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Software architecture is the foundation of soft-
ware system development, encompassing a system’s archi-
tects’ and stakeholders’ strategic decisions. These decisions 
are often made in an unsystematic manner, incurring grave 
consequences for the system’s development, future operation, 
and maintenance, thus leading to design erosion and to a de-
crease of internal and external qualities. In turn, this leads 
to rework and renovations and therefore to increased costs 
and dissatisfied stakeholders. (We have witnessed such ex-
amples in the safety-critical embedded systems domain, such 
as power plants, trains, and medical imaging devices.) The 
problem is aggravated because such systems’ lifetimes can 
span several decades. Changing or extending these systems 
requires as systematic a process as possible. 

Systematic architecting considers a system in its total 
environment, where environment, according to ISO/IEC/
IEEE  42010, is the “context determining the setting and 
circumstances of all influences upon a system including de-
velopmental, technological, business, operational, organiza-
tional, political, economic, legal, regulatory, ecological and 
social influences.”1 Such influences include business goals 
and strategies, prioritized system requirements, in-house ex-
perience and expertise, operation, development and deploy-
ment constraints, and other realities. Taken together, these 
form the basis for establishing the forces that architects must 
consider when making decisions and identifying the risks to 
be mitigated throughout the system’s life cycle. Systematic ar-
chitecting also implies incremental growth and strict separa-
tion of concerns; otherwise, architects would be repeatedly 
faced with the need to make simultaneous complex decisions 
(which bears the risk of accidental complexity). 

Changes Affecting  
Architecture Sustainability
One of the primary goals of systematic architecting is to in-
crease architecture sustainability—that is, the architecture’s 
capacity to endure different types of change through efficient 
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maintenance and orderly evolution 
over its entire life cycle. Sustainability 
should not only consider the system 
within its boundaries but should also 
be understood in relation to the sys-
tems’ total environment. Consequently, 
we can’t limit systematic architecting 
to initial architecture creation but must 
observe it throughout software archi-
tecture evolution and improvement to 
encourage architecture sustainability 
during change. Furthermore, sustain-
ability isn’t a matter of big-design-up 
-front versus agile or lean—our atten-
tion to sustainability is crucial to the 
success of a software system under 
either style of development. Among 
the causes of change, several are par-
ticularly significant for architecture 
sustainability.

New Requirements Emerge  
while Older Requirements Change 
Every iteration includes both new archi-
tecture elements to satisfy new strategic 

and tactical requirements as well as in-
vasive architecture changes in existing 
components that extend and refine ear-
lier architecture decisions. This is par-
ticularly important in product line and 
platform development, where decisions 
can impact multiple systems.

Interdependence  between  
Requirements and Architecture
As Frederick Brooks noted, it’s common 
in a system’s early stages for architects 
to not understand the requirements in 
detail, or perhaps the requirements are 
preliminary, conflicting, ambiguous, or 
incomplete, and customers and prod-
uct managers might not understand 

whether architects are creating an ap-
propriate solution for the problems.2 
Thus, architecture and requirements 
engineering should happen in parallel 
and in negotiation (as the Twin Peaks 
model advocates3), which inevitably 
leads to architectural changes.

Changes in Business  
Strategies and Goals
Software projects’ turnaround times 
are subject to business pressures. 
Within a project’s timeline, the business 
strategy might change to address new 
markets or mergers and acquisitions. 
The architecture must reflect such busi-
ness changes.4 For example, rescoping a 
product family to reflect a new business 
strategy will induce significant modifi-
cations to the architecture.

Environment Changes
Changes to a system’s environment 
can have a dramatic effect on that sys-
tem—for example, changes to a bank’s 

business model significantly affect the 
supporting enterprise applications. Ar-
chitects must adapt systems to such 
changes to stay aligned with their en-
vironment. The safest and most effec-
tive way to achieve this is to create sys-
tem architectures that anticipate or are 
open to such changes.

Architecture Erosion or Drift
Often, architecture isn’t adequately 
maintained or kept in sync with the 
system; as a result, numerous choices 
creep into the implementation that are 
contrary to explicit architecture deci-
sions. In contrast to other causes of 
change, architecture erosion is usually 

due to an architect’s inaction rather 
than intentional factors.

Accidental Complexity
Architects face a high degree of inherent 
complexity when they design medium to 
large software systems. As a result, they 
tend to introduce accidental complexity5 
by creating “design pearls”—solutions 
that are more complex than necessary—
or by leveraging suboptimal solutions 
such as inappropriate patterns or algo-
rithms, with negative impact on quality.

Technology Changes
Current technology platforms and tools 
are constantly changing, and new tech-
nologies emerge at a rapid pace. Archi-
tects must manage changes resulting 
from these underlying technologies and 
tools, especially for technologies with 
strategic impact.

Deferred Decisions  
to Meet Near-Term Goals
Architects must balance compet-
ing concerns, including the ability to 
meet near-term production cost limi-
tations and delivery schedules at the 
risk of longer-term sustainability. One 
metaphor for the impact of such deci-
sions is technical debt, which implies 
that the architecture will need to be 
changed in the future to pay back the 
debt created.

To Err Is Human
Architects, engineers, and other 
decision-making stakeholders of any 
software system will sometimes make 
wrong, unnecessary, or less-than-
optimal decisions. When we fail to de-
tect such issues early, a chain of sub-
sequent design decisions rooted in bad 
design decisions can result. Rectifying 
such decisions will induce architecture 
changes, the magnitude of which will 
depend on how early bad decisions are 
discovered. These issues are even more 
crucial in software product line en-
gineering and platform development, 

We can’t limit systematic architecting
to initial architecture creation.
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where every issue affects several appli-
cations rather than just one.

Approaches to 
Architecture Sustainability
Changes in the architecture often don’t 
fit into one or even a few phases of the 
life cycle but range over the entire life 
cycle. Some changes will only affect lo-
cal parts of a system; others will have 
more widespread impact. Systemic 
changes might involve various stake-
holders and disciplines. We distinguish 
three types of approaches for handling 
change systematically, listed in an order 
of increasing severity: refactoring, reno-
vating, and rearchitecting (see Table 1).

Refactoring
An architecture follows a piecemeal 
growth, but after each refinement step, 
it’s subject to architecture evaluation. 
If the architecture evaluation identifies 
and reveals smells such as dependency 
cycles or overly generic design, possible 
architectural improvements are identi-
fied. We’ll typically perform these im-
provements in a tactical setting, modify-
ing certain elements but not the offered 
functionality of the system. Architecture 
refactoring can also help open up the ar-
chitecture for extension or change. 

Renovating
Sometimes parts of the architecture will 
be in such poor condition that refac-
toring is no longer effective. In such 
cases, renovating the architecture—re-
building one or more essential elements 
from scratch—might be a better choice. 

Renovating is complementary to refac-
toring because it also deals with only 
parts of the system: often a decision 
must be made between changing these 
parts (refactoring) or building or re-
building them from scratch (renovating). 

Rearchitecting
When an architecture is subject to sig-
nificant changes, refactoring or renovat-
ing won’t always suffice. This might be 
the case when a technology platform is 
replaced by a newer one, when there is 
a significant change in business scope, 
or when the architecture is in such bad 
shape that errors keep emerging. In such 
cases, rearchitecting is necessary. The 
rearchitecting process usually analyzes 
the existing architecture (for example, 
via a SWOT [Strength, Weakness, Op-
portunity, Threat] analysis) and results 
in a new architecture by reusing com-
ponents that are worth keeping, modi-
fying some of the existing components 
(refactoring), rebuilding the rest of the 
existing components (renovating), or 
building some entirely new components 
that offer new functionality.

Support
Architects need support in the form of 
concepts, methods, techniques, and 
tools for recognizing, confronting, and 
managing architecture sustainability 
concerns. We advocate making explicit 
the differences among refactoring, ren-
ovating, and rearchitecting approaches, 
even though these are usually treated as 
a single topic of maintenance and evolu-
tion. Mixing the three types obfuscates 

the already challenging problems of ar-
chitecture sustainability for practicing 
architects and offers no clear direction 
to researchers. We encourage the re-
search community to pursue approaches 
focusing on each of these types and pro-
vide targeted architectural changes ac-
cording to the characteristics of each 
type. When making decisions, archi-
tects must be clear about choices among 
the three types or combinations thereof, 
and they need support when deciding 
on a sustainability strategy and its im-
plementation. Furthermore, refactor-
ing, renovating, and rearchitecting must 
take place within a context of architec-
ture governance that establishes who is 
allowed to check or change the archi-
tecture (including the what, how, and 
when) as well as to check architecture 
compliance and conformance.

In This Issue
An important recent trend in software 
architecting has been the decision 
viewpoints: recognizing architects’ 
need to capture and record decisions 
and the rationale for those decisions as 
first-class ingredients of architecture 
descriptions.6,7 Following that trend, 
in “Making Architectural Design De-
cisions Sustainable: Challenges, So-
lutions, and Lessons Learned,” Uwe 
Zdun, Rafael Capilla, Huy Tran, and 
Olaf Zimmermann address the topic 
of sustainable design decisions and 
their documentation over the course of 
software evolution. The authors sum-
marize five criteria for sustainability 
of decisions based on lessons they’ve 
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 1 A comparison of approaches to handling change.

Refactoring Renovating Rearchitecting

Change in components Existing ones modified New ones built from scratch Components reused, modified, built, or rebuilt

Effort Medium Medium Substantial

Reverse engineering required Some components Some components Entire system

Frequency Regular Medium Seldom
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learned from their experiences in vari-
ous industrial projects. Their pro-
posed solutions include minimal deci-
sion documentation, extraction, and 
distillation of recurring decisions as 
reusable guidance models, traceability 
between requirements and decisions 
and between decisions and implemen-
tation, and the use and application of 
design rationale. These solutions span 
the three approaches of refactoring, 
renovating, and rearchitecting

In “Measuring Architecture Sustain-
ability,” Heiko Koziolek, Dominik Do-
mis, Thomas Goldschmidt, and Philipp 
Vorst explore sustainability as economi-
cal longevity, arguing that architectural 
sustainability, like architecture itself, is 
influenced by many factors that rise from 
many sources. The authors describe ex-
periences over a two-year period with an 
approach called Morphosis in applying 

metrics for tracking architecture sus-
tainability to the development of an in-
dustrial control system. The Morphosis 
approach consists of evolution scenario 
analysis, technology choice scoring, ar-
chitecture compliance checks, and ar-
chitecture-level code metric tracking, 
which are all useful for assessing erosion 
and modularization. The authors dem-
onstrate that such assessments can be 
carried out with limited effort and that 
through regular assessment, developers 
can improve their code through refactor-
ing to achieve improved scores.

In “Implementing Long-Term Prod-
uct Line Sustainability through Planned 
Staged Investments,” Juha Savolainen, 
Nan Niu, Tommi Mikkonen, and 
Thomas Fogdal deal with sustainabil-
ity in a setting of long-lived systems: 
the software product line (SPL), where 
changes for individual products over 

time produce architecture drift. To ad-
dress this, the authors introduce planned 
staged investments for sustainable 
rearchitecting. Their strategy involves 
two alternating activities—investment 
when core assets are realigned with cur-
rent and anticipated needs, and harvest-
ing to create products from core assets 
with minimum effort required—as ways 
to balance the conflicting needs that re-
sult from redesign and reuse activities. 
They demonstrate this approach through 
a case study of an actual SPL (a frequency 
converter). Many practitioners, not only 
those working on SPLs, will recognize 
the problems discussed in this article.

W e hope this special is-
sue will raise awareness 
of architecture sustain-

ability issues and increase interest and 
work in the area. We thank the authors, 
everyone who submitted manuscripts, 
our reviewers, and the IEEE Software 
editor in chief and editorial staff for 
their efforts throughout the develop-
ment and preparation of this issue.
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