
42 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

RELEASE ENGINEERING focuses
on building a pipeline that transforms
source code into an integrated, com-
piled, packaged, tested, and signed
product that’s ready for release. The
pipeline’s input is the source code de-
velopers write to create a product or
modify an existing one. Enterprises
running large-scale websites and de-
livering mobile applications with mil-
lions of users must rely on a robust
release pipeline to ensure they can
deliver and update their products to
new and existing customers, at the
required release cadence.

This special issue provides an
overview of research and practi-
tioner experience, and this article in
particular aims to give you insight
into the state of the practice and the
challenges release engineers face. It
features highlights from interviews
with Boris Debic, a privacy engi-
neer (and former release engineer);
Chuck Rossi, a release-engineering

manager; and Kim Moir, a release
engineer. We asked each of them
the same questions covering topics
such as release- engineering metrics,
continuous delivery’s bene� ts and
limitations, the required job skills,
the required changes in education,
and recommendations for future
research.

Every product release must meet an
expected level of quality, and release
processes undergo continual � ne-
tuning. What metrics do you use to
monitor a release’s quality? Do you
roll back broken releases after de-
ployment? If so, how?

Debic: Our main measures are
threefold: the number of open bugs
ranked by priority, the number and
percentage of successful releases, and
the number and percentage of re-
leases that are abandoned late in the
game. The � rst two measures allow

us to gauge the overall release health
of a service; the third measure can
uncover issues in the testing pipe-
line or growing code complexity. We
track these metrics and make com-
parisons from quarter to quarter.

Related to testing, another metric
is the greenness of the testing pipe-
line. Many tests, from code to perfor-
mance tests, are run daily in a con-
tinuous fashion. Stability of tests is a
signal of product maturity and good
engineering practices. Despite some
arguments to the contrary, this mea-
sure effectively increases the velocity
of product development and release.

We also track a host of more � ne-
grained metrics. Every step—with
its duration, outcome, operation,
logs, arguments, and other relevant
details in execution and setup—is
logged for every release that runs
at our company. Re� nements in the
release system are direct results of
observing patterns and quantifying

FOCUS: GUEST EDITORS’ INTRODUCTION

The Practice and
Future of Release
Engineering
A Roundtable
with Three Release Engineers

Bram Adams, Polytechnique Montréal // Stephany Bellomo,
Software Engineering Institute // Christian Bird, Microsoft Research //
Tamara Marshall-Keim, Software Engineering Institute //
Foutse Khomh, Polytechnique Montréal // Kim Moir, Mozilla

s2gei.indd 42 2/4/15 6:33 PM

MARCH/APRIL 2015 | IEEE SOFTWARE 43

different processes, tools, and ap-
proaches using this dataset.

To gain another perspective,
we have systems that interact with
our users, either by providing them
a way to give direct feedback or
by going through logs and look-
ing for different types of failures.
This data is distilled and presented
to product teams as a collection of
signals that speak of product ro-
bustness and of complaints that us-
ers mention most often.

For Web services and servers,
“canarying” is another key compo-
nent of successful releases. Canary
rollout strategies depend on the type
of service, user expectations, and
contractual obligations. In this type
of rollout, we gradually increase
the exposure of the new binary and
at all times monitor the critical pa-
rameters. Canaries are the bread and
butter of the � nal stages of a well-
designed release process.

Rossi: I’ll talk about Web deploy-
ment � rst and then contrast it with
mobile deployment. For Web de-
ployment, we use the metrics of the
code going into the master branch,
the test results, and performance lab
results. The next level includes met-
rics for products being released, such
as core tests, unit tests, and perfor-
mance experiments like time to in-
teraction (TTI), fatal-error rates, the
number of errors per page, and any
new errors that we hadn’t seen in the
production logs.

Then comes the canary step. The
set of binaries for a release sit in the
canary state for 30 minutes to an
hour. I look at the logging and � ag
new errors, error rate changes, and
fatal or elevated error rates for an
existing error. Core metrics include
TTI; the number of likes, photos
uploaded, and comments; and the

amount of tagging. We compare the
growth and interaction metrics from
the canary to those from production.
A release engineer and the develop-
ers look at them with more detailed
dashboards. For example, the ad
teams have dashboards on ad dis-
plays and ad click-throughs.

Our alerting system works on
either absolute numbers or the per-
centage rate. The biggest alert for

the Web is the log data for each new
build. In a canary, we collect that log
data separately from the regular pro-
duction traf� c. A website has thou-
sands of � ring errors and warnings,
and we look for changes in those. An
analysis of errors in the log data that
differ from production is the � rst
part of the canary. That’s easy, and
it’s universal—it doesn’t matter what
your app is doing.

Another big alert is when the ca-
nary TTI is much higher than the
production TTI. Is it because we just
increased login calls by 10 times? Or
because a database call to render the
� rst page is not going through cache
and it’s trying to do a lookup ev-
ery time? TTI helps us � esh out the
problem. We pay particular atten-
tion to how long it takes the main
page to render.

I have graphs for the back-end
machines, but I look for effects on
the front end. When I see those ef-
fects, I’ll start digging down. I might
see, for example, that only Internet
Explorer 7 on Windows boxes is
showing a bad TTI. Or I’ll realize

that the front end is rendering so
slowly because I’ve lost half the
back-end machines that are provid-
ing data for this service. I wouldn’t
have found that internally, but I will
� nd it in canary because it is mil-
lions of people.

Mobile deployments are more
challenging than Web deployments
because we don’t own the ecosystem,
so we can’t do all the things that we

would normally do. And the canar-
ies are huge. We watch cold start,
warm start, the app size, and the
numbers of photos uploaded, com-
ments, and ads being displayed or
clicked. Growth and engagement
numbers and the crash rate are im-
portant to the company. If the crash
rate � uctuates, we immediately take
action to understand why.

Concerning rollback, we’ve never
had a canary that bad. Generally,
it’s always rolling forward. We’ll
promote the release candidate to
the production binary in our store,
roll it to 5 percent of users, and get
data back from that. If that 5 per-
cent looks good, we’ll roll it out to
the rest of the population. I always
make the analogy that it’s like a bul-
let from a gun. It just keeps going.
The mobile ecosystem is so broken
when it comes to software man-
agement that I don’t want to force
people to re-download. Every time I
have to ask them to re-download, I
lose a certain percentage of people
who just never do it. So that’s the
challenge.

For Web services and servers,
“canarying” is a key component of

successful releases.

s2gei.indd 43 2/4/15 6:33 PM

44	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

Moir: At Mozilla, release engineers
don’t monitor the quality of the re-
lease; we have a team called Release
Management to perform that func-
tion. We use a “train model” for
managing releases. When develop-
ers have a new feature, they’ll land
it on a certain branch and make
sure the test suites run green. If so,
the change set will be uplifted to
another branch to ensure that the
patch integrates with other changes
on that branch and tests run green.
Eventually, the new feature reaches
the Aurora branch, which is an al-
pha branch, where it will sit for six
weeks to bake; then it goes to the
beta branch. Finally, six weeks later
it goes to the release branch. This is
one way of ensuring stability.

We limit the number of people
who get a release. On a given re-
lease day, we might let 5 percent of
the population running the desktop
version of our browser get the new
release. We have automatic crash
reporting in the browser that re-

ports to databases here. How many
crashes occurred? Are certain op-
erating systems, platforms, or add-
ons having problems? We’ll analyze
answers to those questions to deter-
mine whether we can roll the release
out to the rest of the population.
Other metrics come from users who
give us feedback during the beta,
support requests on our support
website, sentiment analysis on Twit-
ter, and the top 10 crashes across our
continuous integration every week.

Concerning rollback, we don’t
really roll releases back. If there
were a serious problem, like a huge
number of crashes on a certain re-
lease, we would block it so that no
updates would occur and then do a
point release. For example, if there
were a security issue causing prob-
lems, we would do a point release
so that users wouldn’t get the last
release and would be automati-
cally updated to the newer release
with the security fix. We call this a
“zero-day fix.”

Amid all the hype and buzz about
continuous delivery, what’s cur-
rently possible, and what are the
limitations? How far should you go
with continuous delivery?

Rossi: I’ve never worked in a true
continuous-deployment environ-
ment. We have a pseudo-continuous
deployment here—it’s twice a day.
Size is the limiting factor. All the
continuous-deployment places I’ve

visited had engineering teams of 20
to 50, even 100 people, pushing to
a website with a number of users
at best in the double-digit millions
per day. The same processes don’t
scale above a few hundred develop-
ers working on a common code base
or to a website that has either more
complexity or users into the hun-
dreds of millions. It doesn’t scale
at our company’s size. Continuous
deployment works for small teams,
with 20 to 30 changes per day.

Continuous deployment obvi-
ously shines in the Web area, where
you own the ecosystem. You can
publish effortlessly to your Web
fleet, and your users get the fixes
and features instantly without notic-
ing it. In minutes or hours, you will
know whether something is wrong
with the release.

As I understand continuous deliv-
ery, it will not happen on mobile in
the near future. The current app dis-
tribution system is based on an an-
cient model that’s not even as good
as shrink-wrapped software. In this
model, you build an artifact, you
put it out to a third party that has
total control over when and how it
gets out, then the end users consti-
tute a completely disparate map of if,
when, and how it gets updated. And
there is no way for you to influence
that ecosystem.

So, you need user interaction
for every single update, and that’s
insane. Why should I have to take
time out of every day for the rest
of my life to push a button and
have my phone update its apps?
But that’s the model that we’ve had
with iOS. iOS 7 has an easy way
to turn on automatic app updates.
Then you’re not seeing that double-
digit red number on your App Store
icon every day. Unfortunately,
though, this feature is not on by
default. Android will put up road-
blocks even if you have auto-update
turned on. Of course, the owners
of the platforms have valid reasons
for trying to maintain this control,
such as preventing malicious apps
from auto-installing.

Our company, which has both
good infrastructure and complex
apps, can do automatic updates. In
fact, any mobile developer could pro-
vide users the infrastructure to use
their own channels to update apps.

Mobile deployments are more
challenging than Web deployments

because we don’t own the ecosystem.

s2gei.indd 44 2/4/15 6:33 PM

	 MARCH/APRIL 2015 | IEEE SOFTWARE � 45

Software deployment profession-
als need a solution that addresses the
security concerns but lets us update
our valid, legitimate apps seamlessly
with no pain to the user.

Moir: I think the continuous-delivery
model for desktop software works
well if the updates are silent and us-
ers don’t get constantly notified about
them. Otherwise, they get annoyed.
As Chuck said, the mobile model ob-
viously is different because Google
and Apple own the distribution, and
the default behaviors require users to
update as they feel like it.

At our company, we are focused
on relentlessly automating every-
thing. We’re automating the uplift
of all the changes from beta to re-
lease or from Aurora to beta, to have
fewer manual steps. We’ve come a
long way from when we first started
releasing software, and we had a
big page of instructions to follow by
hand, which was not very efficient.
Now there’s a great deal of deep
knowledge about how everything
works, so that when something goes
wrong, we can fix it. This lets us fo-
cus on writing tools to improve our
continuous-integration farm and our
release automation.

If a company is thinking about
moving to continuous integration,
it needs to get a release engineer on
board in the early stage, not the later
stage. Sometimes, product teams
work on a product almost in secret
and throw it over the fence when
they’re done. Then, release engineers
want to run away screaming when
they see that the product is built on
a hacky pile of spaghetti, and they
have to fix it.

It’s also good to have someone
who’s not emotionally attached to
the code and who is focused on get-
ting the pipeline in place as well as

getting the product in place. The re-
lease engineer doesn’t get upset if you
say, “You can’t put that feature in be-
cause it’s going to break everything,
and we need to ship tomorrow.” As a
release engineer, your focus is getting
a stable release out the door.

Debic: The possibilities and limita-
tions of continuous delivery depend
on the type of deliverable. Is it a

Web service, a mobile application,
or software for a medical device or
aircraft autopilot? In the high-tech
business, the Holy Grail of release
engineering is something called
“push-on-green.” As soon as a de-
veloper has committed a change list
to the code base, it automatically
gets into a pipeline that tests, exe-
cutes, and canaries the change list.
If all of the elements pass the change
list, it goes into production. Push-
on-green does not always make
sense: a change list may be depen-
dent on a set of change lists. There
may be dependencies between func-
tional parts of the product or be-
tween services. It may be impossible
to immediately deploy the change—
think of mobile devices that have a
wholly different model than a ser-
vice in a datacenter. Users may not
want to interrupt their days, or the
change may not be compatible with
all devices.

Often, people unfamiliar with re-
lease engineering don’t under-
stand the inherent complexity of

transforming code into a form that’s
tested, deployed, signed, and repro-
ducible. How do you educate others
about the value that release engi-
neering brings to a team?

Moir: In my current environment,
release engineering is definitely well
received. Because if you can’t build,
we can’t ship. And if we can’t ship,
we don’t get paid. In other compa-

nies, I’ve seen that release engineers
are second-class citizens, or they are
expected to perform miracles with
no advance warning or resources.

In those cases, obviously some
education is necessary. And maybe it
stems from the fact that release en-
gineering is not taught in school as
a discipline, so people aren’t exposed
to it. I like to help spread the word
by writing about release engineering
on my blog. And I’ve helped orga-
nize workshops for release engineer-
ing to try to bring the community
together.

In his book about remote work,
A Year without Pants, Scott Berkun
writes about his time as a manager at
Automattic, which developed Word-
Press.com. At Automattic, all new
hires spend a few weeks in a support
role, which gives them a better un-
derstanding of customer issues and
the overall process to get software
out the door.

DevOps (development and op-
erations) is another practice that
breaks down the walls between op-
erations and development. If you

A company needs to get
a release engineer on board

in the early stage, not the later stage.

s2gei.indd 45 2/4/15 6:33 PM

46	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

give developers the responsibility not
only to land code but also to make
sure that it actually works in produc-
tion and that the customer is happy,
they become more aware of the
whole pipeline of moving software
from development to the customer.
And if something does not work, de-
velopers are involved with backing it
out and writing patches to fix it.

Debic: If I need to describe release
engineering to colleagues who do not
know my work from firsthand inter-
actions, I tell them that release en-
gineering is the difference between
manufacturing software in small
teams or startups and manufacturing
software in an industrial way that is
repeatable, gives predictable results,
and scales well. These industrial-
style practices not only contribute to
the growth of a company but also are
key factors in enabling growth.

A release engineer has a special
mind-set. We look at everything that
is going on in a tech company, and we
try to industrialize the process. Where
others see features, we see release chal-
lenges. Where others count change
lists, we count how long it took for a

change from the time it was submit-
ted until the time it was in front of the
customer. While others add people to
a project, we look at how the added
complexity will affect it.

Rossi: I’ve always maintained that if
you’re a good release engineer, you
can work for any software company

in the world. My wife makes fun of
me because I come home and tell her,
“Oh, you know, Sylvia, three recruit-
ers contacted me today. I’m thinking
I’m hot stuff.” And she says, “Yes,
I told you no one wants to do what
you do.”

There’s a conception that release
engineering is nasty work. When I
started doing this, my first job was
with IBM in 1988. I worked on the
release of an integration of two op-
erating systems. This is really com-
plex—a huge software project with
two massive things that intersect,
and it has to be reproducible, re-
peatable, and testable. No one gets
this exposure until they’re dropped
in the middle of it and have to react
to it. And you’ll find many good re-
lease engineers who are release engi-
neers now because they started in a
company where no one would do it.
That’s traditionally how people have
fallen into this role.

I don’t think you have to make the
value proposition to any company of
why you want someone doing release
engineering, especially since there has
been movement in the continuous-
integration and continuous-delivery

worlds in the past. I’ve talked to
small startups, and generally it’s not
one of the first things they’re worried
about. But once they start to grow,
they begin to look for a person to do
release work.

Universities and colleges don’t ex-
plicitly teach release engineering

as a discipline. Given this limita-
tion, how do you find good release
engineers to hire? Should curricula
change to include these skills? If so,
what courses would be essential?

Debic: This is a very good question.
Release engineering is not taught; it’s
often not even mentioned in courses
where it should be mentioned. I think
the main reason is that the release-
engineering practice itself has been
hard to define. As you see from the
answers of your other guests, the ap-
proaches are quite diverse in nature
and scope.

But perhaps we should not have
skills-based curricula for release en-
gineering anyway. At Google, release
engineers are software engineers;
there is no difference. The complex-
ity of work they do and the tools
they use are the same as for product
engineers. Certain establishments
treat release engineers and quality
assurance engineers differently, but
this is a short-sighted strategy, and
my company is proof that the oppo-
site works better.

Rossi: I’ve spent some time trying
to work through this both at the
university level to get the curricu-
lum lined up and at a personal level.
One of my biggest hiring concerns is
that I need to hire release engineers.
It’s like finding unicorns. I look for
a strong technical background and
experience with programming on
either the product side or the infra-
structure side. I want utilitarian pro-
grammers and people who get stuff
done in the realm of system admin-
istration or tool writers. I don’t need
top-notch C++ programmers or peo-
ple concerned with the delicacies of
optimizing C algorithms.

The next thing I want is archi-
tecture knowledge. I want people to

If you can’t build, we can’t ship.
And if we can’t ship, we don’t get paid.

s2gei.indd 46 2/4/15 6:33 PM

	 MARCH/APRIL 2015 | IEEE SOFTWARE � 47

understand large-scale, multitiered,
distributed systems well enough to
debug or get into a system and see
where it is falling over. If you’re re-
lease engineering for the full stack,
you’re pushing everything from the
databases, the back-end systems, the
caching layer, the front end, the Web
servers, and everything in between.
You need to know how it all works if
you’re the one rolling it out.

Then I look for release engineer-
ing proper. Release engineers un-
derstand where there’s risk in mak-
ing things reproducible, repeatable,
and able to go back to any state of
what was built. Experience tells
them when you don’t make this kind
of change at this point in the cycle
because it’s too great a risk—that’s
hard to teach. Release engineers are
familiar with the source control sys-
tems, and they can do surgery on
trees and branches; flatten conflicts;
and safely deploy a new binary,
drain existing connections, and
bring up new services seamlessly.

If people come to me from a job
where they had maintenance win-
dows for rollouts, that’s a joke. I’m
not going to take you seriously if
you’re from a context where you
can’t use your bank between mid-
night and 3 a.m. because it is down
for maintenance. That’s just not ac-
ceptable from a release-engineering
standpoint.

Moir: Release engineers are hard to
find, and one problem is that they
don’t teach the skill set in school.
I recently looked at the undergrad
classes required to graduate with
a computer science degree from a
major university, and I was struck
by how much of it was theory and
not much was practice and deploy-
ing code. In most computer science
programs, there is little emphasis on

infrastructure. I think the expecta-
tion is that students will learn the
practical aspects later.

It would be great if schools taught
release-engineering skills, but what
classes would you remove from a
computer science curriculum to ac-
commodate this? Still, some top-
ics that I would like to see in a

course are version control systems,
like cloning, branching, and merg-
ing; bug-tracking systems; writing
patches and testing them against
existing code bases; and interacting
with people. Other skills would be
how to maintain continuous-integra-
tion deployment and infrastructure
and how to set up a release pipeline.
Case studies of how large compa-
nies do release engineering would
be useful. Continuous Delivery, by
Jez Humble and David Harley, could
be an excellent textbook for such a
class.

What should researchers focus on
regarding release engineering, con-
tinuous delivery, and related topics?
Where can research contribute to
problems you see with release engi-
neering or continuous delivery?

Moir: One thing I struggle with is
how to model the capacity I need
for our continuous-integration farm.
For instance, yesterday we ran 3,200
build jobs and 74,000 test jobs, and
each test job ran performance tests
or correctness tests. It’s an active
and complicated environment, and I

would love to know—given x number
of platforms, y number of branches,
and the matrix of tests and builds we
run on each of these platforms—if
we increase our number of commits,
how much additional capacity will
we need within the next year?

We could also model large
continuous-integration farms for the

possible effects of reducing the num-
ber of tests run. We could use an al-
gorithmic model that you can plug
in and enter parameters such as the
type of machines running, the envi-
ronment, the number of builds, and
other constraints. And the model
would show where your limits on ca-
pacity might be.

Another issue is high pending
counts. We have a lot of jobs wait-
ing for machines, and it seems like
we’re always playing Whac-A-Mole
on the bottleneck. We run almost all
tests on all commits, but do we re-
ally need to go to that effort and ex-
pense? How can we break out only
the relevant tests that need to be run
on a given commit so that we use
our capacity more efficiently? Some
dependence analysis tools would be
useful, to trace through the code,
map code changes, test coverage,
and thus invoke only the relevant
tests for that code.

Rossi: This doesn’t really apply in
a pure continuous-delivery situ-
ation, but in a near-continuous-
deployment system, I would like to
know the velocity of code change

Release engineers are hard to find,
and one problem is that they

don’t teach the skill set in school.

s2gei.indd 47 2/4/15 6:33 PM

48	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

over time. Does the change rate nar-
row down to a point, or does it ramp
up as the date gets closer? Does the
defect rate increase or decrease as we
get to that end point? Because, if I do
analysis on my cycles, and I see that
two or three days before the final re-
lease I’m getting a twofold increase
in the number of changes, this indi-

cates risk. And risk has increased at
the worst possible time, at the end of
the cycle. As a release engineer, you
always feel like you’re cramming in
stuff at the last minute, when you’re
trying to have time to settle, let the
metrics come in, and get what we
call our “soak period.” But we of-
ten can’t do it because we’re taking
changes right up to the moment that
we release. Is it really always this
mad dash at the end?

The development cycle would
make an excellent subject for anal-
ysis too. What is the effect on code
delivery and the defect rate of two-,
four-, or six-week cycles? This is very
relevant to mobile. Does a quicker
release cycle in mobile produce bet-
ter and less buggy products?

Debic: An escalating number of com-
puter software applications, systems,
and home-electronics products are
permeating all industries. This re-
sults in an exponential growth of
programmable entities. On the other
side, we have the output of computer
science schools, which is growing lin-
early and slowly. The gap between
the work to support this growth

and the number of qualified profes-
sionals is growing. What can we do
about this gap? People are trying dif-
ferent approaches. My colleague Pe-
ter Norvig is working on expanding
the workforce through online educa-
tion. MOOCs (massive open online
courses) are available, and people
are taking advantage of this new, un-

precedented channel. Ray Kurzweil
is more pragmatic. He is building a
computer—an AI, really—that pro-
grams itself. And my colleague Sinisa
Srbljic thinks that the best way for-
ward is to build a platform that con-
sumers can use to customize applica-
tions by themselves, without formal
knowledge of computer science.

If a system is well engineered, it
should be adaptable to its environ-
ment and perhaps even learn from
it. Right now, too much software
change happens as a result of hu-
mans banging on keyboards, and
then we have to release all of that.
We are running out of programmers,
so software in the long term will
have to be either more adaptable by
design or written in such a way that
consumers can change and adapt
it. This would change our model of
computing to include consumers as
also modifiers, creators, contribu-
tors, and editors of software.

R elease engineering is a com-
plex field with many ap-
proaches to ensuring that

quality software can be released on

a predictable schedule. Company
culture regarding release engineer-
ing’s importance, infrastructure and
tooling investment, and commit-
ment to continuous delivery varies
widely among enterprises. Similarly,
the scope of a release engineer’s role
depends on where she or he works,
the number of products to build, the
operating systems and platforms on
which they’re deployed, and the re-
lease cadence. This roundtable raises
many interesting areas for research
and for improving education to en-
sure that future software developers
better appreciate the scope and chal-
lenge of release engineering.

The seven articles in this special
issue benefit developers in two ways.
The first group of articles reports on
the experience of companies who mi-
grated toward rapid or even continu-
ous release schedules. In “Continuous
Delivery: Huge Benefits, but Chal-
lenges Too,” Lianping Chen discusses
the benefits and challenges of contin-
uous delivery at Paddy Power. Martin
Michlmayr and his colleagues inves-
tigate release planning’s importance
for open source systems in “Why
and How Should Open Source Proj-
ects Adopt Time-Based Releases?” In
“The Highways and Country Roads
to Continuous Deployment,” Marko
Leppänen and his colleagues exam-
ine Finnish industry’s adoption of
continuous deployment. “Achieving
Reliable High-Frequency Releases
in Cloud Environments,” by Liming
Zhu and his colleagues, discusses
reliability issues related to high-
frequency releases in the cloud.

The second group of articles fo-
cuses on release engineering’s specific
challenges. “Release Stabilization on
Linux and Chrome,” by Md Tajmilur
Rahman and Peter Rigby, reports on
an empirical study of the time and ef-
fort involved in release stabilization

How can we break out only
the relevant tests that need

to be run on a given commit?

s2gei.indd 48 2/4/15 6:33 PM

MARCH/APRIL 2015 | IEEE SOFTWARE 49

on Linux and Chrome, whereas
“Rapid Releases and Patch Backouts:
A Software Analytics Approach,” by
Rodrigo Souza and his colleagues,
examines how the release process
changed when Mozilla transitioned
to rapid releases. Finally, Jonathan
Bell and his colleagues propose ap-
proaches to speed up testing of Java
projects in “Vroom: Faster Build Pro-
cesses for Java.” We hope these ar-
ticles convey an idea about the state
of the practice and the challenges of
release engineering today.

BRAM ADAMS is an assistant professor at Polytechnique
Montréal, where he heads the Lab on Maintenance, Construc-
tion, and Intelligence of Software. His research interests include
software release engineering in general, as well as software
integration and software build systems in particular. Adams
received a PhD in computer science engineering from Ghent
University. Contact him at bram.adams@polymtl.ca.

STEPHANY BELLOMO is a senior member of the technical
staff at the Carnegie Mellon University Software Engineering
Institute. Her research interests include incremental software
development, the architectural implications of DevOps, and
continuous integration and delivery. Bellomo received an MS in
software engineering from George Mason University. Contact
her at sbellomo@sei.cmu.edu.

CHRISTIAN BIRD is a researcher at Microsoft Research in
Redmond, Washington. His main research interest is empirical
software engineering, predominantly examining collaboration
and coordination in large software teams in both industrial and
open source contexts. Bird received a PhD in computer science
from the University of California at Davis under advisor Prem
Devanbu. Contact him at christian.bird@microsoft.com.

TAMARA MARSHALL-KEIM is a senior editor at the Carnegie
Mellon University Software Engineering Institute. Her research
interests are applied linguistics, theory of rhetoric, and com-
puter studies in language and literature. Marshall-Keim received
an MA in English from the University of Florida. Contact her at
tmarshall@sei.cmu.edu.

FOUTSE KHOMH is an assistant professor at Polytechnique
Montréal, where he leads the SWAT (Software Analytics and
Technologies Lab) team on software analytics and cloud-
engineering research. His research interests include software
maintenance and evolution, cloud engineering, service-centric
software engineering, empirical software engineering, and
software analytics. Khomh received a PhD in computer science
from the University of Montreal. Contact him at foutse.khomh@
polymtl.ca.

KIM MOIR is a release engineer at a Mozilla. Her research
interests are build optimization, scaling large infrastructure, and
optimizing build and release pipelines. Moir received a Bachelor
of Business Administration from Acadia University. Contact her
at kmoir@mozilla.com.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

software-multimedia
for multimedia content
related to this article.

FIND US ON

FACEBOOK
& TWITTER!

facebook.com/
ieeesoftware

twitter.com/
ieeesoftware

s2gei.indd 49 2/4/15 6:34 PM

