
24	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Quality concerns, often re-
ferred to as nonfunctional require-
ments, service-level agreements,
quality attributes, performance
constraints, or architecturally sig-
nificant requirements, describe
system-level attributes such as se-
curity, performance, reliability,
and maintainability. In conjunction
with functional requirements, these
quality concerns drive and con-
strain a system’s architectural de-
sign and often introduce significant
trade-offs that must be carefully
considered and balanced.1 The de-
pendencies that exist between re-
quirements and architecture have

been referred to as the twin peaks
of requirements and architecture.2

This model, which is described
more fully in the sidebar “The
Twin Peaks Model,” written by
Bashar Nuseibeh, emphasizes the
iterative nature in which require-
ments are elicited and specified and
in which the architectural design
is established. In their recent book
Relating Software Requirements
and Architectures, Paris Avgeriou
and colleagues refer to the two is-
lands of software architecture and
requirements engineering, creating
an alternate metaphor for the same
basic observation.3

Dependencies
To build successful and cost-effec-
tive software systems, we must un-
derstand and leverage the depen-
dencies between requirements and
architecture. However, the way in
which we accomplish this is clearly
influenced by the philosophy and
practices of the underlying devel-
opment process.

In traditional projects, which
incorporate more rigorous up-front
requirements and design processes,
there’s a danger of focusing on
functionality and ignoring qual-
ity concerns. When this happens,
developers might deliver solutions

FOCUS: Guest Editors’ Introduction

The Twin Peaks of
Requirements and

Architecture
Jane Cleland-Huang, DePaul University

Robert S. Hanmer, Alcatel-Lucent

Sam Supakkul, Sabre

Mehdi Mirakhorli, DePaul University

	 March/April 2013 | IEEE Software � 25

that fail to live up to unspoken quality
expectations. It’s therefore important to
proactively elicit quality requirements
from project stakeholders during early
phases of the project and then design
architectural solutions that balance
and satisfy those concerns.4 Early pro-
totypes and architectural evaluations
are needed to demonstrate that the de-
livered system is able to meet its quality
goals.

On the other hand, agile and lean
projects implicitly rely on short itera-
tions and early delivery of executable
code into customer hands. Architec-
tural design emerges incrementally in
response to customer needs. Although
agile processes bring numerous bene-
fits to a project, the somewhat shorter-
term perspective means that developers
could be forced into expensive refactor-
ing efforts to deliver new functional-
ity late in the project. Agile processes
that elicit architecturally significant
user stories in early iterations can bal-
ance the way in which functionality is
delivered to the customer and enable
developers to make informed decisions
about the design and construction of
the architecture.

It’s clear that the fundamental de-
pendencies highlighted by the twin
peaks model influence and constrain
software development and mainte-
nance efforts, regardless of the devel-
opment process adopted. These de-
pendencies influence not only the way
new systems are built but also the way
in which change requests are handled
and new functionality is introduced
into an existing system. Once the
software is constructed and deployed,
previous architectural decisions con-
strain new requirements, and their
feasibility and impact must be evalu-
ated in light of the current system.
The problem can be exacerbated by
ongoing maintenance efforts that
erode the quality of previous architec-
tural decisions, making relationships

between requirements and architec-
ture less obvious and more difficult to
establish and maintain. This is espe-
cially true as the software ages after
multiple development iterations.5,6

Furthermore, at the organization
level, the development department in
some organizations might have tech-
nology standards or an approved
technology portfolio in place to con-
trol development costs, resource
skills, and operation support. How-
ever, these standards might constrain
the viability of introducing new prod-
uct features that the marketing de-
partment wants. Consequently, this
could require negotiation between
the two departments to generate new
product features or to amend the
technology standards to accommo-
date market pressures, thus leading to
the need to manage the resulting ar-
chitectural impacts.

The Need for Advances
Traditionally, requirements engineer-
ing has emphasized early phases of

software development, whereas soft-
ware architecture practices have pri-
marily focused on downstream ar-
chitectural concerns or architectural
analysis techniques. Well-established
requirements and architecture con-
ferences, such as the International
Requirements Engineering Confer-
ence (RE), Requirements Engineer-
ing: Foundation for Software Qual-
ity (REFSQ), Working Conference on
Software Architecture (WICSA), and
SEI’s Software Architecture Technol-
ogy User Network (SATURN), have

helped advance the state of the art of
their respective focuses, but little em-
phasis has been placed on bridging
the gap between these two domains.
The primary exception is the From
SofTware Requirements to Architec-
tures Workshop (STRAW), which was
held at the International Conference
on Software Engineering in 2001 and
2002. As implied by its title, STRAW
emphasized the evolution from re-
quirements to architecture, as opposed
to the interplay between the two.

To encourage advances in bridging
the two domains, a workshop entitled
Twin Peaks of Requirements and Ar-
chitecture was held at the IEEE Con-
ference on Requirements Engineer-
ing in September 2012 as a forum for
people from both the requirements and
software architecture communities to
collaborate and exchange ideas. The
workshop was attended by approxi-
mately 15 practitioners from industries
including telecommunications, nuclear
power, and electronics, as well as 20
academic researchers. The workshop

concluded with a brainstorming ses-
sion during which attendees identi-
fied ongoing challenges that should
be addressed to bridge the gap be-
tween requirements and architecture.
The workshop’s program chairs, Ja-
net Burge, Mehdi Mirakhorli, and Ro-
shanak Roshandel, present a summary
in the sidebar entitled “Climbing the
Twin Peaks: Open Challenges.”

In This Issue
This special issue of IEEE Software
includes a selection of articles that

The fundamental dependencies highlighted
by the twin peaks model influence and

constrain software development.

26	 IEEE Software | www.computer.org/software

FOCUS: Guest Editors’ Introduction

explore issues at the intersection of re-
quirements and architecture.

An interview with Dan Dvorak,
principal engineer at the Jet Propulsion
Laboratory and lead of NASA’s soft-
ware architecture review board, and
Jan Bosch, professor of software engi-
neering at Chalmers University Tech-
nology in Gothenburg (and previously
vice president of engineering process
at Intuit), highlights their perspectives

on the interplay of requirements and
architecture in two very different
kinds of project environments.

In “Characterizing Architectur-
ally Significant Requirements,” Lian-
ping Chen, Muhammad Ali Babar, and
Bashar Nuseibeh present a classifica-
tion of characteristics of architecturally
significant requirements derived from
an analysis of observations and expe-
riences of 90 software professionals

using grounded theory. These charac-
teristics describe and expand on the
notion of architecturally significant
requirements, which could help make
it easier for practitioners to recognize
and capture these requirements.

To realize architecturally sig-
nificant requirements in a system
or its subcomponents, the archi-
tect might follow an architectural
design method for carrying out

The Twin Peaks Model
The importance of interleaving the tasks of eliciting and speci-
fying requirements with that of designing a software solution
has long been recognized.1,2 The traditional waterfall process
produces artificially frozen requirements that often lead to
suboptimal architectural solutions, which themselves are often
inflexible to future change. Incremental development processes
partially address this problem by allowing developers to evalu-
ate repeatedly changing project risks in order to embrace new
requirements and to address changing project constraints.
The twin peaks model3 provides an even finer-grained itera-
tion across requirements and architecture that acknowledges
the need to develop software architectures that are stable, yet
adaptable, in the presence of changing requirements.

As shown in Figure A, the twin peaks model focuses on the
co-development of requirements and architecture. Through a
series of iterations, the model captures the progression from
general to detailed understanding and expression of both re-
quirements and design. Although the schematic of the twin
peaks model shows the process initiated on the requirements
peak, projects involving modifications to existing systems could
be initiated equally well at the architecture peak.

Although the model shown in Figure A has become broadly
recognized as the twin peaks model, several alternatives were
initially explored including “design alternatives” and “moun-
tain range.” Figure B, the design alternatives model, presents
a recognized yet frequently neglected activity in software de-

velopment: that of generating and
evaluating candidate architectures
with respect to some (fixed) quality
requirements. Extending this, the
mountain range of Figure C posits
that the requirements themselves
aren’t set in stone, so alternative
requirements might need to be
explored if particular architectural
choices are to be made.

The twin peaks model is argu-
ably little more than a simple pro-
cess diagram, but it has served as
an appealing metaphor for drawing
attention to the synergistic relation-
ships between two fundamental
software development artifacts:
requirements and architecture. For
many years, this model remained
an aspirational view of software
development. However, the recog-

 DependentIndependent

General

Detailed

Level
of

detail

Design
(architecture)

Requirements

“Twin peaks”

Implementation dependence

Speci�cation

Figure A. The twin peaks model. Though a series of iterations, the model captures the

progression from general to detailed understanding.

	 March/April 2013 | IEEE Software � 27

such activity. Several methods have
been proposed and used in prac-
tice,3 among which is the attribute-
driven design (ADD) method.4 In “A
Principled Way to Use Frameworks in
Architecture Design,” Humberto Cer-
vantes and colleagues argue that fol-
lowing the ADD method might not
be straightforward when dealing with
existing frameworks or third-party
technologies. To accommodate these

architectural constraints, the authors
illustrate an extended ADD approach
that iteratively considers both func-
tional and nonfunctional requirements
as well as third-party frameworks
to complement with the traditional
tactic- and pattern-based architectural
decisions.

Along the twin peaks model,
“Your ‘What’ is My ‘How’: Iteration
and Hierarchy in System Design,” by

Michael W. Whalen and colleagues
proposes to align requirements or-
ganization and architectural design
based on the architectural decompo-
sition in a hierarchical fashion. Us-
ing this approach, requirements help
determine subcomponents, verify
that subcomponents establish the sys-
tem, and verify that the requirements
themselves are allocated to subcom-
ponents. The article also discusses

nition that software processes—
agile, lean, or otherwise—are
essentially engineering processes
means that the twin peaks model
captures more than just an itera-
tive development activity but the
most fundamental of all engineer-
ing relationships, those between
software development problems
and their solutions.4

References
	 1.	 W. Swartout and R. Balzer, “On the

Inevitable Intertwining of Specification
and Implementation,” Comm. ACM,
vol. 25, no. 7, 1982, pp. 438–440.

	 2.	 P. Ward and S. Mellor, Structured
Development for Real-Time Systems:
Introduction and Tools, vol. 1, Prentice
Hall, 1985.

	 3.	 B. Nuseibeh, “Weaving Together
Requirements and Architectures,”
Computer, vol. 34, no. 3, 2001, pp.
115–119.

	 4.	 P. Avgeriou et al., Relating Software
Requirements and Architectures,
Springer, 2011.

Bashar Nuseibeh is a professor at
the Open University UK and Lero—the
Irish Software Engineering Center. Con-
tact him at b.nuseibeh@open.ac.uk.

 DependentIndependent

General

Detailed

Level
of

detail

Candidate
architectures

Requirements

“Design alternatives”

Implementation dependence

Speci�cation

 DependentIndependent

General

Detailed

Level
of

detail

Candidate
architectures

Candidate
requirements

“Mountain range”

Implementation dependence

Speci�cation

Figure B. Design alternatives model. One frequently neglected activity in software

development is the generation and evaluation of different candidate architectures.

Figure C. Mountain range model. Requirements aren’t set in stone, so alternative

requirements might need to be explored.

28	 IEEE Software | www.computer.org/software

FOCUS: Guest Editors’ Introduction

a virtual integration method to for-
mally verify the properties and con-
tracts between components to detect
and prevent integration errors.

Finally, in “Non-functional Require-
ments in Architectural Decision Mak-
ing,” David Ameller and colleagues ex-
plore the real-world pressures faced by
software architects in projects. They
present results from a series of 13 in-
terviews and discuss the ways in which
architects addressed quality concerns
from an engineering perspective and
then explore the impact of those con-
cerns on decision making. Among other
things, the authors’ findings confirm
the iterative nature in which quality re-
quirements are elicited but also make
new observations related to current
practices in the validation and measur-
ability of quality requirements.

I t’s our hope that this special is-
sue will challenge readers to think
more about the dependencies be-

tween requirements and architecture
in their own projects and to consider
adopting practices that embrace and
even leverage those relationships.

References
	 1.	 L. Chung and J. do Prado Leite, “On Non-

Functional Requirements in Software
Engineering,” Conceptual Modeling:
Foundations and Applications, Springer-
Verlag, 2009, pp. 363–379; http://dx.doi.
org/10.1007/978-3-642-02463-4_19.

	 2.	 B. Nuseibeh, “Weaving Together
Requirements and Architectures,” Computer,
vol. 34, no. 3, 2001, pp. 115–119.

	 3.	 P. Avgeriou et al., Relating Software
Requirements and Architectures, Springer,
2011.

	 4.	 R. Wojcik et al., “Attribute-Driven Design
(ADD),” tech. report CMU/SEI-2006-TR023,
Software Eng. Inst., Nov. 2006.

	 5.	 D.E. Perry and A.L. Wolf, “Foundations for
the Study of Software Architecture,” ACM
SIGSOFT Software Eng. Notes, vol. 17, 1992,
pp. 40–52.

	 6.	 B. Boehm, “Get Ready for Agile Methods,
with Care,” Computer, vol. 35, no. 1, 2002,
pp. 64–69.

Climbing the Twin Peaks:
Open Challenges

While researchers in requirements and architecture communi-
ties have independently tackled some of the challenges associ-
ated with interdependencies between requirements and archi-
tecture, they have rarely gathered to form a unified community
that addresses emerging challenges. The First Workshop on the
Twin Peaks of Requirements and Architecture in September 2012,
hosted by the IEEE International Requirements Engineering Confer-
ence, drew more than 35 researchers and practitioners of soft-
ware architecture and software requirements together to discuss
ideas, present state-of-the-art solutions for more effectively inter-
weaving requirements and architecture, and chart a road map for
a future research agenda and best practices in this area.

Several clear themes emerged from the workshop that lay the
foundation for future research efforts by both academicians and
practitioners. The first theme centered on the role that architec-
turally significant requirements play in shaping the architectural
design of a system and constraining the set of viable architectural
options. A second complementary concept that emerged was the
way in which an existing architecture constrains the financial vi-
ability of implementing new feature requests. Dependencies be-
tween requirements and architecture therefore come into play in
both directions.

Workshop attendees identified the following open challenges:

•	 Communication. Many projects have almost no in-depth
communication between requirements analysts and software
architects. We need a better understanding of the kinds of
information that should be communicated in different types
of project environments. Moreover, many current modeling
notations are designed either for requirements analysis or for
architectural design.

•	 Preserving architectural knowledge. In practice, architectural
knowledge is often lost, leading to situations in which the
underlying architectural design is eroded during long-term
maintenance and evolutionary efforts. Critical architectural
knowledge must be seamlessly maintained and preserved not
only for development, refactoring, and maintaining systems
but also for evolving systems to address new and emerg-
ing requirements. To different degrees of granularity and
specificity, developers, testers, project managers, business
analysts, and requirement engineers need to understand the
underlying architectural decisions and rationales to ensure
financial and technical feasibility of new requirements without
degrading system quality.

•	 Reconstructing requirements knowledge. A large number of
currently deployed systems lack documented and up-to-date
requirements. This is a critical problem, especially as many of

See www.computer.org/software
-multimedia for multimedia
content related to this article.

	 March/April 2013 | IEEE Software � 29

these projects no longer have access to the original develop-
ers. This need is less apparent when systems are continually
changed and modified, or when project knowledge is passed
verbally from one developer to the next, but this is not always
the case.

•	 Architectural visualization. Decomposition of a software
system’s architecture into viewpoints, perspectives, layers,
components, or slices is critical in first understanding and
then communicating the architecture to a variety of project
stakeholders. Such visualizations should depict the system’s
friction points and reveal its underlying patterns in order to
visualize how changes in one part of the system impact other
parts.

•	 Evolution in agile environments. In agile development environ-
ments, software architecture emerges as a result of iterative
requirements and design processes. The agile philosophy to
embrace change means that new requirements are continu-
ally introduced, and developers evaluate the feasibility and
cost of the requirement with respect to the existing architec-
ture. We need to gain a better understanding of the impact
of architectural decisions on future change and specifically
explore the idea of architecture breakers: requirements that
the current architecture can’t cost-effectively accommodate.

•	 Tracing requirements to architecture. Traceability is the ability
to establish and understand relationships between different
artifacts. In this context, understanding the relationships
between requirements and architectural artifacts can better
support tasks such as change impact analysis and feature
location. This is particularly crucial in certain domains such
as safety and/or mission critical systems. Explicit traceability
links (matrices) for relating key architectural decisions to
rationales, however, often clash with the inclination to avoid
introducing additional forms of documentation in the agile
methodology.

•	 Training. Software engineering education often doesn’t
directly address the interdependency between requirements
and architectures. Due to the nature of courses, students
often work on one activity at a time.

The second twin peaks workshop will be held at the Interna-
tional Conference on Software Engineering on 21 May 2013 in San
Francisco.

Janet Burge, Mehdi Mirakhorli, and Roshanak Roshan-
del were the program chairs for the First Workshop on the Twin Peaks
of Requirements and Architecture. Contact them at burgeje@muohio.edu,
mirakorli@gmail.com, and roshanak@seattleu.edu.

Jane Cleland-Huang is an associate pro-
fessor in the School of Computing at DePaul Uni-
versity, Chicago, where she serves as the director
of the Systems and Requirements Engineering
Center. Her research interests focus primarily
on requirements and architectural traceability.
Cleland-Huang received a PhD in computer
science from the University of Illinois at Chicago.

She serves on the editorial boards for IEEE Software, the Requirements
Engineering Journal, and IEEE Transactions on Software Engineering.
Cleland-Huang is a member of the IEEE Computer Society and the IEEE
Women in Engineering. Contact her at jhuang@cs.depaul.edu.

 Robert S. Hanmer is a Consulting Member
of Technical Staff with Alcatel-Lucent in Naper-
ville, Illinois. He’s active in the software patterns
community, including serving as program chair
for several pattern conferences, and he has
authored multiple articles and books on the
subject. Hanmer received an MS in computer
science from Northwestern University. He is a

member of the IEEE Computer Society, a Senior Member of the ACM,
and past-president of the Hillside Group, the organization that sponsors
the PLoP conference.

Sam Supakkul is a Principal Architect in the
Travel Network unit at Sabre, where he’s lead-
ing an effort to improve the agile development
process used by all projects in the business unit
to better address nonfunctional requirements
throughout the development life cycle. His prac-
tical and research interests include requirements
engineering, nonfunctional requirements, system

and software architecture, and pattern-based software development.
Supakkul received a PhD in software engineering from the University of
Texas at Dallas. He is a senior member of IEEE.

Mehdi Mirakhorli is a doctoral student at
DePaul University. His research interests include
software architecture design, development and
maintenance, and also techniques to improve
software development, with a focus on require-
ments engineering and software architecture
practices. Previously, he served as an adjunct
lecturer at the Iran University of Science and

Technology and worked for seven years as a software architect/
designer on large, data-intensive, meteorological and healthcare
systems.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

