
0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E 	 SEPTEMBER/OCTOBER 2017 | IEEE SOFTWARE � 93

SOFTWARE
ENGINEERING

Editor: Robert Blumen
Salesforce
robert@robertblumen.com

Francois Raynaud
on DevSecOps
Kim Carter

THE SOFTWARE ENGINEERING
Radio podcast recently added five
hosts to the team: Kishore Bhatia,
Nate Black, Kim Carter, Matthew
Farwell, and Bryan Reinero. They
bring new interests, and I’m looking
forward to their contributions. The
podcast continues to grow in popu-
larity and is projecting more than
two million downloads this year.

In episode 288, host Kim Carter
sits down with Francois Raynaud, a
leader in DevSecOps, which aims to
bring practices pioneered by DevOps
to application security. Raynaud em-
phasizes the importance of building
security in from the start, because
treating security as a “bolt-on” to the
end of the process is far costlier and
can damage the relationship between
security and development teams.
Many DevOps principles—such as
test automation—can easily be ap-
plied to security, and the adoption
of these principles can help products
and businesses succeed securely.

Portions of the interview not
included here for reasons of space
include training, mapping the attack
surface, the Internet of Things and
security, and agile security. Listen
to the entire interview at www.se
-radio.net, as well as new episodes
that have been published since the
last column. —Robert Blumen

Kim Carter: Francois Raynaud is
the founder of the DevSecCon con-
ference. He’s actively involved in se-
curity automation projects and sup-
porting continuous delivery, and
is currently an enterprise security
architect for a global retailer. He
previously worked at ASOS, Bet-
fair, Verizon Business, HSBC, and
RSA. His consulting engagements
include implementing computer in-
cident response teams, incident re-
sponse strategy, security architecture
design, IT security management,
and penetration testing. Francois,
can you give us a quick summary of
what DevSecOps is?
Francois Raynaud: DevSecOps is
about using the DevOps methodol-
ogy for security. It’s about break-
ing the silos of security, giving that
knowledge to the different teams,
and ensuring that security is imple-
mented at the right level and at the
right time. DevSecOps puts security
at the forefront of requirements to
avoid the costly mistakes that come
from treating security as an after-
thought. Traditional security has
always been about exclusion—for
example, “need to know” and using
the security policy to prevent people
from disclosing secrets. DevSecOps
is about promoting inclusion and
working as a team.

SOFTWARE ENGINEERING

94	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

For people to embrace an idea and a
culture such as DevSecOps, we need to
discuss what’s defective with the status
quo. Can you explain what’s wrong
with traditional delivery approaches?
With traditional delivery method-
ology, you get code from the devel-
opment team and the security team,
and then you merge everything into
the final build. At the end, a project
manager tells the security team, “I
completely forgot, but I have this line
item somewhere that says ‘Get secu-
rity approval.’” The security team is
told, “We have to release this prod-
uct to make money for the company.
Can you please sign off on it?” When
you dig into the application and the
network after the QA [quality assur-
ance] processes, you realize that no
security has been implemented.

Traditionally, security is done af-
ter the development team is finished
with the product. And at that point
you end up with a list of bugs that
are difficult to fix. The project man-
ager thinks, “If I implement all these
fixes, I’m going to be late and the
company’s not going to be happy, so
let’s just forget it and we’ll do that in
the next iteration.”

We want to change the mind-set to
include security at a project’s incep-
tion. We want security to be included
in the nonfunctional requirements.
We want to ensure that the devel-
oper or product manager does not
speak only to the development team
in initial meetings. We want them to
include security. For example, a prod-
uct manager wants to give customers
access to some data without any kind
of authentication. Security has always
said no to that. But with DevSecOps
we want to say, “Yes, you can do this,
but you need to do it securely.”

Security has a bad name. Let’s be
honest: we haven’t been the most ef-
ficient industry. Lots of people made

lots of money by creating “bolt-on”
tools, but then you end up with Lego-
type security, rather than changing
things. The aim of DevSecOps is,
“Take our knowledge; change it.” We
want to do things differently. We’re
here to help; we’re not here to say no.

What’s wrong with retrofitting or
attempting to bolt on security to a
project when it’s nearing go-live, or
even once it’s been released, when
we get a better picture of where our
security defects are?
In a development lifecycle with secu-
rity at the end, you’ll build your appli-
cations in a fundamentally insecure
way. For example, you’ve built your
logging without taking into account
compliance requirements. Or you re-
alize that credit card data has been
stored in a text file to make it easy to
access. When the product was devel-
oped, they put it in an Amazon [AWS
S3] bucket accessible by everybody
because implementing authentication
would have created key-management
issues for the development team.

Companies have been completely
brought down by this. One example
that springs to mind is CodeSpaces.
This was a trading company, and
they had put not only the application
into an AWS [S3] bucket, but also
the backups. Unfortunately, they
put the encryption key in a public
area, and someone malicious got one
of the keys and deleted everything.
This company closed down in a mat-
ter of days. They couldn’t recover
from this, so they lost everything.

What can DevSecOps practices do
to fix this situation?
People will ask security teams, “Why
do we need to implement authentica-
tion?,” and we say, “Because that’s
written in the security policy.” But
why is it written in the security policy?

What are the consequences of not fol-
lowing it? It’s important to explain
why we’re doing it. We’re not just a
bunch of people wanting to say no;
we’ve studied security and we need to
share this knowledge.

Successful implementation [of
DevSecOps] happens when the se-
curity team provides knowledge and
tools and the DevOps team runs
them. There’s no reason for a secu-
rity team to run the tooling as a com-
pletely out-of-band management pro-
cess. Use the tools you have at your
disposal already. The CI/CD (contin-
uous integration / continuous deliv-
ery) process, for example, is fantastic
from a security point of view.

Teaching a security person how to
code is much harder than teaching a
developer how to code securely. Take
me as an example. I can’t code prop-
erly, and if I wanted to it would take
me years and years to arrive there.
But when I’ve trained development
teams, they’ve picked up security re-
ally quickly. The [improved] results
you get from penetration testing …
after security training for developers
is really impressive.

How does DevSecOps propose that
the relationship between developers
and security professionals work?
Start by sitting with each other. I’ve
done lots of incident response and
forensics sitting in a glass box, where
nobody can actually see what you’re
doing. Why should you hide every-
thing? Working in silos never works.

Use the methodology of automa-
tion for the benefit of security. When
[incident response teams] realize at-
tacks are coming against a particular
aspect of your website or application,
include that as part of the QA pro-
cess. Give the attack pattern to your
developers, so that they can actually
change the application accordingly.

SOFTWARE ENGINEERING

	 SEPTEMBER/OCTOBER 2017 | IEEE SOFTWARE � 95

Having a “security champion” is
one way to do it. This is where the
security team teaches one of the de-
velopers about security, and then
[that person] disseminates the infor-
mation to the rest of the team. It’s re-
ally about knowledge sharing.

I used to work in a company that
was doing high-frequency trading.
They had gamified finding bugs.
Two years in, we had five known is-
sues that we wanted the developers
to discover. One of the guys came
back with 10 of them. At this point
we said, “Wow, they got it.”

Then, developers get excited. The
people who found the issues become
your security champions. They get
a free T-shirt and can also get cer-
tification where we sponsor them to
learn more about security.

Have you found that security pro-
fessionals who aren’t integrated into
the development team are often re-
garded by development teams with
disdain and lack of respect?
Every day. The security team is nor-
mally the team that says no. They
don’t say anything else. When some-
body approaches the desk, they just
say “No, no, no, you can’t do that—
that’s really crazy. What kind of idea
is that?”

Think about the business. Busi-
ness is here to make money. The func-
tionalities that the project or product
manager is trying to implement—
there’s a good reason for that. They
want to make the businesses more
efficient, or they want to get more
customers. By making the security
team part of the decisions and part
of the discussions, you’re helping ev-
erybody break those silos.

Security should not be separated.
That’s the key. Forget “need to know,”
apart from a few areas where we need
to restrict information. Give your

knowledge to others. It doesn’t cost
you anything—it’s free for everybody.

Can you explain what “shifting se-
curity left” means?
That’s the big buzzword at the mo-
ment. If you start from left to right,
as you do in development, and se-
curity is bolted on at the end, it’s a
badge saying, “You’ve been certified.
Well done.”

[Shifting security left] is when
you start from the nonfunctional
requirements. For example, in a fi-
nancial company you explain [at the
start], “We have to think about PCI
requirements.” That’s the essence of
it: start from the beginning with all
the different teams.

Isn’t shifting security left going to
slow development and ultimately
cost the organization more?
Initially there will be a learning
curve, where suddenly this security
person is asking lots of questions. But
if you think about the costs of imple-
menting security later on, that’s com-
pletely different. [Think about] fixing
a bug in production. That’ll cost you
a fortune. You’ll have to stop produc-
tion, redo QA, [rebuild] all your arti-
facts, do all the version control again,
and [update] all your documentation.

If you do it at the beginning, once
everything is being built, you can re-
duce these costs. By shifting security
left, by discovering issues and bugs
at an earlier stage, you can easily in-
corporate it as part of your QA pro-
cess. The lag you’ll experience will
go down, and the cost of fixing secu-
rity will be much lower.

I haven’t seen customers who were
not pleased with the implementation—
especially the product managers; they
just love it. Instead of the traditional
penetration testing that occurred at
month three, month six, and month

nine, it’s all built in. You build in your
security to make sure it doesn’t cost
you in the end.

We’ve had lists of the most com-
monly exploited defects, such as the
SANS Top 25 and OWASP (Open
Web Application Security Project)
Top 10, since around 2003. The
same types of trivial defects are still
the most often exploited, but de-
velopment teams are still introduc-
ing those defects to the solutions
they’re delivering. Is DevSecOps the
answer?
DevSecOps is part of the answer.
DevSecOps emphasizes threat mod-
eling, which is quite fun. If your de-
velopment team understands how to
do threat modeling, then they can
incorporate those tests as part of
QA. It’s easy. Your OWASP Top 10:
incorporate those as part of your QA
process. Give developers the ability
to test for [those issues] themselves.

When you shift security to the
left from the start, you do threat
modeling and testing [as part of the
development process]. If you don’t
have any variation by the end of the
day, then you know [how many and
what defects exist]. If you combine
this with metadata from your CI/
CD, that’ll benefit your [incident re-
sponse] team. They can dig into this
metadata and say, “I have a prob-
lem with this server; this is the type
of service or software, and this is
the level at which it’s running.” You
have the ability to do an incident re-
sponse really quickly.

Do you have any tips on how you
can transform a poorly performing
team that has minimal focus on se-
curity to a high-performing team
with a good focus on security?
Speak to your project and product
managers. Your product manager is

SOFTWARE ENGINEERING

96	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

actually quite interested in security.
Security has become an added value
for companies. They’re starting to un-
derstand that you can provide great

functionality and access to informa-
tion. But if you provide it securely,
that’ll be your selling point. Let’s
be honest here: everything is about

selling; everything is about making
money.

Can you think of any other benefits
of bringing the security focus from
the end of the software development
lifecycle to the beginning?
As security folks, you are not better
[than the developer]. The developer
is trying to do his job, and security
is trying to do our job. Let’s not con-
front each other—let’s work together.

At all the companies where we’ve
implemented DevSecOps, there was
some tension at the beginning, which
we quickly resolved by making peo-
ple understand the need for it, how
much cheaper it’ll be, and how they
won’t see as much of me, which is al-
ways a benefit for everybody.

KIM CARTER is a technologist, engineer, infor-

mation security professional, entrepreneur, and

the founder of BinaryMist. He loves designing

and creating robust software and networks,

breaking software and networks, and then

fixing them and helping organizations increase

productivity. Contact him via binarymist.io or

follow him on Twitter @binarymist.

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long podcasts.

RECENT EPISODES
•• 293—Yakov Fain speaks with host Matthew Farwell about the popular

Angular web development framework.
•• 294—Host Edaena Salinas interviews Asaf Yigal about applying machine-

learning algorithms to the intelligent interpretation of log data.
•• 296—Host Matthew Farwell chats with computer scientist Edwin Brady

about the Idris language, in which types are first-class citizens.

UPCOMING EPISODES
•• 297—New host Kishore Bhatia and guest Kieren James-Lubin provide an

introduction to blockchains for developers.
•• 298—Moshe Vardi talks about solving computationally hard problems

with host Felienne.
•• 299—Edson Tirelli and host Robert Blumen discuss rules engines, which

execute one or more business rules—such as legal regulations and com-
pany policies—in a runtime production environment.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: Three Park Ave., 17th Floor, New
York, NY 10016-5997. IEEE Computer Society Publications Office: 10662
Los Vaqueros Cir., Los Alamitos, CA 90720; +1 714 821 8380; fax +1 714
821 4010. IEEE Computer Society headquarters: 2001 L St., Ste. 700, Wash-
ington, DC 20036. Subscribe to IEEE Software by visiting www.computer.
org/software.

Postmaster: Send undelivered copies and address changes to IEEE Soft-
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes Lane,
Piscataway, NJ 08854-4141. Periodicals Postage Paid at New York, NY, and
at additional mailing offices. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885. Return undeliverable
Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada.
Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of
this material is permitted without fee, provided such use: 1) is not made
for profit; 2) includes this notice and a full citation to the original work on
the first page of the copy; and 3) does not imply IEEE endorsement of any

third-party products or services. Authors and their companies are per-
mitted to post the accepted version of IEEE-copyrighted material on their
own webservers without permission, provided that the IEEE copyright no-
tice and a full citation to the original work appear on the first screen of the
posted copy. An accepted manuscript is a version which has been revised
by the author to incorporate review suggestions, but not the published
version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or promo-
tional purposes or for creating new collective works for resale or redis-
tribution must be obtained from IEEE by writing to the IEEE Intellec-
tual Property Rights Office, 445 Hoes Lane, Piscataway, NJ 08854-4141 or
pubs-permissions@ieee.org. Copyright © 2017 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee indicated in the code at the bottom of the first
page is paid through the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923.

