
1

Developer Thriving: four sociocognitive factors that
create resilient productivity on software teams

Catherine M. Hicks*, Carol S. Lee*, and Morgan Ramsey

 Abstract—Software research has reliably documented a
connection between how satisfied developers feel at work and their
overall productivity. However, these explorations have not
typically integrated known social science mechanisms around
human wellbeing and achievement to describe why this connection
exists, and what the most promising levers are for leaders and
teams that wish to impact it. In addition, there are strong
criticisms of using highly volatile and individual affective
measures (e.g., daily happiness) as a sole signal for the quality of
learning and problem-solving. In this study, we present a research-
based framework for measuring successful environments on
software teams for long-term and sustainable sociocognitive
problem-solving, named Developer Thriving. Across 1282 full-time
developers in 12+ industries, we tested the factors of Developer
Thriving and found it predictive of developers’ self-reported
productivity.

Index Terms—developer experience; developer thriving;
productivity; software engineering

I. INTRODUCTION

o create new technologies, developers must collaborate
well on complex code in an iterative and distributed
manner. Developers and their teams also need to

balance personal productivity, project constraints,
organizational context, and business impact alongside pushing
the boundaries on what code can do in the world. Against this
complexity, some estimates of the overall success rates of
software projects claim that the majority of software projects
deliver late, deliver out of scope of planned budgets, and fail to
drive business impact [1].

How can software teams thrive in the face of the unexpected
and unplanned difficulties of software projects? This study
contributes a theoretically grounded model for the workplace-
specific sociocognitive drivers of developer thriving that
promote productivity. We believe this model is an important
tool for leaders and teams who seek to better define tractable
and attainable targets for interventions and wish to include
developers’ wellbeing and needs as knowledge workers as
they make decisions about team and organization design to
yield productivity outcomes.

II. BACKGROUND RESEARCH

Understanding what unlocks high quality problem-solving
for developers is key to maintaining software innovation.
Nevertheless, software engineering as a field does not have a

The authors are with the Developer Success Lab at Pluralsight, 42 Future
Way Draper, UT 84020 USA (email: cat-hicks@pluralsight.com; carol-
lee@pluralsight.com)

consensus on the measurement of developer productivity [2].
Absent a clear shared definition, working teams and
engineering leadership frequently fall into one of the two
measurement traps when attempting to define and subsequently
increase developer productivity inside of their engineering
functions, which lead to different behavioral outcomes:

1) Fixating on surface definitions of productivity and

measuring and incentivizing the wrong things.
Outcomes may include limited or punitive production
measures, such as counting lines of code, and failures to
account for tech debt.

2) Becoming paralyzed by complexity and measuring and
incentivizing nothing. Outcomes may include poor
organizational practices such as relying heavily on
interpersonal coordination [3] or gut instinct in technical
decision-making and evaluation of performance, which
is subject to many potential biases.

While these two maladaptive scenarios for engineering

organizations may seem opposing, they both spring from a
foundational lack of clarity on what truly helps developers to
achieve long-term success in sustaining productivity, and
therefore, how to measure and incentivize it.

However, previous evidence on the factors which impact

developers’ achievement provide a starting path through these
measurement traps. Software researchers have called out the
need to develop new models of human-centered developer
productivity by 1) investigating the sociocognitive factors that
improve problem-solving during coding and software work
overall, 2) doing research directly on the real-world experiences
of modern software teams, and 3) avoiding major
misconceptions in measuring productivity, such as defining
developer productivity only as crude output measures such as
lines of code, or setting a single metric goal and using it as a
threshold evaluate all software work regardless of differing
contexts and needs [4], [5], [6]. The SPACE framework, which
characterized developer productivity in terms of satisfaction
and wellbeing, performance, activity, communication, and
efficiency is one recent example of software research which
proposes a multivariate theory that includes psychological
drivers of developer productivity [5]. The SPACE framework
provides possible examples of systematically broadening

* These authors contributed equally.

T

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3382957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mailto:carol-lee@pluralsight.com
mailto:carol-lee@pluralsight.com

2

“productivity” definitions with dimensions such as job
satisfaction. Nevertheless, while the SPACE framework
definition includes satisfaction and wellbeing as key pieces of
productivity, it does not provide psychometric evidence for how
to measure and evaluate developer satisfaction and wellbeing at
scale. Psychometric evidence is defined as quantitative
evidence about underlying latent variables which are believed
to drive psychological processes. Because psychological
constructs are not directly observed, reliable estimations of
psychological constructs rely on developing measurements
which use empirical approaches such as the use of validated
items, reliability reporting, and adherence to previously-
validated constructs [7]. A psychometrically-evidenced
alternative to focusing on a general “satisfaction” construct is
developer thriving, the process of sustainable growth and
development [8].

A. A Framework for Developer Thriving
The Developer Thriving framework presented in this study

is adapted from previously validated models of thriving in
psychosocial and workplace contexts and consists of four
factors: Developer Agency, Developer Motivation & Self-
efficacy, Developer Learning Culture, and Developer Support
& Sense of Belonging (Table 1) [8].

 The framework builds on the known connection between

developer satisfaction and productivity to answer what drives
satisfaction in the first place. Notably, the four factors in
Developer Thriving explicitly call attention to the
environmental and structural affordances which create the
conditions for developer productivity. One central criticism of
relying on happiness and satisfaction measures is that they are
highly volatile and may capture immediate signals (e.g., mood)
rather than true over-time productive patterns [9]. In contrast,
the four sociocognitive factors of Developer Thriving each tie
explicitly to behavioral cycles that maintain high performance
over time using trait-based (rather than state-based) measures
adapted from previously validated measures, thus yielding a
more long-term and sustainable measure [7], [8], [10].

B. What Might Increase Developer Thriving? Visibility and
Healthy Metrics Use

Along with developing new original measures for what key
factors play into Developer Thriving, we also wanted to ask
what leaders and organizations can do to increase Developer
Thriving. Based on the literature, we identified two potential
factors: visibility and value of work, and healthy metrics use.

The unique benefit of both expecting and planning for visibility,
and getting feedback from a visibility cycle, is supported across
scientific evidence on human wellbeing, health sciences, and
organizational psychology. For example, research on
behavioral change in healthcare settings highlights the value

Table 1. The Four Factors of Developer Thriving
The Behavioral Science behind Developer Thriving

Agency

A developer is:
1) able to voice disagreement with team definitions
of success
2) has a voice in how their contributions are
measured

Motivation
& Self-
Efficacy

A developer is:
1) motivated when working on code at work
2) can see tangible progress most of the time
3) is working on the type of code work they want to
work on
4) is confident that even when working in code is
unexpectedly difficult, they will solve their problems

Learning
Culture

A developer is:
1) learning new skills as a developer
2) able to share the things they learn at work

Support &
Belonging

A developer is:
1) supported to grow, learn, and make mistakes by
their team
2) agrees they are accepted for who they are by their
team

Note. See supplementary materials for full details.

created from recognition and visibility as one of the strongest
predictors of behavioral engagement, performance, and
productivity of both individuals and team members [11], [12].
This impact on developer motivation was also a key theme
underlined by both individual contributor developers in the
pilot testing for this study, who described expecting and
anticipating moments of recognition as key motivators, and by
managers, who described a pivotal responsibility of making
their team’s work visible.

Increased measurement leading to positive outcomes echoes
a significant body of research in the clinical and behavioral
sciences, which indicates that we tend to forget or lack
awareness of the amount of work we have done, leading us to
devalue and minimize our progress. Tracking behavioral and
psychological processes has been shown to mitigate this effect
by providing us concrete evidence of our progress and
accomplishments. Having this evidence not only increases
mindful attention and awareness, but also increases our sense
of value and mastery over our work, increases empathy and
self-compassion, boosts coping abilities and distress tolerance,
empowers us to recognize and set boundaries, and drives
behavioral engagement for both groups and individuals [13].
And with developers specifically, research has found that self-
reflection in a repeated cadence increased developers’
awareness of their habits and led to positive behavior change
for both output and wellbeing [14].

Based on this previous literature, we developed the following
five key hypotheses:

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3382957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

H1. Healthy metrics use will be positively associated with
perceived productivity.

H2. Visibility and value of work will be positively
associated with perceived productivity.

H3. Developer thriving will be positively associated with
perceived productivity.

H4. Visibility and value of work will be positively
associated with productivity through developer thriving
(mediation).

H5. Healthy metrics use will be positively associated with
perceived productivity through developer thriving
(mediation).

H6. Healthy metrics use will be positively associated with
perceived productivity through visibility and value of work
(mediation).

IV. METHODS

Our study consisted of a large-scale quantitative survey.
This section discusses the quantitative survey measures (Sec.
A), survey sample recruitment and description (Sec. B), and
survey analysis approach (Sec. C).

A. Survey Measures
Participants answered the survey measures using a Likert-

type scale (see supplementary materials). For each multi-item
measure, the items were averaged to create a single composite
score for each measure.

Perceived Productivity Rating (PPR). There is no standard
measure for developer productivity [6] and developers define
productivity in multiple ways; software research has therefore
frequently used self-report ratings of productivity [14]. To
operationalize this complex concept, we similarly asked
developers to rate their own productivity over a recent period
of time. This allowed us to let developers summarize across
their complex contexts, different industry paces of work, and
working environments. In our study, the PPR is a self-report,
single-item measure. To reduce within-survey response
effects, this question was shown first to reduce biases that
might arise from respondents’ reflecting on questions about
belonging, measurement and software metrics.

Healthy Metrics Use (HMU). Healthy metrics use was
operationalized as a two-item composite rating created for this
study. The first item asked participants to report their team’s
use of metrics. The second item asked participants to report if
they believed their team used the “right” metrics for their team
and agreed that “they measure the right things.”

Developer Thriving Scale (DTS). The DTS is a ten-item
measure created for this study, abbreviated in order to be
accessible to participants at scale in an applied research setting
(see supplementary materials). The measure draws from

models of thriving in health and psychology to identify four
factors: motivation and self-efficacy, support and belonging,
learning culture, and agency. The items for each factor are
adapted from empirically validated psychological measures of
these constructs. The measure had good internal consistency in
our sample (𝛼𝛼 = .86).

Visibility and Value Questionnaire (VVQ). The VVQ is a
three-item measure created for this study. The measure draws
from previous research indicating that recognizing and valuing
employees’ work predicts employee satisfaction and asks
respondents to rate the extent to which they believe their
technical work is visible and valued by teammates and
managers. The measure had good internal consistency in our
sample (𝛼𝛼 = .83).

We pilot-tested the clarity of our survey by seeking
feedback from 5 full-time software engineers within our
organization. To reduce response biases within-survey, we
used a semi-randomized survey design. All participants
answered key construct measures before being asked to
answer measures that may influence their responses. For
example, to avoid stereotype threat, participants rated their
productivity before being asked to answer any questions about
demographic characteristics. Within the key construct
measures (Table 1), the order of presentation was randomized
to control for order effects.

B. Survey Sample Recruitment and Description
We utilized snowball sampling and advertised our online

Qualtrics survey publicly from researchers’ personal social
media accounts, and via direct emails to professional listservs
of interest to developers. Our survey was also advertised
inside of the Pluralsight platforms to professional developer
users. This survey advertisement was optional and not
connected to user data on these platforms. All participants
provided consent and were informed of the Developer Success
Lab’s consent & participant privacy policies. Because our
study design consisted of a survey study with a sample of
adults who provided consent and whose data was anonymized,
it was determined to be exempt from the requirement to be
reviewed by an Institutional Review Board (Category 2).

Our survey was open to all full-time individual contributor

(ICs) developers and software engineers responsible for
technical code work in their role. We recruited a total of 1409
individual contributor developers. Of the 1409 participants,
121 did not move past the first two questions of the survey and
six were removed for writing identity-based discriminatory
responses in our open text demographic fields. Our final
sample consisted of 1282 participants. A summary of
demographic and firmographic characteristics can be seen in
Tables 2-6. As a token of appreciation for participation, our
research team made a donation to an open source software
nonprofit, chosen based on participant voting.

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3382957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

Table 2. Gender and Sexual Orientation

 Demographic Statistic
(N = 1282)

Gender
(n = 683)

 Female 121 (17.72%)
 Male 527 (77.16%)
 Nonbinary/Fluid/Queer/Gender Queer 10 (1.46%)
 Prefer not to answer 25 (3.66%)
 Self-Identify 0 (0%)
Transgender Identity
(n = 593)

 Yes 22 (3.71%)
 Prefer not to respond 47 (.93%)
Sexual Orientation
(n = 537)

 Asexual/Aromantic 14 (2.61%)
 Bisexual 16 (2.98%)
 Fluid 3 (0.56%)
 Gay 11 (2.05%)
 Lesbian 4 (0.74%)
 Pansexual 3 (0.56%)
 Queer 2 (0.37%)
 Questioning/Unsure 7 (1.30%)
 Self-Identify 3 (0.56%)
 Straight/Heterosexual 369 (68.72%)
 Prefer not to respond 105 (19.55%)

Table 3. Education and Coding Experience

 Demographic Statistic
(N = 1282)

Education
(n = 614)

 Grade School 8 (1.30%)
 Some HS 5 (0.81%)
 HS Diploma 29 (4.72%)
 Some College 40 (6.51%)
 Community or Vocational 21 (3.42%)
 4-year College 283 (46.09%)
 Graduate Degree 228 (37.13%)
Years of Coding Experience
 Mean (SD) 14.4 (12.8)

Table 4. Race

 Demographic Statistic
(N = 1282)

Race1
(n = 576)

 Alaskan Native/ Native
 American/ Indigenous 5 (0.87%)
 Black/ African American 25 (4.34%)
 East Asian 47 (8.16%)
 Middle Eastern/North African
 (Non-White) 12 (2.08%)
 Middle Eastern/North African (White) 18 (3.13%)
 Latinx/Hispanic (Non-White) 19 (3.30%)
 Latinx/Hispanic (White) 33 (5.73%)
 Pacific Islander/Native Hawaiian 2 (0.35%)
 South/ South-East Asian 105 (18.23%)
 White 245 (42.53%)
 Multiracial 13 (2.26%)
 Self-identify2 20 (3.47%)
 Prefer not to respond 69 (11.98%)

1. Participants could check all that apply.
2. Examples include: Indian, Black. We chose to be

holistic, and for some respondents, this may have
felt too limiting or broad.

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3382957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

Table 5. Industry and Organization Characteristics

Firmographic Statistic
(N = 1282)

Industry
 Education 32 (2.5%)
 Energy 15 (1.2%)
 Financial Services 153 (11.9%)
 Government 41 (3.2%)
 Healthcare & Pharmaceuticals 39 (3.0%)
 Industrials & Manufacturing 36 (2.8%)
 Insurance 23 (1.8%)
 Media/ Entertainment 13 (1.0%)
 Non-Profit 5 (0.4%)
 Retail/ Consumer/ e-Commerce 43 (3.4%)
 Technology 249 (19.4%)
 Telecommunications 24 (1.9%)
 Other 64 (5.0%)
 Missing 545 (42.5%)
Organization Size
 1-4 26 (2.0%)
 5-9 17 (1.3%)
 10-19 29 (2.3%)
 20-99 72 (5.6%)
 100-499 100 (7.8%)
 500-1,999 92 (7.2%)
 2,000-4,999 61 (4.8%)
 5,000-9,999 49 (3.8%)
 10,000+ 272 (21.2%)
 Missing 564 (44.0%)

Table 6. Team and Role Characteristics
Firmographic Statistic

(N = 1282)
Team Size
 Mean (SD) 8.42 (7.06)
Cross-Functional Team
 Yes 494 (38.5%)
 Maybe/ Not Sure 144 (11.2%)
 No 139 (10.8%)
 Missing 505 (39.4%)
Percent of Time Spent Writing Code

 Mean (SD) 60.1 (24.1)
Engineering Area

 Backend 468 (36.5%)
 Frontend 285 (22.2%)

 Full Stack 305 (23.8%)
 Mobile 71 (5.5%)
 Database Admin 125 (9.8%)
 System Admin 95 (7.4%)
 Dev Ops 234 (18.3%)
 Site Reliability 80 (6.2%)
 Other 94 (7.3%)
 Missing 530 (41.3%)

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3382957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

 Table 7. Overall Descriptives of Key Measures
Variable Mean (SD) Skewness Kurtosis HMU VVQ DSS PPR

HMU
n = 958 1.23 (0.52) 0.03 -1.15 1.00 – – –

VVQ
n = 821 3.99 (0.91) -0.86 .27 .33* 1.00 – –

DTS
n = 562 4.26 (0.61) -0.83 0.81 .34* .73* 1.00 –

 PPR
n = 1280 3.45 (0.92) -0.28 0.04 .26* .41* .43* 1.00

Note. HMU = Healthy Metrics Use; VVQ = Visibility and Value Questionnaire; DTS = Developer Thriving Scale; PPR =
Perceived Productivity Rating.
*p < .001

 C. Survey Analysis Approach
To test the normality of our variables, we obtained skew

and kurtosis values of all variables. All variables were within
normal ranges. As such, we performed a Pearson’s correlation
to check the correlations between all variables (see Table 7).

To identify covarying demographic and firmographic
variables, we conducted correlations between our outcome
variables and our continuous demographic and firmographic
variables. To avoid potentially misleading signals resulting
from the reduced sample size and highly skewed distributions
across categorical identity questions, we did not examine the
relations between our primary measures and our categorical
demographic and firmographic variables. Years of coding
experience was positively associated with the VVQ (r(701) =
.20, p < .01)), DTS (r(472) = .21, p = .001)), and PPR (r(710)
= .25, p < .001)) . Additionally, percent of time spent writing
code was positively associated with the HMU (r(719) = .09, p
< .05)), PPR (r(730) = .20, p < .001)), DTS (r(494) = .27, p <
.001)), and VVQ (r(722) = .16, p < .001)). As there were no
other significant effects between our primary measures and the
other firmographic and demographic variables (ps = .07 - .84),
we only controlled for the effect of percent of time spent
writing code and years of coding experience.

To test hypotheses 1-6, we conducted a serial mediation
path analysis (Fig. 1). This allowed us to simultaneously test if
the HMU, VVQ, and DTS were positively associated with the
PPR (Hypotheses 1-3). This also allowed us to test if the VVQ
was positively associated with productivity through or
because of developer thriving (mediation; Hypothesis 4), and
if the HMU was positively associated with perceived
productivity through or because of the DTS and the VVQ
(mediation; Hypothesis 5-6).

V. RESULTS

A. Findings
Previous research [5] suggests that a positive developer

experience and increasing developer satisfaction are among the
best ways to increase developer productivity. Our study aimed
to provide more actionable and measurable factors in developer
experience than satisfaction, and looked at whether developer
thriving was predictive of productivity. Further, this study
asked if implementing team-level tools and processes such as
healthy metrics and increased visibility could improve
developer thriving and productivity, even after controlling for
factors like years of experience and time spent coding.

To test our hypotheses, we conducted a linear regression
based serial mediation path analysis with the HMU as our
independent variable, VVQ as our first mediator, DSS as our
second mediator, and PPR as our outcome variable (saturated
model using only observed variables; CFI = 1; RMSEA = 0).
Additionally, we entered percent of time spent coding and
years of coding experience as covariates for all variables,
given their significant associations with our mediators and
outcome variable.

With all variables in the model, we found that healthy
metrics use, visibility and value of work, and developer
thriving were all significantly associated with perceived
productivity (Hypotheses 1-3), with developer thriving having
the strongest effect on perceived productivity. Notably,
thriving also mediated the relations between perceived
productivity and both healthy metrics use and visibility and
value of work, indicating that the other variables impact
productivity partially because of thriving –

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3382957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

identifying developer thriving as a key component of
increasing productivity (Table 8 and Fig. 1; Hypothesis 4-5).

The model also indicated that healthy team metrics use and
greater visibility and value of software work were both
significantly associated with greater developer thriving, with
visibility and value of work having the stronger effect on
thriving. Visibility and value of work also mediated the
relations between healthy metrics use and both developer

thriving and perceived productivity, highlighting visibility and
value of work as a key lever for increasing both thriving and
productivity (Table 8 and Fig. 1; Hypothesis 6).

Finally, healthy metrics use was associated with greater
visibility and value of work, highlighting healthy metrics use
as one factor for creating visibility and value of software work
(Table 8 and Fig. 1).

Figure 1. Developer Thriving Serial Mediation Model results. Standardized regression coefficients represented.

Table 8. Serial Mediation Model

Antecedent

Consequent
VVQ (m1) DTS (m2) PPR (y)

𝛽𝛽 p 𝛽𝛽 p 𝛽𝛽 p
Direct Effects
 % Time Code
 (cov1) 0.12 < .01 0.13 < .001 0.05 0.21
 Years Code
 (cov2) 0.17 < .001 0.05 0.15 0.16 < .001
 HMU (x) 0.32 < .001 0.12 < .01 0.13 < .01
 VVQ (m1) — — 0.65 < .001 0.14 < .05
 DTS (m2) — — — — 0.24 < .001
Indirect Effects
 HMU (x) via
 VVQ (m1) — — 0.21 < .001 0.04 < .05

 HMU (x) via
 DTS (m2) — — — — 0.03 .001

 VVQ (m1) via
 DTS (m2) — — — — 0.16 < .001

 HMU (x) via
 VVQ (m1) and
 DTS (m2)

— — — — 0.05 0.001

Note. VVQ = Visibility and Value Questionnaire, DTS = Developer Thriving Scale, PPR = Perceived
Productivity Rating, % Time Code = Percent of time spent coding, Years Code = Years of coding experience,
HMU = Healthy Metrics Use, cov1 = covariate 1, cov2 = covariate 2, x = predictor variable, m1 = mediator 1,
m2 = mediator 2, y = outcome variable

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3382957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

VI. LIMITATIONS
The results of our study should be considered in the context

of several limitations. First, our study was a survey design,
that utilized snowball sampling. Although this is an effective
and accepted study design and sampling method, it carries a
risk of response and sampling bias that could limit the
generalizability (external validity) of our findings. There may
also be the potential for a social desirability bias in reporting,
though this was mitigated with anonymized data collection
methods.

We also operationalized our constructs using previously

validated trait-based measures, which aim to capture average
or overall characteristics and experiences across contexts.
Although trait-based measures are more longitudinally stable
than state-based measures [10], they can overlook context-
specific experiences. As such, while our findings can be
generalized to developers’ experience overall, they aren’t
universally applicable to every situation or context.

Additionally, although our study represents a step toward

empirically measuring developer thriving through our use of
previously validated items, future research could build upon
this work by conducting a full factor analysis to assess the
performance of each factor of developer thriving in software
contexts with a larger global population.

Finally given that our data do not employ temporal

precedence between measures, our analyses can indicate that
there are significant relations between our variables, but
cannot statistically establish directionality between them.
Although the proposed directionality of our model fits with
current theoretical models of productivity, temporal
precedence is necessary to make inferences about
directionality.

VII. CONCLUSION

Our findings are consistent with previous software research
that highlights satisfaction as the strongest predictor of
developer productivity [5]. However, our study provides
evidence for a more rigorous, psychometrically tested measure
that moves beyond developer satisfaction: the Developer
Thriving Framework, a multi-dimensional and longitudinally
stable measure of the factors driving satisfaction in the first
place. This framework further expands on the connection
between satisfaction and productivity to highlight visibility as
the key to not only directly increasing developer thriving, but
also boosting the effect of thriving on developer productivity.

It is likely that the sociocognitive elements that create
Developer Thriving are impactful because they create
“virtuous cycles:” positive beliefs, perceptions, and
expectations about code work and problem solving. These
cycles work to reinforce developers’ sense of progress and
problem-solving even and especially when developers
encounter difficulty, friction, and failure. Across intervention
science in human behavior, positive metacognitive beliefs,
perceptions, and environmental factors have been found to
drive longitudinal behavior change, leading to long-term

achievement [15]. Organizations can either enhance or subvert
these important cycles: when teams and organizations put
effort into creating a positive problem-solving culture, it
sustains long-term achievement, iterative improvement, and
reflective, collaborative problem-solving.

That is, developers need thriving and all its elements inside
of their immediate problem-solving environment, but they also
need to believe that their individual productivity will go
beyond their teams. Our Visibility & Value and Healthy
Metrics Use constructs are a step towards naming and
measuring the missing pieces that helps explain an important
connection between individual developer productivity and
thriving, and how the organization’s measurement, valuing,
and recognition of developers flows back down to software
teams.

Taken together, the findings suggest that organizations can
improve developer productivity in a human-centered way by
improving developer thriving – for example, by considering
factors such as enough learning time, strong supportive
cultures, the opportunity to give feedback, and recognition for
effort work and difficult problem-solving. Additionally,
organizations can further unlock the benefits of thriving by
making developers’ work both visible and valued, for example
by using shared, accurate measures of software work, paying
special attention to teams or types of engineering work that do
not get shared broadly, and investing in systems that explicitly
recognize and reward teams for the technical progress they
make, particularly work that was unexpectedly challenging,
required new skills, or fixed long-standing problems.

ACKNOWLEDGMENT

The authors would like to thank each of our participants for
their participation and support.

REFERENCES

[1] J. Verner, J. Sampson, and N. Cerpa, “What factors lead to software

project failure?,” in 2008 Second International Conference on Research
Challenges in Information Science, Marrakech, Morocco, 2008, pp. 71-
80. doi: 10.1109/RCIS.2008.4632095.

[2] C. Jaspan and C. Sadowski, "No single metric captures productivity," in
Rethinking Productivity in Software Engineering, C. Sadowski and T.
Zimmermann, Eds., New York, NY, USA: Apress Open/Springer, 2019,
pp. 13-20.

[3] M. Cataldo and J. D. Herbsleb, “Coordination Breakdowns and Their
Impact on Development Productivity and Software Failures,” IEEE T
Software Eng, vol. 39, no. 3, pp. 343–360, Mar. 2013, doi:
10.1109/TSE.2012.32.

[4] E. Bouwers, A. van Deursen, and J. Visser, “Software metrics: pitfalls and
best practices,” in 35th International Conference on Software
Engineering (ICSE), 2013, pp. 1491-1492.

[5] M. A. Storey, T. Zimmermann, C. Bird, J. Czerwonka, B Murphy, and E.
Kalliamvakou, “Towards a theory of software developer job satisfaction
and perceived productivity,” IEEE T Software Eng, vol. 47, no. 10, pp.
2125–2142, Oct. 2021, doi: 10.1109/TSE.2019.2944354.

[6] C. Sadowski and T. Zimmermann. Rethinking productivity in software
engineering. New York, NY, USA: Apress Open/Springer, 2019.

[7] D. Graziotin, P. Lenberg, R. Feldt, and S. Wagner, “Psychometrics in
Behavioral Software Engineering: A Methodological Introduction with
Guidelines,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 1, p. 7:1-
7:36, Sep. 2021, doi: 10.1145/3469888.

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3382957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

[8] D. J. Brown, R. Arnold, D. Fletcher, and M. Standage, “Human thriving,”

European Psychologist, vol. 22, no.3, pp. 167-179, Sept. 2017, doi:
10.1027/1016-9040/a000294.

[9] C. França, H. Sharp, and F. Q. B. da Silva, “Motivated software engineers
are engaged and focused, while satisfied ones are happy,” in Proceedings
of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM '14), 2014, pp. 1-8, doi:
10.1145/2652524.2652545.

[10] C. Geiser, T. Gotz, F. Preckel, & P. A. Freund, “States and traits:
Theories, models, and assessment,” in European Journal of Psychological
Assessment, vol. 33, no. 4, July 2017, doi: 10.1027/1015-5759/a000413.

[11] Office of The U.S. Surgeon General, “Workplace mental health &
wellbeing,” Accessed: Jan 01, 2023. [Online]. Available:
https://www.hhs.gov/surgeongeneral/priorities/workplace-well-
being/index.html

[12] L. Dawson, B. Mullan, and K. Sainsbury, “Using the theory of planned
behaviour to measure motivation for recovery in anorexia nervosa,”
Appetite, vol. 84, pp. 309-315, Jan. 2015, doi:
10.1016/j.appet.2014.10.028.

[13] J. S. Cohen, J. M. Edmunds, D. M. Brodman, C. L. Benjamin, and P. C.
Kendall, “Using self-monitoring: Implementation of collaborative
empiricism in cognitive-behavioral therapy,” Cogn Behav Pract, vol. 20,
no. 4, Nov. 2013, pp. 419-428, doi: 10.1016/j.cbpra.2012.06.002.

[14] A. N. Meyer, G. C. Murphy, T. Zimmermann, and T. Fritz, “Enabling
good work habits in software developers through reflective goal-setting.
IEEE T Software Eng, vol. 47, no. 9, pp. 1872-1885, Sept. 2019, doi:
10.1109/TSE.2019.2938525.

[15] D. Yeager, G. Walton, and G. L. Cohen, “Addressing achievement gaps
with psychological interventions,” Phi Delta Kappan, vol. 94, no. 5, pp.
62-65, Feb. 2013 doi: 10.1177/003172171309400514.

Catherine M. Hicks is the Vice
President of Research Insights and the
Director of the Developer Success Lab at
Pluralsight, Draper, UT, USA. She holds
a PhD in Quantitative Experimental
Psychology and has published numerous
articles in the fields of software
engineering, learning science, and social

science. She is a research affiliate at UC San Diego, San Diego,
CA, USA.

Carol S. Lee is a Senior Research
Scientist at the Developer Success Lab at
Pluralsight, Draper, UT, USA. She holds
a PhD in Clinical Psychology and has
published numerous articles in the fields
of clinical psychology/science, behavioral
science, and software engineering. She is
an IBHRI research fellow and a member

of APA and ABCT.

Morgan C. Ramsey is a User
Experience Researcher at Pluralsight,
Draper, UT, USA. She holds a BA in
Public Policy and is working on her MA
in Design Methodology. She has
published numerous articles in the fields
of UX, systems design, and software
engineering.

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3382957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.hhs.gov/surgeongeneral/priorities/workplace-well-being/index.html
https://www.hhs.gov/surgeongeneral/priorities/workplace-well-being/index.html

	I. INTRODUCTION
	II. Background research
	A. A Framework for Developer Thriving
	B. What Might Increase Developer Thriving? Visibility and Healthy Metrics Use
	Table 1. The Four Factors of Developer Thriving

	IV. Methods
	A. Survey Measures
	B. Survey Sample Recruitment and Description
	Table 7. Overall Descriptives of Key Measures

	C. Survey Analysis Approach

	V. RESULTS
	A. Findings

	VI. Limitations
	VII. Conclusion
	Acknowledgment
	References

