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 Abstract—Software research has reliably documented a 
connection between how satisfied developers feel at work and their 
overall productivity. However, these explorations have not 
typically integrated known social science mechanisms around 
human wellbeing and achievement to describe why this connection 
exists, and what the most promising levers are for leaders and 
teams that wish to impact it. In addition, there are strong 
criticisms of using highly volatile and individual affective 
measures (e.g., daily happiness) as a sole signal for the quality of 
learning and problem-solving. In this study, we present a research-
based framework for measuring successful environments on 
software teams for long-term and sustainable sociocognitive 
problem-solving, named Developer Thriving. Across 1282 full-time 
developers in 12+ industries, we tested the factors of Developer 
Thriving and found it predictive of developers’ self-reported 
productivity.  
 
Index Terms—developer experience; developer thriving; 
productivity; software engineering 

 
I. INTRODUCTION 

o create new technologies, developers must collaborate 
well on complex code in an iterative and distributed 
manner. Developers and their teams also need to 

balance personal productivity, project constraints, 
organizational context, and business impact alongside pushing 
the boundaries on what code can do in the world. Against this 
complexity, some estimates of the overall success rates of 
software projects claim that the majority of software projects 
deliver late, deliver out of scope of planned budgets, and fail to 
drive business impact [1].  

How can software teams thrive in the face of the unexpected 
and unplanned difficulties of software projects? This study 
contributes a theoretically grounded model for the workplace-
specific sociocognitive drivers of developer thriving that 
promote productivity. We believe this model is an important 
tool for leaders and teams who seek to better define tractable 
and attainable targets for interventions and wish to include 
developers’ wellbeing and needs as knowledge workers as 
they make decisions about team and organization design to 
yield productivity outcomes. 

 
II. BACKGROUND RESEARCH 

Understanding what unlocks high quality problem-solving 
for developers is key to maintaining software innovation. 
Nevertheless, software engineering as a field does not have a 
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consensus on the measurement of developer productivity [2]. 
Absent a clear shared definition, working teams and 
engineering leadership frequently fall into one of the two 
measurement traps when attempting to define and subsequently 
increase developer productivity inside of their engineering 
functions, which lead to different behavioral outcomes:  

 
1) Fixating on surface definitions of productivity and 

measuring and incentivizing the wrong things. 
Outcomes may include limited or punitive production 
measures, such as counting lines of code, and failures to 
account for tech debt.  
 

2) Becoming paralyzed by complexity and measuring and 
incentivizing nothing. Outcomes may include poor 
organizational practices such as relying heavily on 
interpersonal coordination [3] or gut instinct in technical 
decision-making and evaluation of performance, which 
is subject to many potential biases. 

 
While these two maladaptive scenarios for engineering 

organizations may seem opposing, they both spring from a 
foundational lack of clarity on what truly helps developers to 
achieve long-term success in sustaining productivity, and 
therefore, how to measure and incentivize it. 

 
However, previous evidence on the factors which impact 

developers’ achievement provide a starting path through these 
measurement traps. Software researchers have called out the 
need to develop new models of human-centered developer 
productivity by 1) investigating the sociocognitive factors that 
improve problem-solving during coding and software work 
overall, 2) doing research directly on the real-world experiences 
of modern software teams, and 3) avoiding major 
misconceptions in measuring productivity, such as defining 
developer productivity only as crude output measures such as 
lines of code, or setting a single metric goal and using it as a 
threshold evaluate all software work regardless of differing 
contexts and needs [4], [5], [6]. The SPACE framework, which 
characterized developer productivity in terms of satisfaction 
and wellbeing, performance, activity, communication, and 
efficiency is one recent example of software research which 
proposes a multivariate theory that includes psychological 
drivers of developer productivity [5]. The SPACE framework 
provides possible examples of systematically broadening 
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“productivity” definitions with dimensions such as job 
satisfaction. Nevertheless, while the SPACE framework 
definition includes satisfaction and wellbeing as key pieces of 
productivity, it does not provide psychometric evidence for how 
to measure and evaluate developer satisfaction and wellbeing at 
scale. Psychometric evidence is defined as quantitative 
evidence about underlying latent variables which are believed 
to drive psychological processes. Because psychological 
constructs are not directly observed, reliable estimations of 
psychological constructs rely on developing measurements 
which use empirical approaches such as the use of validated 
items, reliability reporting, and adherence to previously-
validated constructs [7]. A psychometrically-evidenced 
alternative to focusing on a general “satisfaction” construct is 
developer thriving, the process of sustainable growth and 
development [8].  

 

A. A Framework for Developer Thriving 
The Developer Thriving framework presented in this study 

is adapted from previously validated models of thriving in 
psychosocial and workplace contexts and consists of four 
factors: Developer Agency, Developer Motivation & Self-
efficacy, Developer Learning Culture, and Developer Support 
& Sense of Belonging (Table 1) [8].  

 
 The framework builds on the known connection between 

developer satisfaction and productivity to answer what drives 
satisfaction in the first place. Notably, the four factors in 
Developer Thriving explicitly call attention to the 
environmental and structural affordances which create the 
conditions for developer productivity. One central criticism of 
relying on happiness and satisfaction measures is that they are 
highly volatile and may capture immediate signals (e.g., mood) 
rather than true over-time productive patterns [9]. In contrast, 
the four sociocognitive factors of Developer Thriving each tie 
explicitly to behavioral cycles that maintain high performance 
over time using trait-based (rather than state-based) measures 
adapted from previously validated measures, thus yielding a 
more long-term and sustainable measure [7], [8], [10].  
 

B. What Might Increase Developer Thriving? Visibility and 
Healthy Metrics Use 

Along with developing new original measures for what key 
factors play into Developer Thriving, we also wanted to ask 
what leaders and organizations can do to increase Developer 
Thriving. Based on the literature, we identified two potential 
factors: visibility and value of work, and healthy metrics use.  
 
The unique benefit of both expecting and planning for visibility, 
and getting feedback from a visibility cycle, is supported across 
scientific evidence on human wellbeing, health sciences, and 
organizational psychology. For example, research on 
behavioral change in healthcare settings highlights the value  
 
 

Table 1. The Four Factors of Developer Thriving 
The Behavioral Science behind Developer Thriving 

Agency 

A developer is:  
1) able to voice disagreement with team definitions 
of success  
2) has a voice in how their contributions are 
measured 

Motivation 
& Self-
Efficacy 

A developer is:  
1) motivated when working on code at work  
2) can see tangible progress most of the time  
3) is working on the type of code work they want to 
work on  
4) is confident that even when working in code is 
unexpectedly difficult, they will solve their problems 

Learning 
Culture 

A developer is: 
1) learning new skills as a developer  
2) able to share the things they learn at work  

Support & 
Belonging 

A developer is:  
1) supported to grow, learn, and make mistakes by 
their team 
2) agrees they are accepted for who they are by their 
team 

Note. See supplementary materials for full details. 

 
created from recognition and visibility as one of the strongest 
predictors of behavioral engagement, performance, and 
productivity of both individuals and team members [11], [12]. 
This impact on developer motivation was also a key theme 
underlined by both individual contributor developers in the 
pilot testing for this study, who described expecting and 
anticipating moments of recognition as key motivators, and by 
managers, who described a pivotal responsibility of making 
their team’s work visible. 
 

Increased measurement leading to positive outcomes echoes 
a significant body of research in the clinical and behavioral 
sciences, which indicates that we tend to forget or lack 
awareness of the amount of work we have done, leading us to 
devalue and minimize our progress. Tracking behavioral and 
psychological processes has been shown to mitigate this effect 
by providing us concrete evidence of our progress and 
accomplishments. Having this evidence not only increases 
mindful attention and awareness, but also increases our sense 
of value and mastery over our work, increases empathy and 
self-compassion, boosts coping abilities and distress tolerance, 
empowers us to recognize and set boundaries, and drives 
behavioral engagement for both groups and individuals [13]. 
And with developers specifically, research has found that self-
reflection in a repeated cadence increased developers’ 
awareness of their habits and led to positive behavior change 
for both output and wellbeing [14]. 
 

Based on this previous literature, we developed the following 
five key hypotheses:  

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3382957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3 
 

 
H1. Healthy metrics use will be positively associated with 
perceived productivity. 

 
H2. Visibility and value of work will be positively 
associated with perceived productivity. 
 
H3. Developer thriving will be positively associated with 
perceived productivity. 
 
H4. Visibility and value of work will be positively 
associated with productivity through developer thriving 
(mediation).  
 
H5. Healthy metrics use will be positively associated with 
perceived productivity through developer thriving 
(mediation).  
 
H6. Healthy metrics use will be positively associated with 
perceived productivity through visibility and value of work 
(mediation).  

 
IV. METHODS 

Our study consisted of a large-scale quantitative survey. 
This section discusses the quantitative survey measures (Sec. 
A), survey sample recruitment and description (Sec. B), and 
survey analysis approach (Sec. C). 

A. Survey Measures 
Participants answered the survey measures using a Likert-

type scale (see supplementary materials). For each multi-item 
measure, the items were averaged to create a single composite 
score for each measure.   
 
Perceived Productivity Rating (PPR). There is no standard 
measure for developer productivity [6] and developers define 
productivity in multiple ways; software research has therefore 
frequently used self-report ratings of productivity [14]. To 
operationalize this complex concept, we similarly asked 
developers to rate their own productivity over a recent period 
of time. This allowed us to let developers summarize across 
their complex contexts, different industry paces of work, and 
working environments. In our study, the PPR is a self-report, 
single-item measure. To reduce within-survey response 
effects, this question was shown first to reduce biases that 
might arise from respondents’ reflecting on questions about 
belonging, measurement and software metrics.  
 
Healthy Metrics Use (HMU). Healthy metrics use was 
operationalized as a two-item composite rating created for this 
study. The first item asked participants to report their team’s 
use of metrics. The second item asked participants to report if 
they believed their team used the “right” metrics for their team 
and agreed that “they measure the right things.”  
 
Developer Thriving Scale (DTS). The DTS is a ten-item 
measure created for this study, abbreviated in order to be 
accessible to participants at scale in an applied research setting 
(see supplementary materials). The measure draws from 

models of thriving in health and psychology to identify four 
factors: motivation and self-efficacy, support and belonging, 
learning culture, and agency. The items for each factor are 
adapted from empirically validated psychological measures of 
these constructs. The measure had good internal consistency in 
our sample (𝛼𝛼 = .86). 
 
Visibility and Value Questionnaire (VVQ). The VVQ is a 
three-item measure created for this study. The measure draws 
from previous research indicating that recognizing and valuing 
employees’ work predicts employee satisfaction and asks 
respondents to rate the extent to which they believe their 
technical work is visible and valued by teammates and 
managers. The measure had good internal consistency in our 
sample (𝛼𝛼 = .83). 
 

We pilot-tested the clarity of our survey by seeking 
feedback from 5 full-time software engineers within our 
organization. To reduce response biases within-survey, we 
used a semi-randomized survey design. All participants 
answered key construct measures before being asked to 
answer measures that may influence their responses. For 
example, to avoid stereotype threat, participants rated their 
productivity before being asked to answer any questions about 
demographic characteristics. Within the key construct 
measures (Table 1), the order of presentation was randomized 
to control for order effects. 

 

B. Survey Sample Recruitment and Description 
We utilized snowball sampling and advertised our online 

Qualtrics survey publicly from researchers’ personal social 
media accounts, and via direct emails to professional listservs 
of interest to developers. Our survey was also advertised 
inside of the Pluralsight platforms to professional developer 
users. This survey advertisement was optional and not 
connected to user data on these platforms. All participants 
provided consent and were informed of the Developer Success 
Lab’s consent & participant privacy policies. Because our 
study design consisted of a survey study with a sample of 
adults who provided consent and whose data was anonymized, 
it was determined to be exempt from the requirement to be 
reviewed by an Institutional Review Board (Category 2). 

 
Our survey was open to all full-time individual contributor 

(ICs) developers and software engineers responsible for 
technical code work in their role. We recruited a total of 1409 
individual contributor developers. Of the 1409 participants, 
121 did not move past the first two questions of the survey and 
six were removed for writing identity-based discriminatory 
responses in our open text demographic fields. Our final 
sample consisted of 1282 participants. A summary of 
demographic and firmographic characteristics can be seen in 
Tables 2-6. As a token of appreciation for participation, our 
research team made a donation to an open source software 
nonprofit, chosen based on participant voting. 
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Table 2. Gender and Sexual Orientation 

 Demographic Statistic 
(N = 1282) 

Gender 
(n = 683) 

 

   Female 121 (17.72%) 
   Male 527 (77.16%) 
   Nonbinary/Fluid/Queer/Gender Queer 10 (1.46%) 
   Prefer not to answer 25 (3.66%) 
   Self-Identify  0 (0%) 
Transgender Identity 
(n = 593) 

 

   Yes 22 (3.71%) 
   Prefer not to respond 47 (.93%) 
Sexual Orientation 
(n = 537) 

 

   Asexual/Aromantic 14 (2.61%) 
   Bisexual 16 (2.98%) 
   Fluid 3 (0.56%) 
   Gay 11 (2.05%) 
   Lesbian 4 (0.74%) 
   Pansexual 3 (0.56%) 
   Queer 2 (0.37%) 
   Questioning/Unsure 7 (1.30%) 
   Self-Identify 3 (0.56%) 
   Straight/Heterosexual 369 (68.72%) 
   Prefer not to respond 105 (19.55%) 

 
 
Table 3. Education and Coding Experience 

 Demographic Statistic 
(N = 1282) 

Education 
(n = 614) 

 

   Grade School 8 (1.30%) 
   Some HS 5 (0.81%) 
   HS Diploma 29 (4.72%) 
   Some College 40 (6.51%) 
   Community or Vocational 21 (3.42%) 
   4-year College 283 (46.09%) 
   Graduate Degree 228 (37.13%) 
Years of Coding Experience  
   Mean (SD) 14.4 (12.8) 

 
 
 
 
 
 
 
 
 
 
 

 
Table 4. Race 

 Demographic Statistic 
(N = 1282) 

Race1 
(n = 576) 

 

   Alaskan Native/ Native   
    American/ Indigenous 5 (0.87%) 
   Black/ African American 25 (4.34%) 
   East Asian 47 (8.16%) 
   Middle Eastern/North African  
    (Non-White) 12 (2.08%) 
   Middle Eastern/North African (White) 18 (3.13%) 
   Latinx/Hispanic (Non-White)  19 (3.30%) 
   Latinx/Hispanic (White) 33 (5.73%) 
   Pacific Islander/Native Hawaiian 2 (0.35%) 
   South/ South-East Asian 105 (18.23%) 
   White 245 (42.53%) 
   Multiracial 13 (2.26%) 
   Self-identify2 20 (3.47%) 
   Prefer not to respond 69 (11.98%) 

1. Participants could check all that apply. 
2. Examples include: Indian, Black. We chose to be 

holistic, and for some respondents, this may have 
felt too limiting or broad.  
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Table 5. Industry and Organization Characteristics 

Firmographic  Statistic 
(N = 1282) 

Industry  
  Education 32 (2.5%) 
  Energy 15 (1.2%) 
  Financial Services 153 (11.9%) 
  Government 41 (3.2%) 
  Healthcare & Pharmaceuticals 39 (3.0%) 
  Industrials & Manufacturing 36 (2.8%) 
  Insurance 23 (1.8%) 
  Media/ Entertainment 13 (1.0%) 
  Non-Profit 5 (0.4%) 
  Retail/ Consumer/ e-Commerce 43 (3.4%) 
  Technology 249 (19.4%) 
  Telecommunications 24 (1.9%) 
  Other 64 (5.0%) 
  Missing 545 (42.5%) 
Organization Size  
  1-4 26 (2.0%) 
  5-9 17 (1.3%) 
  10-19 29 (2.3%) 
  20-99 72 (5.6%) 
  100-499 100 (7.8%) 
  500-1,999 92 (7.2%) 
  2,000-4,999 61 (4.8%) 
  5,000-9,999 49 (3.8%) 
  10,000+ 272 (21.2%) 
  Missing 564 (44.0%) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6. Team and Role Characteristics 
Firmographic  Statistic 

(N = 1282) 
Team Size  
  Mean (SD) 8.42 (7.06) 
Cross-Functional Team  
  Yes 494 (38.5%) 
  Maybe/ Not Sure 144 (11.2%) 
  No 139 (10.8%) 
  Missing 505 (39.4%) 
Percent of Time Spent Writing Code  

 Mean (SD) 60.1 (24.1) 
Engineering Area  

 Backend 468 (36.5%) 
 Frontend 285 (22.2%) 

   Full Stack 305 (23.8%) 
   Mobile 71 (5.5%) 
   Database Admin 125 (9.8%) 
   System Admin 95 (7.4%) 
   Dev Ops 234 (18.3%) 
   Site Reliability 80 (6.2%) 
   Other  94 (7.3%) 
   Missing 530 (41.3%) 
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    Table 7. Overall Descriptives of Key Measures 
Variable Mean (SD) Skewness Kurtosis HMU VVQ DSS PPR 

HMU 
n = 958 1.23 (0.52) 0.03 -1.15 1.00 – – – 

VVQ 
n = 821 3.99 (0.91) -0.86 .27 .33* 1.00 – – 

DTS 
n = 562 4.26 (0.61) -0.83 0.81 .34* .73* 1.00 – 

  PPR 
n = 1280 3.45 (0.92) -0.28 0.04 .26* .41* .43* 1.00 

Note. HMU = Healthy Metrics Use; VVQ = Visibility and Value Questionnaire; DTS = Developer Thriving Scale; PPR = 
Perceived Productivity Rating.  
*p < .001 

 C. Survey Analysis Approach 
To test the normality of our variables, we obtained skew 

and kurtosis values of all variables. All variables were within 
normal ranges. As such, we performed a Pearson’s correlation 
to check the correlations between all variables (see Table 7).  
 

To identify covarying demographic and firmographic 
variables, we conducted correlations between our outcome 
variables and our continuous demographic and firmographic 
variables. To avoid potentially misleading signals resulting 
from the reduced sample size and highly skewed distributions 
across categorical identity questions, we did not examine the 
relations between our primary measures and our categorical 
demographic and firmographic variables. Years of coding 
experience was positively associated with the VVQ (r(701) = 
.20, p < .01)), DTS (r(472) = .21, p = .001)), and PPR (r(710) 
= .25, p < .001)) . Additionally, percent of time spent writing 
code was positively associated with the HMU (r(719) = .09, p 
< .05)), PPR (r(730) = .20, p < .001)), DTS (r(494) = .27, p < 
.001)), and VVQ (r(722) = .16, p < .001)). As there were no 
other significant effects between our primary measures and the 
other firmographic and demographic variables (ps = .07 - .84), 
we only controlled for the effect of percent of time spent 
writing code and years of coding experience. 
 

To test hypotheses 1-6, we conducted a serial mediation 
path analysis (Fig. 1). This allowed us to simultaneously test if 
the HMU, VVQ, and DTS were positively associated with the 
PPR (Hypotheses 1-3). This also allowed us to test if the VVQ 
was positively associated with productivity through or 
because of developer thriving (mediation; Hypothesis 4), and 
if the HMU was positively associated with perceived 
productivity through or because of the DTS and the VVQ 
(mediation; Hypothesis 5-6).  
 
 
 
 

V. RESULTS 

A. Findings 
Previous research [5] suggests that a positive developer 

experience and increasing developer satisfaction are among the 
best ways to increase developer productivity. Our study aimed 
to provide more actionable and measurable factors in developer 
experience than satisfaction, and looked at whether developer 
thriving was predictive of productivity. Further, this study 
asked if implementing team-level tools and processes such as 
healthy metrics and increased visibility could improve 
developer thriving and productivity, even after controlling for 
factors like years of experience and time spent coding.  
 

To test our hypotheses, we conducted a linear regression 
based serial mediation path analysis with the HMU as our 
independent variable, VVQ as our first mediator, DSS as our 
second mediator, and PPR as our outcome variable (saturated 
model using only observed variables; CFI = 1; RMSEA = 0). 
Additionally, we entered percent of time spent coding and 
years of coding experience as covariates for all variables, 
given their significant associations with our mediators and 
outcome variable. 
 

With all variables in the model, we found that healthy 
metrics use, visibility and value of work, and developer 
thriving were all significantly associated with perceived 
productivity (Hypotheses 1-3), with developer thriving having 
the strongest effect on perceived productivity. Notably, 
thriving also mediated the relations between perceived 
productivity and both healthy metrics use and visibility and 
value of work, indicating that the other variables impact 
productivity partially because of thriving –  
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identifying developer thriving as a key component of 
increasing productivity (Table 8 and Fig. 1; Hypothesis 4-5).  
 

The model also indicated that healthy team metrics use and 
greater visibility and value of software work were both 
significantly associated with greater developer thriving, with 
visibility and value of work having the stronger effect on 
thriving. Visibility and value of work also mediated the 
relations between healthy metrics use and both developer 

thriving and perceived productivity, highlighting visibility and 
value of work as a key lever for increasing both thriving and 
productivity (Table 8 and Fig. 1; Hypothesis 6). 
 

Finally, healthy metrics use was associated with greater 
visibility and value of work, highlighting healthy metrics use 
as one factor for creating visibility and value of software work 
(Table 8 and Fig. 1).         
 

 

 
Figure 1. Developer Thriving Serial Mediation Model results. Standardized regression coefficients represented. 

 
 
Table 8.  Serial Mediation Model

Antecedent 

Consequent 
VVQ (m1)  DTS (m2)  PPR (y) 

𝛽𝛽 p  𝛽𝛽 p  𝛽𝛽 p 
Direct Effects 
   % Time Code 
   (cov1) 0.12 < .01  0.13 < .001  0.05 0.21 
   Years Code 
   (cov2) 0.17 < .001  0.05 0.15  0.16 < .001 
   HMU (x) 0.32 < .001  0.12 < .01  0.13 < .01 
   VVQ (m1) — —  0.65 < .001  0.14 < .05 
   DTS (m2) — —  — —  0.24 < .001 
Indirect Effects 
   HMU (x) via 
   VVQ (m1) — —  0.21 < .001  0.04 < .05 

   HMU (x) via 
   DTS (m2) — —  — —  0.03  .001 

   VVQ (m1) via 
   DTS (m2) — —  — —  0.16 < .001 

   HMU (x) via 
   VVQ (m1) and  
   DTS (m2) 

— —  — —  0.05 0.001 

Note. VVQ = Visibility and Value Questionnaire, DTS = Developer Thriving Scale, PPR = Perceived 
Productivity Rating, % Time Code = Percent of time spent coding, Years Code = Years of coding experience, 
HMU = Healthy Metrics Use, cov1 = covariate 1, cov2 = covariate 2, x = predictor variable, m1 = mediator 1, 
m2 = mediator 2, y = outcome variable 
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VI. LIMITATIONS 
The results of our study should be considered in the context 

of several limitations. First, our study was a survey design, 
that utilized snowball sampling. Although this is an effective 
and accepted study design and sampling method, it carries a 
risk of response and sampling bias that could limit the 
generalizability (external validity) of our findings. There may 
also be the potential for a social desirability bias in reporting, 
though this was mitigated with anonymized data collection 
methods.  

 
We also operationalized our constructs using previously 

validated trait-based measures, which aim to capture average 
or overall characteristics and experiences across contexts. 
Although trait-based measures are more longitudinally stable 
than state-based measures [10], they can overlook context-
specific experiences. As such, while our findings can be 
generalized to developers’ experience overall, they aren’t 
universally applicable to every situation or context.  

 
Additionally, although our study represents a step toward 

empirically measuring developer thriving through our use of 
previously validated items, future research could build upon 
this work by conducting a full factor analysis to assess the 
performance of each factor of developer thriving in software 
contexts with a larger global population. 

 
Finally given that our data do not employ temporal 

precedence between measures, our analyses can indicate that 
there are significant relations between our variables, but 
cannot statistically establish directionality between them. 
Although the proposed directionality of our model fits with 
current theoretical models of productivity, temporal 
precedence is necessary to make inferences about 
directionality. 

 
VII. CONCLUSION 

Our findings are consistent with previous software research 
that highlights satisfaction as the strongest predictor of 
developer productivity [5]. However, our study provides 
evidence for a more rigorous, psychometrically tested measure 
that moves beyond developer satisfaction: the Developer 
Thriving Framework, a multi-dimensional and longitudinally 
stable measure of the factors driving satisfaction in the first 
place. This framework further expands on the connection 
between satisfaction and productivity to highlight visibility as 
the key to not only directly increasing developer thriving, but 
also boosting the effect of thriving on developer productivity.  
 

It is likely that the sociocognitive elements that create 
Developer Thriving are impactful because they create 
“virtuous cycles:” positive beliefs, perceptions, and 
expectations about code work and problem solving. These 
cycles work to reinforce developers’ sense of progress and 
problem-solving even and especially when developers 
encounter difficulty, friction, and failure. Across intervention 
science in human behavior, positive metacognitive beliefs, 
perceptions, and environmental factors have been found to 
drive longitudinal behavior change, leading to long-term 

achievement [15]. Organizations can either enhance or subvert 
these important cycles: when teams and organizations put 
effort into creating a positive problem-solving culture, it 
sustains long-term achievement, iterative improvement, and 
reflective, collaborative problem-solving. 
 

That is, developers need thriving and all its elements inside 
of their immediate problem-solving environment, but they also 
need to believe that their individual productivity will go 
beyond their teams. Our Visibility & Value and Healthy 
Metrics Use constructs are a step towards naming and 
measuring the missing pieces that helps explain an important 
connection between individual developer productivity and 
thriving, and how the organization’s measurement, valuing, 
and recognition of developers flows back down to software 
teams.  
 

Taken together, the findings suggest that organizations can 
improve developer productivity in a human-centered way by 
improving developer thriving – for example, by considering 
factors such as enough learning time, strong supportive 
cultures, the opportunity to give feedback, and recognition for 
effort work and difficult problem-solving. Additionally, 
organizations can further unlock the benefits of thriving by 
making developers’ work both visible and valued, for example 
by using shared, accurate measures of software work, paying 
special attention to teams or types of engineering work that do 
not get shared broadly, and investing in systems that explicitly 
recognize and reward teams for the technical progress they 
make, particularly work that was unexpectedly challenging, 
required new skills, or fixed long-standing problems. 
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