
10 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Editor: Gerard J. Holzmann
NASA/JPL
gholzmann@acm.org

RELIABLE CODE

MOST PEOPLE DON’T get too excited about software.
To them, software applications are like cars: inconspic-
uous when they work, and merely annoying when they
don’t. Clearly, cars have been getting bigger and safer
over the years, but what about software? It sometimes
seems as if it has just gotten bigger, not safer. Why?

If you compare the state of today’s software devel-
opment tools with those used in, say, the ’60s, you of
course see many signs of improvement. Compilers are
faster and better, we have powerful new integrated pro-
gram development environments, and there are many
effective static-source-code-analysis and logic-model-
checking tools that help us catch bugs. This would have
made a fabulous difference if our software applications
still looked like they did in the ’60s. But they don’t.

Many of my NASA colleagues are astronomers or cos-
mologists. To explain how rapidly things are changing in
software development, I’ve often been tempted to make
an analogy with their � eld. One of the � rst things you
learn in cosmology is the theory of in� ation. The details
don’t matter too much here, but in a nutshell, this theory
postulates that the universe started expanding exponen-
tially fast in the � rst few moments after the Big Bang and
continues to expand. The parallel with software develop-
ment is easily made.

The First Law
Software too can grow exponentially fast, especially
after an initial prototype is created. For example, each
Mars lander that NASA launched in the past four de-
cades used more code than all the missions before it
combined. We can see the same effect in just about every

other application domain. Software
tends to grow over time, whether or
not a rational need for it exists. We
can call this the “� rst law of soft-
ware development.”

The history of the true command
in Unix and Unix-based systems
provides a remarkable example of
this phenomenon. Shell scripts often
employ this simple command to en-
able or disable code fragments or to

build unconditional while loops—for instance, to perform
a sequence of random tests:

while true
do ./test `rand`
done

The /bin/true and /bin/false commands � rst appeared in
January 1979 in the seventh edition of the Unix distribu-
tion from Bell Labs. They were de� ned as tiny command
scripts:

$ ls –l /bin/true /bin/false
-rwxr-xr-x 1 root root 0 Jan 10 1979 /bin/true
-rwxr-xr-x 1 root root 7 Jan 10 1979 /bin/false

Yes, true was actually de� ned fully with an empty � le.
How did it work?

Because true contained nothing to execute, it always

Code In� ation
Gerard J. Holzmann

Software tends to grow over time,
whether or not there’s a need for it.

s2rel.indd 10 2/4/15 6:34 PM

RELIABLE CODE

	 MARCH/APRIL 2015 | IEEE SOFTWARE � 11

completed successfully, returning
the success value of zero to the user.
The false command contained seven
characters (including the line feed at
the end), to return a nonzero value,
which signified failure:

$ cat /bin/false
exit 1

This implementation would seem
to leave nothing left to desire, but
that would contradict the first law of
software development.

In the first commercial version of
Unix from 1982, marketed as Sys-
tem III, the implementation of false
changed from exit 1 to exit 255, for
unclear reasons, but taking up two
more bytes. Then, in a version cre-
ated for the PDP-11 microcomputer
in 1983, the implementation of true
grew to 18 bytes, and the empty file
now contained a comment:

@(#)true.sh 1.2

In a 1984 version of Unix, things
started heating up, and true grew to
276 bytes. The contents were now a
boilerplate AT&T copyright notice claiming intellectual
ownership of the otherwise still empty file.

A 2010 Solaris distribution further upped the ante
by replacing the shell script with a 1,123-byte C source
program consisting of a main procedure that called the
function _exit(0). The C program for false similarly had
main call _exit(255). Both programs also contained a hefty
new copyright notice. If I compile these programs on my
system today, the executables tap in at 8,377 bytes each.

We’re not done yet. The executable for the most re-
cent version of true on my Ubuntu system is no fewer than
22,896 bytes:

$ ls –l /bin/true /bin/false
-rwxr-xr-x 1 root root 22896 Nov 19 2012 /bin/true
-rwxr-xr-x 1 root root 22896 Nov 19 2012 /bin/false

The source code for this command has grown to
2,367 bytes and includes four header files, one of which

is itself 16 Kbytes of text. That’s quite a change from the
zero bytes in 1979, and all that without any significant
difference in functionality.

If you’re still on the fence with this: no, true really
doesn’t need a –version option to explain which version of
the truth the command currently represents. Nor does
it need a –help option, whose only purpose seems to be
to explain the unneeded –version option. And just in case
you were thinking about this: true and false also don’t need
an option that can invert the result, or one that would
let these commands send their result by email to a party
of your choice. Some have joked that all software appli-
cations continue to grow until they can read and send
email. This hasn’t happened with the two simplest com-
mands in the Unix toolbox just yet, but we seem to have
gotten close.

Table 1 shows how the source code and executable
code for true have grown. Figure 1 graphs the execut-
able program’s growth. The y-axis is a log scale so that

TA
B

L
E

 1 The growth of the source code and executable code
of the Unix true command.

Year Source code size (LOC) Executable size (LOC)

1979 0 0

1983 18 18

1984 276 276

2010 1,123 8,377

2012 2,367 22,896

100,000

10,000

1,000

100

10

1

No
. o

f b
yt

es

20101979

0

1983

18

1984

Year

276

2012

22,896
8,377

FIGURE 1. The size of /bin/true over time. The y-axis is a log scale so that the early

numbers aren’t completely drowned out by the later ones.

s2rel.indd 11 2/4/15 6:34 PM

RELIABLE CODE

12	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

the early numbers aren’t completely drowned out by the
later ones.

Just like in the theory of inflation, the implementation
of /bin/true increased infinitely fast in the first few years
since it was created (because, like the universe, it started
at a size of zero). Okay, we’re not talking 10–32 seconds;
we’re moving more at humanly achievable speeds here.
Once we got to a nonzero size, the expansion continued
steadily, with the size increasing more than three orders
of magnitude since 1983. (You can find more about the
curious history of the /bin/true command at John Cham-
bers blog, http://trillian.mit.edu/~jc/;-)/ATT_Copyright_
true.html. An online archive of many early Unix source
code distributions is at http://minnie.tuhs.org/cgi-bin
/utree.pl.)

The best part of all this is perhaps that the copies of
true and false in your system’s /bin directory are no lon-
ger the ones that actually execute when you use these
commands in a shell script. Most command shells to-
day define these two commands as built-ins and bypass
the externally defined versions. You can check this with
the bash shell, for instance, by typing type true at the com-
mand prompt. On most systems, the answer will be true
is a shell builtin.

If such code inflation can happen to code that’s this
trivial, and in some ways even redundant, what happens
with code that’s actually useful? I already mentioned
that later versions of the default command shell on Unix
and Unix-like systems picked up additional functionality
with the interception of calls to true and false.

Figure 2 shows how the source
code for the shell itself, measured
in raw bytes, has grown, again
using a log scale for the y-axis.
From approximately 11 Kbytes in
fifth-edition Unix in 1974 to 2.1
Mbytes for bash 40 years later is an
increase of 191 times. Pick almost
any other software application,
from any domain, and you’ll see
the same effect.

cat –v
In the early days of Unix develop-
ment, an attempt was made to re-
duce the number of command-line
options of all standard applications.
The thinking was that if additional
command-line options were needed,

the original code for an application probably wasn’t
thought out carefully enough. In 1983 at the Usenix Sum-
mer Conference, Rob Pike gave an often-quoted presenta-
tion on this topic called “Unix Style, or cat –v Considered
Harmful.” (For more on the presentation, visit http://
harmful.cat-v.org/cat-v.) Rob noticed with some dismay
that the number of options for the original cat command
had increased from zero to four. That didn’t help. If you
check your system today, you’ll see that the number of
options for this same basic command has reached 12,
with seven additional options that you can use as aliases
to the others.

So, why does software grow? The answer seems to
be: because it can. When memory was measured in
Kbytes, it simply wasn’t possible to write a program
that consumed more than a fraction of that amount.
With memory sizes now reaching Gbytes, we seem to
have no incentive to pay attention to a program’s size,
so we don’t.

Does it matter? Clearly, it doesn’t matter much for
the implementation of true or false, other than that we
might object on philosophical grounds. But for code
that matters, it might well make a difference. This
brings us to the next two laws of software development:
all nontrivial code has defects, and the probability of
nontrivial defects increases with code size. The more
code you use to solve a problem, the harder it gets for
someone else to understand what you did and to main-
tain your code when you have moved on to write still
larger programs.

1974
Unix V5

1975
Unix V6

1979
Unix V7

1984
Unix V8

116,514

2008
Plan9 rc

10,000,000

1,000,000

100,000

10,000

1,000

100

10

1

No
. o

f b
yt

es

2014
Ubuntu bash

11,135 11,594

67,799
195,850

2,131,992

FIGURE 2. The source code size over time for the default command shell on Unix

and Unix-like systems. From approximately 11 Kbytes in fifth-edition Unix in 1974 to 2.1

Mbytes for the bash shell 40 years later is an increase of 191 times.

s2rel.indd 12 2/4/15 6:34 PM

RELIABLE CODE

	 MARCH/APRIL 2015 | IEEE SOFTWARE � 13

Dark Code
Large, complex code almost always contains ominous
fragments of “dark code.” Nobody fully understands
this code, and it has no discernable purpose; however,
it’s somehow needed for the application to function as
intended. You don’t want to touch it, so you tend to
work around it.

The reverse of dark code also exists. An application
can have functionality that’s hard to trace back to ac-
tual code: the application somehow can do things no-
body programmed it to do. To push the analogy with
cosmology a little further, we could say that such code
has “dark energy.” It provides unexplained functional-
ity that doesn’t seem to originate in the code itself. For
example, try to find where in the current 2.1 Mbytes of
Ubuntu source code for the bash shell the built-in com-
mands true and false are processed. It’s harder than you
might think.

Software development has one important difference
from astronomy or cosmology. In our universe, we can
do more than just watch and theorize: we can actually
build our universe in the way we think will perform most
reliably. Astronomers can’t do much about the expansion
of the universe other than study it. But in software devel-
opment we can, at least in principle, resist the temptation

to continue to grow the size of applications when there’s
no real need for it.

S o now it’s your turn. Instead of just adding more
features to the next version of your code, resolve
to simplify it. See if you can make the next re-

lease smaller than the last one. To get started, if you work
on a Linux system, take a stand and replace the gargan-
tuan modern version of /bin/true with the original empty
executable file. Similarly, replace that newfangled version
of /bin/false with the single line exit 1, which works just as
well. You’ll feel better, and you’ll save some disk space.
As the writer Antoine de Saint Exupéry famously noted,
“Perfection is achieved not when there is nothing more to
add, but when there is nothing more to remove.”

GERARD J. HOLZMANN works at the Jet Propulsion Laboratory on devel-
oping stronger methods for software analysis, code review, and testing.
Contact him at gholzmann@acm.org.

Selected CS articles and columns are also available for free at
http://ComputingNow.computer.org.

IEEE Software seeks practical,

readable articles that will appeal

to experts and nonexperts alike.

The magazine aims to deliver reliable

information to software developers

and managers to help them stay on

top of rapid technology change.

Author guidelines:
www.computer.org/software/author.htm
Further details: software@computer.org
www.computer.org/software

Call for Articles

s2rel.indd 13 2/4/15 6:34 PM

