
32 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

FOCUS: GUEST EDITORS’ INTRODUCTION

DevOps and Its Practices
Liming Zhu, Data61 | CSIRO

Len Bass, Professional Education Consortium

George Champlin-Scharff, IBM

32 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

 MAY/JUNE 2016 | IEEE SOFTWARE 33

NOT VERY FAR away and not very
long ago, an engineering staff mem
ber would hand out CDs containing
the nightly build to each developer
every workday morning. Each de
veloper would load that disk onto
his or her computer and, 40 minutes
later, begin his or her daily activities.
At night, the reverse process would
happen. Each developer spent about
two hours daily in operational over
head dealing with builds.

Today, the situation is much dif
ferent. Developers initiate builds any
time during the day, and the results are
quickly available. Tests and deploy
ments are automatic. Furthermore, de
ployment isn’t the only difference be
tween then and now. Postdeployment
processes detect and resolve errors
and encourage developers to write
code that’s more error resistant.

These revolutionary changes are
all a portion of what’s meant by Dev
Ops. “DevOps is a set of practices
intended to reduce the time between
committing a change to a system and
the change being placed into nor
mal production, while ensuring high
quality.”1 As with all technological
revolutions, DevOps practices im
pact processes, products, associated
technologies, organizational struc
tures, and business practices and
opportunities. In addition, adoption
of DevOps practices isn’t always
smooth. The revolutionary nature
of the changes introduces organiza
tional and business stresses.

Many of the organizational
stresses are standard for new technol
ogies. For example, much of the writ
ing about DevOps deals with cultural
issues. Cultural issues in technology
adoption have long been a discus
sion topic.2 We’ve chosen to focus on
aspects of product changes and how
those changes affect the way develop
ers think about their products.

The Effects of DevOps
DevOps practices affect developers
throughout the software develop
ment life cycle:

• Developers must verify a sys
tem’s provenance upon initializa
tion. This verification deter
mines whether the system has
gone through the requisite gates
with the requisite approvals.

• One practice is continuous de
ployment. A developer can place
code into production without
coordinating with members of
other development teams. This
affects the design choices and the
overarching architectural style.

• Systems move through various
environments on their way to
production. This affects the use
and management of configura
tion parameters.

• Systems are monitored after
deployment, and changes might
be rolled back. This affects the
architectural style, the informa
tion that’s exposed, and how
that information is exposed.

In addition, DevOps practices
rely heavily on tools of various
kinds, including tools for container
management, continuous integra
tion, orchestration, monitoring, de
ployment, and testing. Increasingly,
software engineers are the ones who
maintain and configure such tools.
In some organizations, such as Net
flix, Google, and Amazon, they also
develop those tools, whereas most
organizations use existing tools.

Microservices
The microservices architectural
style3 is fast becoming the standard
for building continuously deployed
systems. This style is a restriction of
a serviceoriented architecture. The

re strictions are that each service is
small (hence the “micro”) and that all
service developers understand they’re
working on the same overall system.

The size restriction means that
large systems comprise many smaller
systems. With microservices, a single
development team develops and main
tains responsibility for a microservice,
and coordination among the teams is
minimized. This gives a system com
posed of microservices some charac
teristics of a system of systems.4 In
particular, the question exists of de
termining the overall system’s health
and attributing changes in that health
to changes in individual services. Fur
thermore, there’s the challenge of en
couraging individual developers to
ensure that their services are good
citizens within the overall system in
terms of reliability and reporting per
formance. In this theme issue, “Chaos
Engineering,” by Ali Basiri and his
colleagues, addresses these challenges
and places them in a broader context.

Migrating a system to microser
vices involves rearchitecting it. When
the system is currently being used in
production, changes should be in
cremental. Having an example of a
sequence of changes provides some
guidance on how to proceed. Ar
min Balalaie and his colleagues of
fer this in “Microservices Architec
ture Enables DevOps: Migration to
a CloudNative Architecture.” They
describe how they used open source
tools and incremental changes to mi
grate a system providing services for
mobile developers to a microservices
architecture. They’ve abstracted a
collection of migration patterns that
provide guidance independently of
any particular system.

Adopting DevOps
As we said, migrating an organiza
tion to a microservices architecture

34 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

with the associated introduction
of DevOps practices involves both
technical and cultural transforma-
tions. In “DevOps: Making It Easy
to Do the Right Thing,” Matt Cal-
lanan and Alexandra Spillane focus
on both the technical and cultural
issues associated with introducing a
continuous-delivery pipeline.

DevOps is in its infancy in terms
of its adoption curve. Two of the
three articles in this theme issue deal
with adoption issues. Some future
DevOps issues are foreseeable. One
clear question is, “Which practices
are best for which kinds of systems
in which kinds of organizations?”
DevOps practices grew up in orga-
nizations providing services over the
Internet with, essentially, one very
complex and large system. Although
Amazon, Net� ix, and Google have
evolved their systems since intro-
ducing them, the system elements

are basically extensions of the same
family. This isn’t true for the systems
used in a � nancial institution such
as a bank. The mind-set involved in
evolving such systems differs from
the mind-set involved in integrating
two similar systems or performing
many enterprise-engineering roles.

Another question is, which do-
mains might bene� t from DevOps
practices? One such domain is big
data systems. Many big data systems
rely on rapid deployment to support
their data pipeline; thus, big data
systems will rely more and more on
DevOps practices.

DevOps Tools
Tool-related DevOps practices will
also evolve. Currently, specialized
tools exist for each portion of a pipe-
line. However, the overall pipeline
� ow must be hand-tailored using an
orchestration engine or specialized

plug-ins for existing tools. Tools or
tool families will emerge that are
aware of the whole pipeline and that
manage the orchestration of and con-
� guration parameters for each pipe-
line stage. One step in that direction
is ThoughtWorks’ GoCD tool (www
.thoughtworks.com/go). One analogy
to tool evolution is programming-
language evolution. Although it’s
possible to do everything in assem-
bly language or C, domain-speci� c
languages provide the abstractions
that make specifying applications in
the target domain easier.

T his theme issue can only
touch the surface of all the
issues associated with Dev-

Ops. However, if you are migrat-
ing to microservices or have imple-
mented them and are now dealing
with postdeployment monitoring
and reliability challenges, you should
� nd this issue’s articles helpful.

References
 1. L. Bass, I. Weber, and L. Zhu,

DevOps: A Software Architect’s

Perspective, Addison-Wesley Profes-

sional, 2015.

 2. D.R. Conner and R.W. Patterson,

“Building Commitment to Organiza-

tional Change,” Training and Devel-

opment J., April 1982, pp. 18–30.

 3. S. Newman, Building Microservices,

O’Reilly Media, 2015.

 4. M. Maier, The Art of System Archi-

tecting, 3rd ed., CRC Press, 2009.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S LIMING ZHU is the research director of Data61’s Software and

Computational Systems Research Program. His research inter-

ests include software architecture, dependable systems, and

data analytics infrastructure. Zhu received a PHD in software

engineering from the University of New South Wales. Contact

him at liming.zhu@data61.csiro.au.

LEN BASS is a member of the Professional Education

Consortium. His research interests are software architecture,

DevOps, and software engineering education. Bass received a

PhD in computer science from Purdue University. Contact him at

lbass@professionaleducationconsortium.com.

GEORGE CHAMPLIN-SCHARFF is the agile practice lead at

IBM Watson Engineering. He has 20 years’ experience at IBM

helping teams grow engineering skills, embrace automation,

and adopt continuous improvement. Contact him at georgecs@

us.ibm.com.

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

software-multimedia
for multimedia content
related to this article.

