
4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

FROM THE EDITOR

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

Editor in Chief: Diomidis Spinellis
Athens University of Economics
and Business, dds@computer.org

THE IDYLL has been going on for
decades. DevOps, the synergy be-
tween software development and
IT operations, was an open secret
before it became a mass movement.
Passionate programmers were of-
ten also closet system administra-
tors—sometimes literally so, by nur-
turing recycled hardware in their
home’s closet. These same program-
mers were also drawn to the ma-
chine room, chatting with the ad-
ministrators about disk-partitioning
schemes, backup strategies, and new
OS releases. Not to be outdone, zeal-
ous administrators would � nd end-
less excuses to develop all sorts of
nifty software: deployment automa-
tion, monitoring, provisioning, and
reporting tools.

Many factors are propelling the
increased adoption of DevOps. First,
software is increasingly being offered
over the Internet as a service instead
of being developed as an organiza-
tion’s bespoke system or a shrink-
wrapped product. This makes opera-
tions an integral part of the offering,
driving demands for service quality.
Then there’s the agile movement. Its

emphasis on cooperation between
all stakeholders has helped formal-
ize the relationship between develop-
ment and operations. Its acceptance
of change has driven demand for
processes and tools that will let sys-
tems respond to change swiftly and
ef� ciently. Another enabler has been
the availability of powerful and plen-
tiful hardware. It has allowed the
abstraction of system infrastructure
and its expression as code amenable
to established software development
practices. Resource virtualization
and cloud computing have provided
the required building blocks.

In many IT sectors, DevOps is
here to stay, helping deliver higher-
quality services more ef� ciently.
How can you, as a software practi-
tioner, embrace DevOps to increase
your organization’s effectiveness?

// TODO
Start by cooperating more closely
with your IT operations colleagues.
Involve them in all stages of your
software’s development. Elicit their
requirements to � nd which tools and
APIs they need to deploy the system

ef� ciently and to manage it effec-
tively in production environments.
Exchange views on architecture and
features that will make your soft-
ware more reliable, more scalable,
and easier to deploy, con� gure, and
run. See how you can issue software
releases that painlessly mesh with
running systems. Discuss planned
changes and how they’ll affect oper-
ations. Many old-style organizations
have development and operations
work in disjoint silos. Strive to break
these down by instituting regular
meetings, setting up shared (virtual
and physical) workspaces, and em-
bedding people from one group into
the other.

If your application domain allows
it, let agile-development principles
guide your relationship with opera-
tions. Prefer to interact with your
operations colleagues rather than
be guided by rigid processes. Col-
laborate with them to solve problems
rather than � ght over service-level
agreements. Focus on software that’s
running and delivering a service
rather than on comprehensive doc-
umentation and formal handovers.

Being a DevOps
Developer
Diomidis Spinellis

 MAY/JUNE 2016 | IEEE SOFTWARE 5

Help operations respond to events
on the ground rather than hide be-
hind an established plan. Remem-
ber: the operations team is one of
your software’s users. Framing your
nonfunctional requirements as user
stories aimed at the operations team
makes ops a � rst-class stakeholder.

Expand the cooperation at the
technology level. Start by extending
your continuous-integration cycle
to include the software’s deploy-
ment on a test server. As you gain
con� dence with this, carry on with
planning and practicing continu-
ous delivery: the deployment of each
software release to production. Add
feature toggles and other infrastruc-
ture required to control your cus-
tomers’ experience and satisfy your
business model.

First-class operations teams hate
manual work (they call it toil, and
they strive to eliminate it), so make
your product amenable to auto-
mation. Ensure the software’s de-
ployment and runtime behavior
can be easily controlled from the
command line or through script-
ing APIs. Document these features
and give them � rst-class status by
designing any manual operation
methods to work through the au-
tomation interfaces. Use � le for-
mats that other programs can easily
parse and generate. Similarly, adopt
control interfaces, such as REST
(Representational State Transfer),
that can be used with minimal cere-
mony. You don’t want to bury your
operations counterparts under � ve
layers of abstraction and hundreds
of dependencies.

First-class operations teams also
hate � ying blind. Alerts help them
respond quickly when problems
arise, while trends provide feedback
from operations back to develop-
ment. Equip your software with

mechanisms that let others monitor
its functionality and performance.
Use a full-featured logging library,
include logging statements in your
software, and document the inter-
faces that control the logging ver-
bosity. Write logging statements
that the operations team can easily
dissect, correlate, and aggregate to
analyze your software’s operational
performance . If your systems sup-
port a whole-stack tracing tool, such
as DTrace or LLTng, detail its use to
scrutinize your software’s operation.
Provide ways through which system-
monitoring watchdogs, such as Nag-
ios plug-ins, can verify that your
software is alive and well. For higher
marks, provide information regard-
ing your software’s load and perfor-
mance metrics, such as throughput,
latency, resources used, and unser-
viced requests.

Finally, as you cooperate more
closely with your operations col-
leagues, strive to learn from each
other. You can help your opera-
tions team transplant into their set-
ting your successful development
practices, methods, architectures,
and tools: how you use revision
control tools to develop on multiple
branches, how you document useful
designs as patterns, how you pro-
gram in pairs, and how you perform
continuous integration. You can also
learn a lot from the operations side:
the relentless focus on service, qual-
ity, and reliability; the control of
risk; the organization of complex de-
ployments; the use of system con� g-
uration management tools; and the
elimination of toil.

T hinking like a DevOps de-
veloper is an essential trait
of an enlightened software

professional.

EDITORIAL
STAFF

Lead Editor: Brian Brannon,
bbrannon@computer.org
Content Editor: Dennis Taylor
Staff Editors: Lee Garber, Meghan O’Dell,
and Rebecca Torres
Publications Coordinator:
software@computer.org
Lead Designer: Jennie Zhu-Mai
Production Editor: Monette Velasco
Webmaster: Brandi Ortega
Multimedia Editor: Erica Hardison
Illustrators: Annie Jiu, Robert Stack,
and Alex Torres
Cover Artist: Peter Bollinger
Director, Products & Services:
Evan Butter� eld
Senior Manager, Editorial Services:
Robin Baldwin
Manager, Editorial Services Content
Development: Richard Park
Senior Business Development Manager:
Sandra Brown
Senior Advertising Coordinators:
Marian Anderson, manderson@computer.org
Debbie Sims, dsims@computer.org

CS PUBLICATIONS BOARD

David S. Ebert (VP for Publications), Alain April,
Alfredo Benso, Laxmi Bhuyan, Greg Byrd,
Robert Dupuis, Jean-Luc Gaudiot, Ming C. Lin,
Linda I. Shafer, Forrest Shull, H.J. Siegel

MAGAZINE OPERATIONS
COMMITTEE
Forrest Shull (chair), M. Brian Blake, Maria
Ebling, Lieven Eeckhout, Miguel Encarna-
ção, Nathan Ensmenger, Sumi Helal, San
 Murugesan, Yong Rui, Ahmad-Reza Sadeghi,
 Diomidis Spinellis, George K. Thiruvathukal,
Mazin Yousif, Daniel Zeng

Editorial: All submissions are subject to editing for
clarity, style, and space. Unless otherwise stated, bylined
articles and departments, as well as product and service
descriptions, re� ect the author’s or � rm’s opinion.
Inclusion in IEEE Software does not necessarily constitute
endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-
based system, ScholarOne, at http://mc.manuscriptcentral
.com/sw-cs. Be sure to select the right manuscript type
when submitting. Articles must be original and not exceed
4,700 words including � gures and tables, which count for
200 words each.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org/web/aboutus
/whatis/policies/p9-26.html.

MAY/JUNE 2016 | IEEE SOFTWARE 5

