the University of 

Luxembourg’s Software Verification and Validation department. Contact 

him at domenico.bianculli@uni.lu.

SHIVA NEJATI is a research scientist at the University of Luxem-

bourg’s Software Verification and Validation department. Contact her at  

shiva.nejati@uni.lu.

FABRIZIO PASTORE is a research scientist at the University of  

Luxembourg’s Software Verification and Validation department. Contact 

him at fabrizio.pastore@uni.lu.

MEHRDAD SABETZADEH is a senior research scientist at the Univer-

sity of Luxembourg’s Software Verification and Validation department. 

Contact him at mehrdad.sabetzadeh@uni.lu.


