
4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

FROM THE EDITOR
Editor in Chief: Diomidis Spinellis
Athens University of Economics
and Business, dds@computer.org

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

State-of-the-Art
Software Testing
Diomidis Spinellis

PROGRESS IN SOFTWARE engineer-
ing often appears agonizingly slow. Yet
when you look back and take stock, you
can see that the software we develop
today benefits from practices that would
have been considered fanciful during the
implementation of the system we might
aim to replace.

This is the case with software testing.
A couple of decades ago, many parts of
software were tested only manually or
not at all. The integration of testing into
development was through a wall over
which developers threw the software to
dedicated testers. Test coverage analysis
and A/B testing were techniques many
of us only heard of in college and never
saw applied in practice.

The most striking sign of progress is
visible in industrial practice, which used
to trail academic research at an embar-
rassing distance but now often leads the
way.1 So here’s how to test software like
a pro.

Best Practices
First, pair the routines you write with
their unit tests. These tests exercise
the code in isolation, preventing prob-
lems from surfacing during integra-
tion. They also promote more modular

design, protect you during refactoring,
and document how the code you write
is supposed to be used. So important are
these tests that Michael Feathers consid-
ers software lacking them to be legacy
code.2 Adopt a framework, such as one
from the xUnit family, for writing and
running your unit tests. There are (more
than) plenty to choose from; various
modern languages, such as Go, Python,
Ruby, and Rust, even include unit-testing
support as part of their standard library.

Some of you might decide to go even
further by adopting test-driven develop-
ment (TDD): progressing step-by-step
by writing a test based on the software’s
requirements and then implementing
the code that implements the test. This
development style helps you focus on the
requirements from the outset, drives you
to design testable software, and ensures
that each feature is coupled with its test
code. TDD also helps your organization
stay honest regarding testing, by mini-
mizing the temptation to skimp on the
implementation of tests after the code
gets written.

Continue by establishing what Mike
Cohn called a test pyramid.3 At the bot-
tom, write plenty of unit tests to ensure
that your methods are correct. These are

 SEPTEMBER/OCTOBER 2017 | IEEE SOFTWARE 5

FROM THE EDITOR
Editor in Chief: Diomidis Spinellis
Athens University of Economics
and Business, dds@computer.org

relatively cheap to write, are robust
in the face of software changes, and
can run very fast. Supplement them
with a selective dose of component
and integration tests that run below
the application’s user interface. In
modern applications you should be
able to write these easily through
(for example, REST—Representa-
tional State Trans fer) service calls.
At the pyramid’s top, write a few
end-to-end tests that exercise the
user interface. These can be expen-
sive to write, brittle, and slow,
so exercise restraint in what you
test here.

Strive to automate all types of
tests. This minimizes their cost, sim-
plifies their running, and offers you
many opportunities to measure and
optimize the process. Automated
tests are the machine oil that keeps
the development engine running
smoothly. As an added bonus, test
automation provides more meaning-
ful and stimulating tasks to testers,
letting them focus on the tests’ qual-
ity and process optimization, rather
than miring them in the drudgery of
manually executed test cases.

Code and its tests tend to decay
over time. So, ensure that both are
always up to scratch by running your
tests during continuous integration
(CI). Most CI frameworks support
this functionality; all you have to do
is configure it. By running tests after
each commit, you minimize unpleas-
ant surprises during integration.
Code committers get an immediate
warning if their code broke their
own or somebody else’s tests. I’ve
seen that this process, when applied
to thoroughly tested code, makes it a
lot easier to onboard new developers
into a project. With guard railings
protecting all parts of the code, the
chance of somebody driving over the
cliff is minimized.

This brings me to another impor-
tant practice: test coverage analysis.
With this, you want to measure and
thoughtfully (rather than blindly4)
evaluate what code and what per-
centage of code are covered by
tests. Achieving 100 percent cover-
age is neither easy nor a guarantee
of faultless code. However, low or
decreasing levels of test coverage
are a warning sign that something is
amiss. Coupled with automated test-
ing, the measurement of code cover-
age as part of your CI process with
tools such as Coveralls (coveralls
.io) can help guide your organization
toward a test quality baseline.

When it comes to testing the user
experience and usability, automa-
tion is more difficult. Nevertheless,
there are still methods that can help
you a lot. In particular, consider A/B
testing, in which you deploy a given
feature to only a subset of your user
base and compare the two groups’
behavior. In services delivered over
the web, deploying both versions
can be simplified through software
option switches, which enable a fea-
ture only for specific users. Measur-
ing the two versions’ outcomes is
also easy; just have your server keep
a detailed log of user interactions.

As is always the case in software
engineering, the icing on the software
development cake entails measure-
ment, evaluation, and improvement.
When testing, first examine your test
cases’ effectiveness. A successful test
case is one that catches a bug. For
example, testing a class’s getters and
setters is rarely worthwhile; focus
instead on eliminating error-prone
boilerplate code with approaches
such as those supported by Project
Lombok (projectlombok.org).

Two other metrics to examine
are the time it takes for test cases to
run and their brittleness. Large code

EDITORIAL
STAFF
Lead Editor: Meghan O’Dell,
m.odell@computer.org
Content Editor: Dennis Taylor
Staff Editors: Lee Garber and
Rebecca Torres
Publications Coordinator:
software@computer.org
Lead Designer: Jennie Zhu-Mai
Production Editor: Monette Velasco
Webmaster: Brandi Ortega
Multimedia Editor: Erica Hardison
Illustrators: Annie Jiu, Robert Stack,
and Alex Torres
Cover Artist: Peter Bollinger
Director, Products & Services:
Evan Butterfield
Senior Manager, Editorial Services:
Robin Baldwin
Manager, Editorial Content:
Carrie Clark
Senior Advertising Coordinator:
Debbie Sims, dsims@computer.org

CS PUBLICATIONS BOARD
Greg Byrd (VP for Publications), Alfredo Benso,
Irena Bojanova, Robert Dupuis, David S. Ebert,
Davide Falessi, Vladimir Getov, José Martínez,
Forrest Shull, George K. Thiruvathukal

CS MAGAZINE OPERATIONS
COMMITTEE
George K. Thiruvathukal (Chair), Gul Agha,
M. Brian Blake, Jim X. Chen, Maria Ebling,
Lieven Eeckhout, Miguel Encarnação, Nathan
Ensmenger, Sumi Helal, San Murugesan, Yong
Rui, Ahmad-Reza Sadeghi, Diomidis Spinellis,
VS Subrahmanian, Mazin Yousif

Editorial: All submissions are subject to editing for
clarity, style, and space. Unless otherwise stated, bylined
articles and departments, as well as product and service
descriptions, reflect the author’s or firm’s opinion.
Inclusion in IEEE Software does not necessarily constitute
endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-
based system, ScholarOne, at http://mc.manuscript
central.com/sw-cs. Be sure to select the right manuscript
type when submitting. Articles must be original and not
exceed 4,700 words including figures and tables, which
count for 200 words each.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

FROM THE EDITOR

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

bases are often plagued by long test-
ing times, unreliable test results, and
other “test smells.” You can reduce
testing times by having test execu-
tion tools intelligently select which
test cases to run after a specific com-
mit. Increase test stability by flag-
ging and correcting nondeterministic
test cases and implementing a stable
staging environment.

Y ears ago, testing used to be
the ugly duckling of soft-
ware development. Given

that nowadays testing can stand
eye-to-eye with any other software
development process, I can hear you
asking, which factors have driven
the steady progress in testing over
the past decades? My take here is
that software code’s rising size and
complexity, greater demands regard-
ing development speed and agility,
and increased heterogeneity and

geographic distribution of software
teams and their components have
forced us to develop and adopt bet-
ter testing practices. This means that
state-of-the-art software testing is
now a mandatory part of software
development.

References
 1. V. Garousi et al., “What Industry

Wants from Academia in Software

Testing? Hearing Practitioners’ Opin-

ions,” Proc. 21st Int’l Conf. Evalu-

ation and Assessment in Software

Eng. (EASE 17), 2017, pp. 65–69.

 2. M.C. Feathers, Working Effectively

with Legacy Code, Prentice Hall, 2005.

 3. M. Cohn, Succeeding with Agile:

Software Development Using Scrum,

Addison-Wesley Professional, 2009.

 4. B. Marick, “How to Misuse Code Cov-

erage,” Proc. 16th Int’l Conf. Testing

Computer Software (ICTCS 99), 1999,

pp. 16–18; www.exampler.com

/testing-com/writings/coverage.pdf.

WELCOME NEW ED BOARD MEMBER

We welcome Mik Kersten to our editorial board. He’s in
charge of our new On DevOps department. On DevOps will
examine the discipline of architecture and systems thinking
beyond just the code, to encompass all the other artifacts
and processes involved in software delivery.

Kersten is the founder and CEO of Tasktop and drives
the company’s strategic direction and a culture of customer-
centric innovation. His research interests focus on value

stream architecture. Before Tasktop, Kersten launched a series of open source
projects that changed how developers collaborate. As a research scientist at
Xerox PARC, he created the first aspect-oriented development environment. He
received a PhD in computer science from the University of British Columbia.
Kersten has been named a JavaOne Rock Star speaker and one of the IBM
developerWorks Java top 10 writers of the decade. He was selected as one of
the 2012 Business in Vancouver 40 under 40 and has been a World Technology
Awards finalist in the IT Software category. Contact him at mik@tasktop.com or
follow @mik_kersten.

CONTACT
US

AUTHORS

For detailed information on submitting
articles, access www.computer.org
/software/author.htm.

LETTERS TO THE EDITOR

Send letters to

 Editor, IEEE Software
 10662 Los Vaqueros Circle
 Los Alamitos, CA 90720
 software@computer.org

Please provide an email address
or daytime phone number with your letter.

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org.
Please specify IEEE Software.

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org.

MISSING
OR DAMAGED COPIES

help@computer.org.

REPRINTS OF ARTICLES

For price information or to order reprints,
email software@computer.org
or fax +1 714 821 4010.

REPRINT PERMISSION

To obtain permission to reprint an article,
contact the Intellectual Property Rights
Office at copyrights@ieee.org.

