
FOCUS: GUEST EDITORS’ INTRODUCTION

26	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

FOCUS: GUEST EDITORS’ INTRODUCTION

FOCUS: GUEST EDITORS’ INTRODUCTION

	 JULY/AUGUST 2017 | IEEE SOFTWARE� 27

Reliability
Engineering
Xabier Larrucea, Tecnalia

Fabien Belmonte, Alstom Transport

Adam Welc, Huawei

Tao Xie, University of Illinois at Urbana-Champaign

THE EMERGENCE OF new tech-
nologies and architectures such as
wearables, autonomous cars, the In-
ternet of Things, and smart cities is
providing more information about
our surroundings and about us. In
fact, our lives indirectly rely to some
extent on these new technologies and
advances, and reliability engineering
is becoming more relevant than ever.
Software is an active part of these
devices’ behaviors, and software en-
gineering should play a crucial role.

For example, in the driverless-
transportation domain, the develop-
ment of safety-critical software (such
as automatic train control systems)
takes into account various hazard
scenarios and the potential for sys-
tem failure. Some hazard scenarios
at the global system level involve a
software-based system whose reli-
ability contributes to safety (for ex-
ample, an audiovisual service that
communicates with passengers in
emergency scenarios). The lack of
specialized software for this area
and economic pressure lead opera-
tors to use commercial-off-the-shelf
software. A failure in these systems
can aggravate an already bad situa-
tion. Avoiding such failures requires

managing reliability throughout the
production chain when developing
commercial-off-the-shelf software,
including components created by
third parties.

Reliability engineering is neither
a new nor hot topic per se. It dates
back to reliability studies in the mid-
20th century;1 since then, various
models have been defined and used
(see the sidebar). Software engineer-
ing plays a key role from several
viewpoints, but the main concern
is that we’re moving toward a more
connected world,2 including enter-
prises3 and mobile devices.4

In the intersecting paths of soft-
ware engineering and reliability,
software reliability growth models
are used for fault prevention, fault
removal, fault tolerance, and fault
or failure forecasting.5 Research-
ers have investigated reliability in
relation to software architectures,
off-the-shelf components, testing,
and metrics. They’ve also devised in-
novative applications of technologies
such as artificial neural networks to
predict software reliability.6,7

However, there have been few
published experience reports and
lessons learned regarding the

28	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

practical long-term application of
software reliability engineering.
Such reports would inform the soft-
ware engineering community about
the state of the practice. In addition,
software engineers could identify
improvements in this area and even
identify potential approaches to
their application domains.

In This Issue
The three articles in this special is-
sue illustrate current trends in this
domain.

In “Automated System-Level Re-
gression Test Prioritization in a Nut-
shell,” Per Strandberg and his col-
leagues report their experience using
an automated tool to determine the

effective ordering of regression test
cases. They evaluated their tool in
real-world settings and identified in-
teresting challenges.

In “Safety Analysis of Safety-
Critical Systems Using State-Space
Models,” Vinay Kumar and his col-
leagues explain how they use UML
statechart diagrams and Petri nets

RELATED WORK IN SOFTWARE
RELIABILITY ENGINEERING

John Musa and William Everett defined software reliability
engineering as “the applied science of predicting, measur-
ing, and managing the reliability of software-based systems
to maximize customer satisfaction.”1 Nowadays, the number
of software-based systems is steadily increasing, and we’re
surrounded by thousands of devices and systems whose
operations rely on their appropriate functioning. This is true
for not only safety-critical applications but also the increas-
ing number of platforms related to the Internet of Things and
smart cities.

Software engineering is a cornerstone for conferring reli-
ability to such systems. These scenarios involve a myriad
of aspects, such as debugging, early error detection, fast
recovery, long-term support, dynamic and static analyses,
and evolution.

Musa’s reliability theory2 was the precursor of a wide set of
approaches such as the Musa–Okumoto basic-execution-time
model.3 In this context, there are two types of software reliabil-
ity growth models (SRGMs).4 Black-box SRGMs include

•	 the Jelinski–Moranda model,5

•	 the Goel–Okumoto model,6

•	 the Musa–Okumoto basic-execution-time model,
•	 the Musa–Okumoto logarithmic Poisson model,3

•	 the enhanced nonhomogeneous Poisson process
model, and7

•	 the Littlewood–Verrall Bayesian model.8

White-box SRGMs include

•	 Saileshwar Krishnamurthi and Aditya Mathur’s path-
based model9 and

•	 Swapna Gokhale and Kishor Trivedi’s state-based
model.10

References
1.	 J.D. Musa and W.W. Everett, “Software-Reliability Engineering:

Technology for the 1990s,” IEEE Software, vol. 7, no. 6, 1990, pp.

36–43.

2.	 J.D. Musa, “A Theory of Software Reliability and Its Application,”

IEEE Trans. Software Eng., vol. SE-1, no. 3, 1975, pp. 312–327.

3.	 J.D. Musa, A. Iannino, and K. Okumoto, Software Reliability: Mea-

surement, Prediction, Application, McGraw-Hill, 1987.

4.	 A.K. Verma, S. Ajit, and D.R. Karanki, “Software Reliability,” Reli-

ability and Safety Engineering, Springer, 2010, pp. 193–228.

5.	 Z. Jelinski and P. Moranda, “Software Reliability Research,” Statis-

tical Computer Performance Evaluation, W. Freiberger, ed., Elsevier,

1972, pp. 465–484.

6.	 A.L. Goel and K. Okumoto, “Time-Dependent Error-Detection Rate

Model for Software Reliability and Other Performance Measures,”

IEEE Trans. Reliability, vol. R-28, no. 3, 1979, pp. 206–211.

7.	 S.S. Gokhale et al., “An Analytical Approach to Architecture-

Based Software Reliability Prediction,” Proc. 1998 IEEE Int’l

Computer Performance and Dependability Symp. (IPDS 98), 1998,

pp. 13–22.

8.	 B. Littlewood and J.L. Verrall, “A Bayesian Reliability Growth Model

for Computer Software,” J. Royal Statistical Soc., Series C (Applied

Statistics), vol. 22, no. 3, 1973, pp. 332–346.

9.	 S. Krishnamurthy and A.P. Mathur, “On the Estimation of Reliability

of a Software System Using Reliabilities of Its Components,” Proc.

8th Int’l Symp. Software Reliability Eng., 1997, pp. 146–155.

10.	 S.S. Gokhale and K.S. Trivedi, “Analytical Models for Architecture-

Based Software Reliability Prediction: A Unification Framework,”

IEEE Trans. Reliability, vol. 55, no. 4, 2006, pp. 578–590.

	 JULY/AUGUST 2017 | IEEE SOFTWARE� 29

to represent unobservable dynamic
components. They validated their
technique on a nuclear power plant’s
emergency core cooling system.

In “Requirements Engineering for
Safety-Critical Systems: Overview
and Challenges,” Luiz Martins and
Tony Gorschek discuss a systematic
literature review of the most-cited
approaches for capturing and han-
dling safety requirements. They dis-
covered that practitioners largely pre-
ferred traditional approaches such as
fault tree analysis and failure mode
and effects analysis.

Reliability isn’t just a desirable
characteristic of software or
non-software-based systems.

It’s a property or an ability of all sys-
tems, especially when our lives rely
on them. Engineers should consider
reliability a cornerstone of their de-
velopment process. This theme issue
presents three articles discussing dif-
ferent development phases: require-
ments, design, and testing. As engi-
neers or managers, our responsibility
is to apply or facilitate the means to
ensure that reliability is a critical fea-
ture of the final product.

References
1.	E.D. Cook, “Reliability in Industrial

Electronic Equipment,” Trans. Am.

Inst. Electrical Engineers, Part 1:

Communication and Electronics, vol.

72, no. 4, 1953, pp. 351–360.

2.	M. Barth, “Living in a Connected

World,” IEEE Intelligent Transpor-

tation Systems Magazine, vol. 6, no.

2, 2014, pp. 4–7.

3.	“Engineering Management Great

Books List,” IEEE Eng. Management

Rev., vol. 31, no. 4, 2003, p. 136.

4.	L. Gorlenko and R. Merrick, “No

Wires Attached: Usability Challenges

in the Connected Mobile World,”

IBM Systems J., vol. 42, no. 4, 2003,

pp. 639–651.

5.	A.K. Verma, S. Ajit, and D.R.

Karanki, “Software Reliability,”

Reliability and Safety Engineering,

Springer, 2010, pp. 193–228.

6.	M.R. Lyu, “Software Reliability En-

gineering: A Roadmap,” Proc. 2007

Future of Software Eng. (FOSE 07),

2007, pp. 153–170.

7.	M.K. Saley and S. Sreedharan, “A

Survey of Software Reliability Growth

Models Using Non-parametric Meth-

ods,” Proc. 2014 IEEE Int’l Conf.

Computational Intelligence and Com-

puting Research (ICCIC 14), 2014.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

XABIER LARRUCEA is a senior project leader and research

scientist at Tecnalia and a part-time lecturer at the University

of the Basque Country. His research interests include safety-

critical software systems, software quality assurance, soft-

ware process improvement, empirical software engineering,

and metamodeling technology strategy. Larrucea received a

PhD in software engineering from Universidad del País Vasco.

Contact him at xabier.larrucea@tecnalia.com.

FABIEN BELMONTE is the mainline projects safety assur-

ance manager at Alstom Transport. His research interests

include using model-driven engineering to provide continu-

ous improvement of industrial practices, particularly railway

safety. Belmonte received a PhD in information sciences and

techniques from Université de Technologie de Compiègne.

Contact him at fabien.belmonte@transport.alstom.com.

ADAM WELC is a principal architect at the Huawei America

Research Center, where he optimizes programming-language

implementations for the cloud. Welc received a PhD in

computer science from Purdue University. Contact him at

adamwwelc@gmail.com.

TAO XIE is an associate professor and a Willett Faculty

Scholar in the Department of Computer Science at the Uni-

versity of Illinois at Urbana-Champaign. His research interests

include software testing, program analysis, software analytics,

software security, and educational software engineering. Xie

received a PhD in computer science from the University of

Washington. Contact him at taoxie@illinois.edu.

