
80 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Refactoring Tools Are
Trustworthy Enough
John Brant

Refactoring tools don’t have to guarantee correctness to be
useful. Sometimes imperfect tools can be particularly helpful.

A COMMON DEFINITION of refactor-
ing is “a behavior-preserving transfor-
mation that improves the overall code
quality.” Code quality is subjective, and
a particular refactoring in a sequence
of refactorings often might temporar-
ily make the code worse. So, the code-
quality-improvement part of the de� -
nition is often omitted, which leaves
that refactorings are simply behavior-
preserving transformations.

From that de� nition, the most impor-
tant part of tool-supported refactorings
appears to be correctness in behavior
preservation. However, from a develop-
er’s viewpoint, the most important part
is the refactoring’s usefulness: can it help
developers get their job done better and
faster? Although absolute correctness is a
great feature to have, it’s neither a neces-
sary nor suf� cient condition for develop-
ers to use an automated refactoring tool.

Consider an imperfect refactoring
tool. If a developer needs to perform a
refactoring that the tool provides, he or
she has two options. The developer can
either use the tool and � x the bugs it in-
troduced or perform manual refactor-
ing and � x the bugs the manual changes
introduced. If the time spent using the
tool and � xing the bugs is less than the
time doing it manually, the tool is use-
ful. Furthermore, if the tool supports
preview and undo, it can be more use-

ful. With previewing, the developer can
double-check that the changes look cor-
rect before they’re saved; with undo, the
developer can quickly revert the changes
if they introduced any bugs.

Often, even a buggy refactoring tool
is more useful than an automated refac-
toring tool that never introduces bugs.
For example, automated tools often can’t
check all the preconditions for a refactor-
ing. The preconditions might be undecid-
able, or no ef� cient algorithm exists for
checking them. In this case, the buggy
tool might check as much as it can and
proceed with the refactoring, whereas
the correct version sees that it can’t
check everything it needs and aborts
the refactoring, leaving the developer to
perform it manually. Depending on the
buggy tool’s defect rate and the develop-
er’s abilities, the buggy tool might intro-
duce fewer errors than the correct tool
paired with manual refactoring.

Even when a refactoring can be im-
plemented without bugs, it can be ben-
e� cial to relax some preconditions to
allow non-behavior-preserving transfor-
mations. For example, after implement-
ing Extract Method in the Smalltalk
Refactoring Browser, my colleagues and
I received an email requesting that we
allow the extracted method to override

POINT

continued on page 82

0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E NOVEMBER/DECEMBER 2015 | IEEE SOFTWARE 81

Trust Must Be Earned
Friedrich Steimann

 Creating bug-free refactoring tools is a real challenge.
However, tool developers will have to meet this
challenge for their tools to be truly accepted.

WHEN I ASK people about the progress
of their programming projects, I often
get answers like “I got it to work—now
I need to do some refactoring!” What
they mean is that they managed to tweak
their code so that it appears to do what
it’s supposed to do, but knowing the pro-
cess, they realize all too well that its re-
sult won’t pass even the lightest code re-
view. In the following refactoring phase,
whether it’s manual or tool supported,
minor or even larger behavior changes go
unnoticed, are tolerated, or are even wel-
comed (because refactoring the code has
revealed logical errors). I assume that this
conception of refactoring is by far the
most common, and I have no objections
to it (other than, perhaps, that I would
question such a software process per se).

Now imagine a scenario in which
code has undergone extensive (and ex-
pensive) certi� cation. If this code is
touched in multiple locations, chances
are that the entire certi� cation must be
repeated. Pervasive changes typically
become necessary if the functional re-
quirements change and the code’s cur-
rent design can’t accommodate the new
requirements in a form that would al-
low isolated certi� cation of the changed
code. If, however, we had refactoring
tools that have been certi� ed to preserve
behavior, we might be able to refactor
the code so that the necessary functional

changes remain local and don’t require
global recerti� cation of the software.
Unfortunately, we don’t have such tools.

There’s also a third perspective—
the one I care about most. As an engi-
neer, and even more so as a researcher,
I want to do things that are state-of-the-
art. Where the state-of-the-art leaves
something to be desired, I want to push
it further. If that’s impossible, I want
to know why, and I want people to un-
derstand why so that they can adjust
their expectations. Refactoring-tool us-
ers will more easily accept limitations if
these limitations are inherent in the na-
ture of the matter and aren’t engineering
shortcomings.

What we have today is the common
sentiment that “if only the tool people
had enough resources, they would � x
the refactoring bugs,” suggesting that
no fundamental obstacles to � xing them
exist. This of course has the corollary
that the bugs aren’t troubling enough to
be � xed (because otherwise, the neces-
sary resources would be made available).
For this corollary, two explanations are
common: “Hardly anyone uses refactor-
ing tools anyway, so who cares about
the bugs?” and “The bugs aren’t a real
problem; my compiler and test suite will
catch them as I go.” I reject both expla-

COUNTERPOINT

continued on page 82

POINT/COUNTERPOINT

82 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

an inherited method. Although the
person requesting the change knew
that this wouldn’t preserve behav-
ior, he also knew that the Extract
Method transformation could be
much quicker and more reliable with
the tool than by hand. So, we prom-
ised to warn the developer about the
issue but perform the transformation
anyhow if the developer agreed.

Refactoring tools can also be-
come more useful by relaxing the
definition of “behavior.” Under a
strict definition, a program that
executes more slowly than the
original has changed its behavior.
For some programs, such a change
would be unacceptable. However,
for most programs, executing a
few milliseconds slower is accept-
able. So, most refactoring tools

omit execution time from the pre-
served behaviors.

Reflection is another area in
which the behavior preservation re-
quirement is usually relaxed. For ex-
ample, if you employ reflection to use
strings to find classes by name, any
Rename Class refactoring will break
your program. By allowing refactor-
ing tools to ignore certain behaviors,
we can build more useful tools. Con-
sider replacing a set of radio buttons
with a drop-down list. Such a change
obviously isn’t behavior preserving
because the user will interact with
the application differently. However,
if we look at the behavior on the ba-
sis of what’s saved to the database or
what other widgets get enabled or
disabled when users make a selection,
it could be considered a refactoring.

M any people believe that
the most important part
of automated refactoring

tools is correctness. They feel that
without correctness, the tools won’t
be trusted, and without trust, they
won’t be used. However, I believe
that helping developers work more
efficiently is much more important
than the dogma of behavior pres-
ervation. If such a tool can help de-
velopers, they’ll use it, even though
they can’t trust that it will always
be correct.

JOHN BRANT is an independent consultant
and the coauthor of the Smalltalk Refactoring
Browser. Contact him at brant@refactory
workers.com.

nations—the first because it denies
refactoring the status of a relevant
problem requiring tool support, the
second because it implies a depen-
dence on testing that refactoring-
tool users might find unacceptable.
Besides, coming up with excuses for
ignoring bugs, rather than doing our
best to fix them, won’t increase trust
in refactoring tools.

After working on refactoring
tools for more than seven years,
I’ve concluded that ridding them of
their bugs is actually much harder
than most tool users would believe.
With respect to maintaining well-
formedness (that is, the tool doesn’t
introduce compilation errors), static
checking (as implemented by the
compiler, which is basically a deci-
sion problem) must be extended to
the much harder problem of comput-

ing the additional changes required
to maintain a refactored program’s
well-formedness (basically a search
problem). The idea of implementing
a refactoring as a sequence of steps
(“mechanics”) grossly underrates the
technical effort required to do this.

With respect to preserving behav-
ior, the problems are even harder.
Here, the boundaries are basically
set by the precision of available static
analyses. Surely, some program-
ming languages are more amenable
to such analyses than others, but I
doubt whether programmers will
ever adopt a programming language
because of its “safe refactorability.”
So, we must accept that guarantees
regarding behavior preservation can
be given in only fairly limited cases
(which might nevertheless be worthy
of refactoring-tool support).

S o, from my experience, in
terms of reliability, current
refactoring tools don’t play

in the same league as other program-
ming tools, notably compilers, de-
buggers, or version control systems.
This doesn’t make them useless;
having less-than-perfect refactoring
tools is better than having no refac-
toring tools. Yet, to deserve users’
trust, refactoring-tool builders can’t
be satisfied with the status quo but
must continuously demonstrate a de-
sire to build correct tools.

FRIEDRICH STEIMANN is full professor and
chair of Programming Systems at Fernuniversität
in Hagen. Contact him at steimann@acm.org.

Point continued from page 80

Counterpoint continued from page 81

POINT/COUNTERPOINT

NOVEMBER/DECEMBER 2015 | IEEE SOFTWARE 83

STEIMANN RESPONDS

Software is soft because it’s quickly changed.
Refactoring tools make changing software even
quicker. When I use a refactoring tool and the refac-
toring affects more than, say, a dozen distinct loca-
tions in the code, I usually look at the � rst couple of
changes in the preview. I then � nd that I’ll sacri� ce
much of the promised speedup if I try to manually
check the correctness of all the scheduled changes.
So, I accept all changes and wait for what the com-
piler has to say. If it says everything is okay, I usually
don’t worry about correctness and happily proceed
with my work.

However, with this extra speed, which I certainly
enjoy (“Wow, am I productive today!”), I tend to lose
control of my code. If a bug pops up sometime later,
I’m not sure who (me or the tool) introduced it when
or where—the speed of development has overrun
me. True, manual refactoring is slower and likely in-
troduces bugs too; however, it leaves me more con-
scious of what I actually changed. Only if refactoring
tools are correct is this consciousness never needed.

BRANT RESPONDS

First, I believe that refactoring tools and optimiz-
ing compilers do play in the same league. Both try
to change code while preserving behavior. Optimiz-
ing compilers have a few more decades of research,
so they’re a little further along than some refactor-
ing tools. However, they still have their issues. Many
have command line switches that let users disable
optimizations when they aren’t working.

Second, although it’s good to research what code
analysis can and can’t do, we can also do state-of-
the-art research to determine what refactoring is
needed most or create refactoring frameworks that
support making new refactorings quickly.

Finally, I’m not against having refactoring tools
that have been certi� ed to preserve behavior. How-
ever, given that few compilers have such certi� cation
and that few projects get certi� ed, I believe that time
would be better spent researching other issues that
affect more people.

The

+ Datacenter Trends and Challenges 10

+ Practical Cloud Security 28

MAY 2014

www.computer.or
g/cloudc

omputing

+ Interoperability Challenges 20

+ Sensor Data in the Cloud 42

JULY 2014

www.computer.org/cloudcomputing

CONVERGENCE computer.org/
cloudcomputing

Subscribe today!
IEEE Computer Society’s newest magazine

tackles the emerging technology
of cloud computing.

+ Some amazing also here 22 + Some amazing also here 22

SEPTEMBER 2014www.computer.org/cloudcomputing

