
40	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

FOCUS: Guest Editors’ Introduction

A
rc

hi
te

ct
ur

e

 S
us

ta
in

ab
ili

ty

	 November/December 2013 | IEEE Software � 41

Software architecture is the foundation of soft-
ware system development, encompassing a system’s archi-
tects’ and stakeholders’ strategic decisions. These decisions
are often made in an unsystematic manner, incurring grave
consequences for the system’s development, future operation,
and maintenance, thus leading to design erosion and to a de-
crease of internal and external qualities. In turn, this leads
to rework and renovations and therefore to increased costs
and dissatisfied stakeholders. (We have witnessed such ex-
amples in the safety-critical embedded systems domain, such
as power plants, trains, and medical imaging devices.) The
problem is aggravated because such systems’ lifetimes can
span several decades. Changing or extending these systems
requires as systematic a process as possible.

Systematic architecting considers a system in its total
environment, where environment, according to ISO/IEC/
IEEE 42010, is the “context determining the setting and
circumstances of all influences upon a system including de-
velopmental, technological, business, operational, organiza-
tional, political, economic, legal, regulatory, ecological and
social influences.”1 Such influences include business goals
and strategies, prioritized system requirements, in-house ex-
perience and expertise, operation, development and deploy-
ment constraints, and other realities. Taken together, these
form the basis for establishing the forces that architects must
consider when making decisions and identifying the risks to
be mitigated throughout the system’s life cycle. Systematic ar-
chitecting also implies incremental growth and strict separa-
tion of concerns; otherwise, architects would be repeatedly
faced with the need to make simultaneous complex decisions
(which bears the risk of accidental complexity).

Changes Affecting
Architecture Sustainability
One of the primary goals of systematic architecting is to in-
crease architecture sustainability—that is, the architecture’s
capacity to endure different types of change through efficient

Paris Avgeriou
University of Groningen

Michael Stal
Siemens AG

Rich Hilliard
Freelance software systems architect

42	 IEEE Software | www.computer.org/software

FOCUS: Guest Editors’ Introduction

maintenance and orderly evolution
over its entire life cycle. Sustainability
should not only consider the system
within its boundaries but should also
be understood in relation to the sys-
tems’ total environment. Consequently,
we can’t limit systematic architecting
to initial architecture creation but must
observe it throughout software archi-
tecture evolution and improvement to
encourage architecture sustainability
during change. Furthermore, sustain-
ability isn’t a matter of big-design-up
-front versus agile or lean—our atten-
tion to sustainability is crucial to the
success of a software system under
either style of development. Among
the causes of change, several are par-
ticularly significant for architecture
sustainability.

New Requirements Emerge
while Older Requirements Change
Every iteration includes both new archi-
tecture elements to satisfy new strategic

and tactical requirements as well as in-
vasive architecture changes in existing
components that extend and refine ear-
lier architecture decisions. This is par-
ticularly important in product line and
platform development, where decisions
can impact multiple systems.

Interdependence between
Requirements and Architecture
As Frederick Brooks noted, it’s common
in a system’s early stages for architects
to not understand the requirements in
detail, or perhaps the requirements are
preliminary, conflicting, ambiguous, or
incomplete, and customers and prod-
uct managers might not understand

whether architects are creating an ap-
propriate solution for the problems.2
Thus, architecture and requirements
engineering should happen in parallel
and in negotiation (as the Twin Peaks
model advocates3), which inevitably
leads to architectural changes.

Changes in Business
Strategies and Goals
Software projects’ turnaround times
are subject to business pressures.
Within a project’s timeline, the business
strategy might change to address new
markets or mergers and acquisitions.
The architecture must reflect such busi-
ness changes.4 For example, rescoping a
product family to reflect a new business
strategy will induce significant modifi-
cations to the architecture.

Environment Changes
Changes to a system’s environment
can have a dramatic effect on that sys-
tem—for example, changes to a bank’s

business model significantly affect the
supporting enterprise applications. Ar-
chitects must adapt systems to such
changes to stay aligned with their en-
vironment. The safest and most effec-
tive way to achieve this is to create sys-
tem architectures that anticipate or are
open to such changes.

Architecture Erosion or Drift
Often, architecture isn’t adequately
maintained or kept in sync with the
system; as a result, numerous choices
creep into the implementation that are
contrary to explicit architecture deci-
sions. In contrast to other causes of
change, architecture erosion is usually

due to an architect’s inaction rather
than intentional factors.

Accidental Complexity
Architects face a high degree of inherent
complexity when they design medium to
large software systems. As a result, they
tend to introduce accidental complexity5
by creating “design pearls”—solutions
that are more complex than necessary—
or by leveraging suboptimal solutions
such as inappropriate patterns or algo-
rithms, with negative impact on quality.

Technology Changes
Current technology platforms and tools
are constantly changing, and new tech-
nologies emerge at a rapid pace. Archi-
tects must manage changes resulting
from these underlying technologies and
tools, especially for technologies with
strategic impact.

Deferred Decisions
to Meet Near-Term Goals
Architects must balance compet-
ing concerns, including the ability to
meet near-term production cost limi-
tations and delivery schedules at the
risk of longer-term sustainability. One
metaphor for the impact of such deci-
sions is technical debt, which implies
that the architecture will need to be
changed in the future to pay back the
debt created.

To Err Is Human
Architects, engineers, and other
decision-making stakeholders of any
software system will sometimes make
wrong, unnecessary, or less-than-
optimal decisions. When we fail to de-
tect such issues early, a chain of sub-
sequent design decisions rooted in bad
design decisions can result. Rectifying
such decisions will induce architecture
changes, the magnitude of which will
depend on how early bad decisions are
discovered. These issues are even more
crucial in software product line en-
gineering and platform development,

We can’t limit systematic architecting
to initial architecture creation.

	 November/December 2013 | IEEE Software � 43

where every issue affects several appli-
cations rather than just one.

Approaches to
Architecture Sustainability
Changes in the architecture often don’t
fit into one or even a few phases of the
life cycle but range over the entire life
cycle. Some changes will only affect lo-
cal parts of a system; others will have
more widespread impact. Systemic
changes might involve various stake-
holders and disciplines. We distinguish
three types of approaches for handling
change systematically, listed in an order
of increasing severity: refactoring, reno-
vating, and rearchitecting (see Table 1).

Refactoring
An architecture follows a piecemeal
growth, but after each refinement step,
it’s subject to architecture evaluation.
If the architecture evaluation identifies
and reveals smells such as dependency
cycles or overly generic design, possible
architectural improvements are identi-
fied. We’ll typically perform these im-
provements in a tactical setting, modify-
ing certain elements but not the offered
functionality of the system. Architecture
refactoring can also help open up the ar-
chitecture for extension or change.

Renovating
Sometimes parts of the architecture will
be in such poor condition that refac-
toring is no longer effective. In such
cases, renovating the architecture—re-
building one or more essential elements
from scratch—might be a better choice.

Renovating is complementary to refac-
toring because it also deals with only
parts of the system: often a decision
must be made between changing these
parts (refactoring) or building or re-
building them from scratch (renovating).

Rearchitecting
When an architecture is subject to sig-
nificant changes, refactoring or renovat-
ing won’t always suffice. This might be
the case when a technology platform is
replaced by a newer one, when there is
a significant change in business scope,
or when the architecture is in such bad
shape that errors keep emerging. In such
cases, rearchitecting is necessary. The
rearchitecting process usually analyzes
the existing architecture (for example,
via a SWOT [Strength, Weakness, Op-
portunity, Threat] analysis) and results
in a new architecture by reusing com-
ponents that are worth keeping, modi-
fying some of the existing components
(refactoring), rebuilding the rest of the
existing components (renovating), or
building some entirely new components
that offer new functionality.

Support
Architects need support in the form of
concepts, methods, techniques, and
tools for recognizing, confronting, and
managing architecture sustainability
concerns. We advocate making explicit
the differences among refactoring, ren-
ovating, and rearchitecting approaches,
even though these are usually treated as
a single topic of maintenance and evolu-
tion. Mixing the three types obfuscates

the already challenging problems of ar-
chitecture sustainability for practicing
architects and offers no clear direction
to researchers. We encourage the re-
search community to pursue approaches
focusing on each of these types and pro-
vide targeted architectural changes ac-
cording to the characteristics of each
type. When making decisions, archi-
tects must be clear about choices among
the three types or combinations thereof,
and they need support when deciding
on a sustainability strategy and its im-
plementation. Furthermore, refactor-
ing, renovating, and rearchitecting must
take place within a context of architec-
ture governance that establishes who is
allowed to check or change the archi-
tecture (including the what, how, and
when) as well as to check architecture
compliance and conformance.

In This Issue
An important recent trend in software
architecting has been the decision
viewpoints: recognizing architects’
need to capture and record decisions
and the rationale for those decisions as
first-class ingredients of architecture
descriptions.6,7 Following that trend,
in “Making Architectural Design De-
cisions Sustainable: Challenges, So-
lutions, and Lessons Learned,” Uwe
Zdun, Rafael Capilla, Huy Tran, and
Olaf Zimmermann address the topic
of sustainable design decisions and
their documentation over the course of
software evolution. The authors sum-
marize five criteria for sustainability
of decisions based on lessons they’ve

Ta
b

l
e

 1 A comparison of approaches to handling change.

Refactoring Renovating Rearchitecting

Change in components Existing ones modified New ones built from scratch Components reused, modified, built, or rebuilt

Effort Medium Medium Substantial

Reverse engineering required Some components Some components Entire system

Frequency Regular Medium Seldom

44	 IEEE Software | www.computer.org/software

FOCUS: Guest Editors’ Introduction

learned from their experiences in vari-
ous industrial projects. Their pro-
posed solutions include minimal deci-
sion documentation, extraction, and
distillation of recurring decisions as
reusable guidance models, traceability
between requirements and decisions
and between decisions and implemen-
tation, and the use and application of
design rationale. These solutions span
the three approaches of refactoring,
renovating, and rearchitecting

In “Measuring Architecture Sustain-
ability,” Heiko Koziolek, Dominik Do-
mis, Thomas Goldschmidt, and Philipp
Vorst explore sustainability as economi-
cal longevity, arguing that architectural
sustainability, like architecture itself, is
influenced by many factors that rise from
many sources. The authors describe ex-
periences over a two-year period with an
approach called Morphosis in applying

metrics for tracking architecture sus-
tainability to the development of an in-
dustrial control system. The Morphosis
approach consists of evolution scenario
analysis, technology choice scoring, ar-
chitecture compliance checks, and ar-
chitecture-level code metric tracking,
which are all useful for assessing erosion
and modularization. The authors dem-
onstrate that such assessments can be
carried out with limited effort and that
through regular assessment, developers
can improve their code through refactor-
ing to achieve improved scores.

In “Implementing Long-Term Prod-
uct Line Sustainability through Planned
Staged Investments,” Juha Savolainen,
Nan Niu, Tommi Mikkonen, and
Thomas Fogdal deal with sustainabil-
ity in a setting of long-lived systems:
the software product line (SPL), where
changes for individual products over

time produce architecture drift. To ad-
dress this, the authors introduce planned
staged investments for sustainable
rearchitecting. Their strategy involves
two alternating activities—investment
when core assets are realigned with cur-
rent and anticipated needs, and harvest-
ing to create products from core assets
with minimum effort required—as ways
to balance the conflicting needs that re-
sult from redesign and reuse activities.
They demonstrate this approach through
a case study of an actual SPL (a frequency
converter). Many practitioners, not only
those working on SPLs, will recognize
the problems discussed in this article.

W e hope this special is-
sue will raise awareness
of architecture sustain-

ability issues and increase interest and
work in the area. We thank the authors,
everyone who submitted manuscripts,
our reviewers, and the IEEE Software
editor in chief and editorial staff for
their efforts throughout the develop-
ment and preparation of this issue.

Acknowledgments
A special thanks goes to David Emery for ex-
changes on the causes of architecture change.

References
	 1.	 Systems and Software Engineering—Archi-

tecture Description, IEEE Std. ISO/IEC/IEEE
42010, Dec. 2011.

	 2.	 F.P. Brooks, The Design of Design: Essays
from a Computer Scientist, Addison-Wesley
Professional, 2010.

	 3.	 B. Nuseibeh, “Weaving Together Require-
ments and Architectures,” Computer, vol. 34,
no. 3, 2001, pp. 115–119.

	 4.	 P. Clements and L. Bass, “The Business Goals
Viewpoint,” IEEE Software, vol. 27, no. 6,
2010, pp. 38–45.

	 5.	 F.P. Brooks, The Mythical Man-Month,
Addison-Wesley, 1975.

	 6.	 U. van Heesch, P. Avgeriou, and R. Hilliard,
“A Documentation Framework for Architec-
ture Decisions,” J. Systems and Software, vol.
85, no. 4, 2012, pp. 795–820.

	 7.	 P.B. Kruchten, R. Capilla, and J.C. Dueñas,
“The Role of a Decision View in Software
Architecture Practice,” IEEE Software, vol.
26, no. 2, 2009, pp. 36–42.

Paris Avgeriou is a professor of software engineering at the
University of Groningen. His research interests include software archi-
tecture with a strong emphasis on architecture modeling, knowledge,
evolution, patterns, and links to requirements. Avgeriou received a
PhD in software engineering from the National Technical University of
Athens. He’s a senior member of IEEE. Contact him at paris@cs.rug.nl.

Michael Stal is senior principal engineer at Siemens AG’s Corpo-
rate Research and Technology division. His research interests include
software architecture, middleware, service-oriented architecture,
concurrent and networked systems, and product line engineering. Stal
received a PhD in computer science from the University of Groningen.
Contact him at michael.stal@siemens.com.

Rich Hilliard is a freelance software systems architect. His re-
search interests include software engineering, system architecture, and
requirements analysis. Hilliard received a degree in mathematics and
linguistics from MIT. He’s also a member of the IEEE Computer Society.
Contact him at r.hilliard@computer.org.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

