
4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

FROM THE EDITOR
Editor in Chief: Diomidis Spinellis
Athens University of Economics
and Business, dds@computer.org

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

Software Reliability
Redux
Diomidis Spinellis

SOFTWARE-INTENSIVE SYSTEMS
with high reliability requirements typi-
cally are implemented through heroic
(and expensive) engineering efforts.
Control systems in planes, nuclear re-
actors, trains, pacemakers, and space-
ships are developed by highly trained
personnel through strictly managed
software development processes with a
dose of formal methods. This approach
has worked admirably up to now, but its
strains are beginning to show.

We’re Not in Kansas Anymore
Start with ubiquity and cost. With “soft-
ware eating the world,” the requirement
for high reliability is no longer restricted
to a few specialized and proven domains.
Instead, ever more functions whose fail-
ure can hurt humans and damage prop-
erty are cropping up in new areas. Criti-
cal software appears in applications
ranging from hobbyist drones and Wi-Fi
routers to lithium-ion battery charging
circuits and personal health monitors,
to automated trading and door locks.
Frighteningly, the software development
budget for some application areas might
be too low to cover fancy reliability en-

gineering. So, the organizations that de-
velop the software might lack the peo-
ple, processes, and tools to deliver the
required reliability.

Then there’s the risk from end-user
programming. Software applications in-
creasingly offer users the ability to con-
figure and program them. This can be
helpful when we use a spreadsheet to
automate submission of our travel ex-
penses or use a content management
system to simplify editing our school’s
website. However, letting untrained us-
ers program in critical application areas
could be like letting a drunk pilot fly a
jumbo jet.

This state of affairs often develops
gradually, in ways that are difficult to
manage. An enthusiastic amateur pro-
grammer realizes he or she can use a
small Visual Basic or Python script to
easily automate a peripheral but tedious
process. Over the years, the process be-
comes more important to the amateur
programmer’s organization, and the
script grows multiple tentacles as it gets
connected to other services. Then, a user
mistakenly enters a negative price or the
script runs on 29 February, and multiple

 JULY/AUGUST 2017 | IEEE SOFTWARE 5

FROM THE EDITOR
Editor in Chief: Diomidis Spinellis
Athens University of Economics
and Business, dds@computer.org

services fail catastrophically because
the script was never properly tested.

Critical software with high reli-
ability requirements is also growing
bigger and more complex. This hap-
pens because, spurred by advance-
ments in other application areas and
increased hardware capabilities, we
demand more from it. For example,
we expect a car’s console to be at
least as friendly as our smartphone,
not realizing that a software crash
on our phone is an inconvenience,
whereas a car crash can be a tragedy.

In addition, managing the devel-
opment of critical software becomes
more difficult because the way we
build software is changing, with
third-party components providing
much of an application’s required
functionality. The Apollo program’s
spacecraft software ran on bare
metal, and each part of it could be
carefully verified. In contrast, a
modern critical-application software
stack might include an OS kernel
with many millions of lines; third-
party device drivers and firmware in
binary form; large middleware com-
ponents; and open source libraries
handling data compression, HTTP
communication, or cryptography de-
veloped by thousands of volunteers.

As if handling the size and com-
plexity wasn’t challenging enough,
many software applications requir-
ing high reliability comprise a mul-
titude of interconnected systems.
Parts of an application might run
in an embedded device; other parts
might run on a cloud provider’s serv-
ers; and yet other elements might de-
pend on queuing, geolocation, image
recognition, messaging, or database
functionality provided by third par-
ties as a service. These complex sys-
tems’ failure modes are difficult to
predict and handle. Famously, when
some of Amazon’s cloud services

failed a few months ago, the status
indication dashboard didn’t work as
expected because the necessary red
or green images were stored on Am-
azon’s failed Simple Storage Service.

To top it all, critical software of-
ten must be actively maintained for
decades. As Mike Milinkovich, the
Eclipse Foundation’s executive direc-
tor, said, “The software you’re writ-
ing today may have to be maintained
by your great-granddaughter.”1 This
has always been the case because the
time span from design to the end of
the corresponding hardware’s life
can indeed be more than half a cen-
tury. What has changed is the type
of required maintenance. Systems
connected over the Internet require
regular updates to face new threats
and to handle protocol evolution. It
was admirable that Microsoft had
in place a build environment and
an infrastructure to release a Win-
dows XP patch for the EternalBlue
vulnerability later exploited by the
WannaCry ransomware. However,
the organizations whose operations
relied on the long-unsupported sys-
tem were treading on thin ice. Also,
the hardware of modern large com-
plex systems depends on so many
manufacturers that maintaining it in
its original state for decades is hard.
The necessary upgrades bring with
them new device drivers and fresh
whole OS releases—a verification
nightmare for critical systems.

Somewhere, over the
Rainbow, Skies Are Blue
Avoiding problems and catastro-
phes in the new software reliability
landscape won’t be easy. Consider
the ubiquity of software perform-
ing critical functions and of devices
whose software isn’t appropriately
maintained. Unfortunately, for soft-
ware that’s developed with opaque,

EDITORIAL
STAFF
Lead Editor: Meghan O’Dell,
m.odell@computer.org
Content Editor: Dennis Taylor
Staff Editors: Lee Garber and
Rebecca Torres
Publications Coordinator:
software@computer.org
Lead Designer: Jennie Zhu-Mai
Production Editor: Monette Velasco
Webmaster: Brandi Ortega
Multimedia Editor: Erica Hardison
Illustrators: Annie Jiu, Robert Stack,
and Alex Torres
Cover Artist: Peter Bollinger
Director, Products & Services:
Evan Butterfield
Senior Manager, Editorial Services:
Robin Baldwin
Manager, Editorial Content:
Carrie Clark
Senior Advertising Coordinator:
Debbie Sims, dsims@computer.org

CS PUBLICATIONS BOARD
Greg Byrd (VP for Publications), Alfredo Benso,
Irena Bojanova, Robert Dupuis, David S. Ebert,
Davide Falessi, Vladimir Getov, José Martínez,
Forrest Shull, George K. Thiruvathukal

CS MAGAZINE OPERATIONS
COMMITTEE
George K. Thiruvathukal (Chair), Gul Agha,
M. Brian Blake, Jim X. Chen, Maria Ebling,
Lieven Eeckhout, Miguel Encarnação, Nathan
Ensmenger, Sumi Helal, San Murugesan, Yong
Rui, Ahmad-Reza Sadeghi, Diomidis Spinellis,
VS Subrahmanian, Mazin Yousif

Editorial: All submissions are subject to editing for
clarity, style, and space. Unless otherwise stated, bylined
articles and departments, as well as product and service
descriptions, reflect the author’s or firm’s opinion.
Inclusion in IEEE Software does not necessarily constitute
endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-
based system, ScholarOne, at http://mc.manuscript
central.com/sw-cs. Be sure to select the right manuscript
type when submitting. Articles must be original and not
exceed 4,700 words including figures and tables, which
count for 200 words each.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

FROM THE EDITOR

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

potentially slapdash, processes, part
of the answer will likely have to be
regulation. Currently, the cost of
misbehaving software is passed to
users (in the form of failures) and the
environment (as devices discarded
owing to faulty unmaintained soft-
ware). Left on its own, the market is
unlikely to solve this problem. This
is because users have insufficient in-
formation regarding the software’s
reliability and because most soft-
ware isn’t marketed in time frames
that allow the establishment of trust-
worthy brands. So, regulation that
increases transparency regarding
the software’s reliability and makes
manufacturers of critical software
liable for failures and responsible
for maintenance over clearly speci-
fied periods will result in better out-
comes for all parties involved.

The issues associated with end-
user programming will require mul-
tiple parties to do their part. Or-
ganizations must set up efficient
methods to inventory and character-
ize their software assets and the as-
sets’ dependencies and importance.
In parallel, developers of applica-
tions and frameworks that are of-
ten used for end-user programming

must continue promoting the devel-
opment of more reliable systems.
Some avenues include increased re-
liance on static checking; runtime
provisions for handling and recover-
ing from failures; and built-in sup-
port and gentle encouragement for
good software development pro-
cesses such as modularization, unit
testing, and configuration manage-
ment. Given the ever-larger num-
ber of people involved in putting
together algorithmic rules and sys-
tems, increased software engineer-
ing literacy among the general popu-
lation will also help.

There are no easy answers to the
reliability challenges arising from
modern software’s size and complex-
ity. Making suppliers responsible for
software maintenance and failures
should result in the availability of
more trustworthy components. As
a bonus, in such an environment,
we’ll be more likely to see a business
case for maintaining critical open
source libraries and systems. Thank-
fully, systems software, which faces
less pressure to evolve to chang-
ing requirements than applications
do, becomes more reliable as it ma-
tures. So, designers should prefer us-

CONTACT
US

AUTHORS

For detailed information on submitting
articles, access www.computer.org
/software/author.htm.

LETTERS TO THE EDITOR

Send letters to

 Editor, IEEE Software
 10662 Los Vaqueros Circle
 Los Alamitos, CA 90720
 software@computer.org

Please provide an email address
or daytime phone number with your letter.

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org.
Please specify IEEE Software.

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org.

MISSING
OR DAMAGED COPIES

help@computer.org.

REPRINTS OF ARTICLES

For price information or to order reprints,
email software@computer.org
or fax +1 714 821 4010.

REPRINT PERMISSION

To obtain permission to reprint an article,
contact the Intellectual Property Rights
Office at copyrights@ieee.org.

Call for Papers | General Interest

IEEE Micro seeks general-interest submissions for
publication in upcoming issues. These works should
discuss the design, performance, or application of

microcomputer and microprocessor systems. Summaries
of work in progress and descriptions of recently
completed works are most welcome, as are tutorials.
IEEE Micro does not accept previously published material.

www.computer.org/micro

FROM THE EDITOR

 JULY/AUGUST 2017 | IEEE SOFTWARE 7

ing software components that have
proved their mettle over the tempta-
tion to adopt whatever technology is
in fashion each year.

Addressing reliability concerns
is even more difficult with com-
plex systems. Few organizations
and groups have experience devel-
oping and running complex, large,
reliable systems. Even those orga-
nizations with that experience have
occasionally contended with spec-
tacular failures.

Thus, the first lesson is to iso-
late the most critical functionality
in stand-alone units rather than im-
plement it as part of a complex sys-
tem. We can also try to learn from
experienced organizations. Com-
mendably, some are publishing their
practices2 and failure postmortems.
These lessons need to be generalized
into scientific theory and make their
way into university curricula. In the

longer term, we can copy nature and
build complex systems by combining
multiple, diverse, interchangeable
components with independent fail-
ure modes.

Some candidate solutions crosscut
all problem areas. Innovations that
reduce the cost and time to develop
reliable software would help a lot, but
we can’t bank on them. Improved,
probably longer, education with in-
creased emphasis on software reli-
ability can be a requirement for peo-
ple developing critical software. As
professionals, we should also assume
more responsibility for the software
we develop. Professional societies can
do their part here by standardizing
and promoting the state of the art.
An admirable step in this direction is
the IEEE Computer Society’s Guide
to the Software Engineering Body
of Knowledge (available at www
.computer.org/web/swebok/v3).

T hroughout its 50-year his-
tory, software engineer-
ing has evolved splendidly

through numerous crises. Modern
software reliability challenges can
also be solved by applying the two
simple elements used in all past ca-
lamities: the courage to face the
problem and the brain to solve it.

References
1. M. Milinkovich, “Open Collabo-

ration: The Eclipse Way,” keynote

address at 2017 Int’l Conf. Software

Eng. (ICSE 17), 2017.

2. B. Beyer et al., Site Reliability Engi-

neering: How Google Runs Produc-

tion Systems, O’Reilly Media, 2016.

THANK YOU, GRADY!

Grady Booch published his first IEEE
Software article in 19941 and graced our
magazine with his On Architecture and On
Computing columns from 2007 until last
year. I’ve learned a lot from his thought-
ful, original, and reflective writing, a feeling
I’m sure all IEEE Software readers share.
So, please join me in thanking Grady for his
long, gallant service to our magazine and
community.

Reference
1. G. Booch, “Coming of Age in an Object-

Oriented World,” IEEE Software, vol. 11, no. 6,

1994, pp. 33–41.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

