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Abstract

With the increasing prevalence of AI, a key question is how to ad-
equately prepare the next generation of software engineers to build AI-
intensive systems. This article presents our teaching experience for the
“Engineering of AI-intensive Systems” course to postgraduate students.
This course is tailored for computer science students, bridging the dis-
ciplines of software engineering (SE) and artificial intelligence (AI). The
primary goal is to equip participants with the knowledge and skills to
adeptly engineer AI-intensive systems with a strong foundation in con-
ventional SE principles. The article delves into the course’s structure,
teaching methods, and assessment techniques, underscoring the advan-
tages inherent in this interdisciplinary educational approach.

1 Introduction

The use of AI-intensive systems has been rising for the last few years and AI-
intensive systems, such as Uber1 or Netflix2, have taken the world by storm in
today’s fast-paced world [1]. Among other features, AI-intensive systems require
high concurrency in data access (e.g., concurrent access to rides and bookings
on the Uber app), fast-changing data streams (e.g., quick recommendation of
the next available ride/booking), and fast analytics (e.g., Netflix’s transcoding
and encoding of a video according to the receiving device). However, these
systems must be developed and governed by software engineering principles
for reliability, maintenance, and compliance [2]. Integrating data analytics and
software engineering is important as it offers unique opportunities for innovation,
problem-solving, and decision-making processes.

AI aims to replicate or simulate human intelligence in machines and systems.
It incorporates statistical analysis and other machine learning mechanisms to
extract meaningful patterns, visualizations, and actionable insights from data.
It consists of data collection, preprocessing, exploratory data analysis, predictive
modeling, and data-driven decision-making through machine learning or deep
learning [3]. On the other hand, SE lays the foundation of software modeling, de-
sign, analytics, and maintenance using modeling tools, programming languages,

1https://www.uber.com/us/en/uberai/
2https://research.netflix.com/research-area/machine-learning
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and quality assurance mechanisms [4]. While AI engineers are responsible for
finding patterns, trends, and insights in datasets using machine learning algo-
rithms and making recommendations, software engineers make sure that the
software governing that data and insights is functional and dependable. The
interdisciplinary collaboration between the engineers of these two fields is neces-
sary for enhanced decision-making, increased predictive capabilities, advanced
analytics, low maintenance, etc.

Making AI-intensive systems that handle diverse data or provide useful in-
sight for businesses (functional requirements) while meeting expected quality
standards (non-functional requirements like response time, security, and main-
tainability) requires specific skills. However, AI-intensive systems and their
engineering are still poorly understood at large [5]. This is made worse by AI
and SE being seen as independent fields of knowledge, with different degree
programs and sparsely overlapping courses. Thus, training the workforce with
interdisciplinary knowledge to build software leveraging data analytics, AI, and
machine learning following SE practices is challenging. A few initiatives have
been created to bridge both AI and SE fields [6]. However, to meet the de-
mands of an ever-increasing market, the education of students on how to build
AI-intensive systems must be pervasive in every computer science education.

We initiated a novel course titled “Engineering of AI-intensive Systems” to
promote collaboration between students from AI and SE. Although dedicated
master courses target AI or SE at Johannes Kepler University, they have no
direct connection. Hence, the course’s objectives were two-fold: firstly, intro-
ducing AI students to the fundamental principles of SE, and secondly, providing
SE students with practical experience in tackling real-world AI challenges. The
core concept was establishing mixed groups comprising AI and SE students.
These groups collaborate on addressing realistic term projects derived from the
AI domain while adhering to established SE practices, including modeling and
comprehensive analysis involving verification and validation procedures. This
course was introduced within the computer science postgraduate program at Jo-
hannes Kepler University during the summer semester 2023. The course design
aimed to effectively translate the instructors’ extensive research expertise in AI
and SE into a cohesive teaching approach. This article shares the insightful
experience gained through the implementation of this course, shedding light on
the successful merging of these two fields within an educational context.

2 Background

SE for AI, as well as AI for SE, are thriving fields. On the one hand, Shafiq
et al. [7] present a study about using AI across various software development
lifecycle stages. Additionally, they investigate the relationship between software
development lifecycle stages and machine learning tools, techniques, and types.
Similarly, Colanzi et al. [8] reviewed search-based software engineering, in which
SE problems are modeled as search problems and solved by AI and machine
learning techniques. On the other hand, Amershi et al. [9] present a study
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Figure 1: Lifecycle for engineering AI-intensive systems [2]

containing observations of SE practices for developing AI-based applications. To
further advance the state of the art, Mashkoor et al. [2] presented a lifecycle for
engineering AI-intensive systems as shown in Fig. 1, explaining how AI helps in
various lifecycle stages for engineering software systems and how the knowledge
of engineering software systems can be used to design AI applications.

As Fig. 1 suggests, a typical AI-intensive system engineering project starts
with the planning phase. Here, AI can help sprint planning, for example, by
suggesting the most critical issues that need to be fixed on a priority basis [10].
For the requirements phase, AI can help, for example, in task allocation [11]. For
the design phase, AI helps, for example, identify and recognize design patterns
in software through source code or user interface layout [12]. AI tools also help
configure the software in the product development phase, for example, through
automatic code generation [13]. Once configured and executed, AI tools can
monitor and optimize the software through performance monitoring, anomaly
detection, predictive maintenance, etc. AI tools can also help build test suites
that reach all parts of a software system. However, large test suites can be slow
and expensive to run. Hence, AI tools help reduce costs by prioritizing test
cases likely to fail and giving developers faster feedback on problematic issues.
Once systems are running and test case results are available, AI can support the
software development process again by repairing the software product through
automated bug detection and fault localization, automated code refactoring,
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automated patch generation, predictive bug analysis, etc. Finally, AI tools can
study code repositories and logs to learn quality models that predict software
development time, bug locations, how long issues will be resolved, anti-patterns
in software development, etc. We discussed all these phases during the lectures,
showing how AI-assisted technologies can support development. This course acts
as a test-bed whether the lifecycle proposed for the engineering of AI-intensive
systems, as shown in Fig. 1, is viable and serves as the basis for teaching the
engineering of such systems.

From a more educational point of view, a study by Kästner and Kang [6]
shares the experience of teaching SE for AI-enabled systems. This study is
related to this present work. However, their course was designed to teach SE
to students interested in AI. In a complementary way, our course’s aim is much
broader. We were teaching students of interdisciplinary fields to work in tandem
to design real-life AI applications using standard SE principles.

3 Course overview and learning outcomes

The course was offered at the postgraduate level to computer science students to
teach them how to employ state-of-the-art SE practices to engineer AI-intensive
systems. The course aimed to allow students to develop: (i) enhanced interdis-
ciplinary problem-solving skills, (ii) improved understanding of interdisciplinary
software development processes, and (iii) further career prospects with the latest
trends in the market.

The following were the main learning outcomes (LO) of the course:

• LO1: Students become familiar with the lifecycle stages of systems and
software engineering and how AI can assist in different stages.

• LO2: Students become familiar with statistical modeling, analysis, and
data management.

• LO3: Students develop familiarity and/or expertise with relevant pro-
gramming languages such as Python3 or Dart4, frameworks such as Langchain5

or Flutter6, and APIs such as FastAPI7 or Monster API8.

• LO4: Students can apply AI and SE concepts and methods to solve real-
life problems and communicate these solutions effectively.

3https://www.python.org/
4https://dart.dev/
5https://python.langchain.com/
6https://flutter.dev
7https://fastapi.tiangolo.com
8https://monsterapi.ai
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4 Teaching and assessment

This section presents an overview of the course organization, resulting projects
developed by the students, and assessment.

4.1 Lecture-based instruction

The course was given in ten lectures of one and a half hours each over a semester.
We introduced students to the necessity for AI-intensive systems during the in-
troductory lecture. Then we briefly discussed the fundamentals of AI, machine
learning, and statistical and data modeling. Then, the remaining lectures fo-
cused on the following topics:

• Systems engineering using SysML. This topic covers systems engineer-
ing fundamentals, including engineering and modeling processes, design
choices, tradeoffs, etc. We also introduce SysML [14] because system arti-
facts are often modeled and designed using such visual modeling languages.
We also discuss how AI could be a game changer in systems engineering
and could significantly improve the processes of generating and specify-
ing requirements, use case and user story writing, SysML model creation,
automatic code generation, etc.

• AI systems engineering lifecycle. This topic covers the AI systems en-
gineering lifecycle, shown in Fig. 1. We start with the planning phase
and then proceed to the requirements, design, production, testing, and
execution phases. At each stage, we discuss how AI-intensive systems dif-
fer from traditional systems and what practices can be adopted for their
engineering.

• Requirements engineering. This topic covers the fundamentals of require-
ments engineering for AI-intensive systems. We particularly emphasize
how the non-functional requirements for AI differ from traditional soft-
ware systems and the new categories of non-functional requirements for
AI-intensive systems, such as fairness, explainability, transparency, and
ethics. Then we discuss different quality standards and modeling pro-
cesses, particularly the IEEE standard model process for addressing ethi-
cal concerns during system design (IEEE 7000-2021)9.

• Design. This topic covers how to design AI-intensive systems and what
opportunities and challenges designers may encounter during this process.
Naturally, the design needs to focus on the features the system and its
AI components provide. However, considering human-centered AI aspects
during the design stage is crucial to counter biased data sets, discrimina-
tion against minorities, or privacy threats. This increases the trustworthi-
ness of the AI-intensive system. We also touch upon the unavailability of
related standards, guidelines, and best practices for AI-intensive systems,

9https://standards.ieee.org/ieee/7000/6781/
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as existing standards generally apply to systems and software. We also
discuss the ethical aspects of designing AI-intensive systems, such as the
onus of responsibility for potential mistakes.

4.2 Collaborative learning and group projects

One of the fundamental objectives of the course was to give students hands-on
experience with the engineering of real-life AI-intensive systems using the pro-
posed lifecycle and avoid using simple toy/classroom examples. To this end, we
decided to allow students to build their groups and come up with their proposals
for the term projects with two conditions: (i) The team should comprise both
AI and SE students, and (ii) the project should represent a real-life problem
and display the use of AI as a part of the solution.

We divided students into four groups, and the following are their projects:

Gesture control: This project proposes a gesture detection device that helps
people suffering from tenosynovitis, i.e., inflammation and swelling in wrists
caused by repetitive movements such as typing or mouse control. The project
allows users to record gestures and map them to a particular task on the com-
puter. The device then uses AI to detect when the user performs the ges-
ture and simulates the action the user previously assigned to this gesture.
The system’s architecture comprises motion sensors, a microcontroller (Ar-
duino10), and software. A short demo of this project is available at the following
URL: https://www.youtube.com/watch?v=SJex-WGscfM.

Recipe finder: This project is about developing a recipe finder app that
allows users to prepare tasty recipes based on the available ingredients. Addi-
tionally, it uses AI to generate matching images for the selected dishes. The app
uses a simple client/server architecture, was trained on a dataset of 0.5 million
recipes, and took approx. three seconds for dish image generation. The app
uses the FastAPI framework at the back end and Material UI11 at the front
end. A short demo of this project is available at the following URL: https:
//www.youtube.com/watch?v=4JKs9xmcOTY.

Image generator: This project is about a mobile app providing users with
AI-generated images related to nature based on the provided written description.
The app is built using the Dart programming language12 for the open-source
Flutter framework13 by Google. Additionally, it uses the Monster API14 to gen-
erate relevant images. Users can either download the image as is or make further
edits before downloading the image. A short demo of this project is available
at the following URL: https://www.youtube.com/watch?v=FWBHLQyeYig.

10https://www.arduino.cc/
11https://mui.com
12https://dart.dev
13https://flutter.dev
14https://monsterapi.ai
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Customer support: This project concerns an AI-powered sales support agent
(chatbot) based on the Langchain framework. Langchain is a natural language
understanding framework for developing data-aware and agentic applications us-
ing large language models. The chatbot is limited to processing human queries
only in English. A short demo of this project is available at the following
URL: https://www.youtube.com/watch?v=EpgR59UoC3M.

4.3 Assessment

As a part of the assessment, students had to work iteratively on the project.
They first had to show their requirements documents (natural language require-
ments, requirement and use case diagrams, requirements specification, etc.) and
later design documents (state machine diagram, activity diagram, etc.) to course
instructors, who acted as relevant stakeholders. Students also had to show that
they had documented requirement changes and resulting design decisions prop-
erly. Final project artifacts also contained requirements traceability links to
code. At the end of the semester, students had to showcase their projects in
front of the class and defend their requirements and choices. Students also had
to demonstrate a grasp of concepts from both AI and SE fields through a written
exam, mainly based on knowledge already imparted through lectures or gained
while working on the project.

Ultimately, we were happy that all learning outcomes of the course were
achieved successfully. In meetings with instructors and during presentations,
student groups showed that they followed the recommended practices for differ-
ent lifecycle stages of systems and software engineering, e.g., requirements man-
agement and architecture and design (LO1). During project development and
its showcasing, students showed that they were familiar with AI and data sci-
ence concepts (LO2), they were able to use different programming languages and
frameworks effectively (LO3), and they could use SE principles for engineering
AI applications (LO4). The approach of mixing students from interdisciplinary
fields in a single group worked out well.

5 Challenges and lessons

Integrating diverse skill sets: AI and SE are two different fields requir-
ing different skill sets. While AI requires familiarity with statistical modeling
and machine learning models, SE mandates comprehension of software design
principles and testing techniques. Integrating these skill sets in a collaborative
environment can sometimes be challenging, such as differences in terminologies
of both fields or differences between the nature of software, i.e., deterministic
vs. probabilistic. However, grouping students from both fields worked well, and
the students could learn from each other by working on collaborative projects.
In the final assessment, all students showed a grasp of concepts from both fields.
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Tooling and infrastructure: AI and SE students use different tools and
platforms. For example, using TensorFlow15, PyTorch16, and Jupyter note-
books [15] is prevalent in AI. Whereas software engineers use tools like inte-
grated development environments, version control systems, issue tracking and
management platforms, and CI/CD environments. Students from both fields
had to learn new tools and platforms for working collaboratively.

Balancing theory and practice: Balancing theory and practice is a general
problem in any course. However, we addressed this challenge in our course
by allowing hands-on exercises from real-life problems; project-based learning,
i.e., the projects allowed students to apply theoretical knowledge into practical
context; peer learning, i.e., students sharing their experiences and solutions
among each other; constant feedback, i.e., students’ assignments were reviewed
periodically over the semester; and constructive assessments.

Limited applicability: We had a class of 30 students - maximum class size
at Johannes Kepler University for such a course. The class was mainly balanced
in terms of students from diverse background in computer science. As the course
was not mandatory, most students just came to learn and not pass a course. Still,
many students left the course in the middle due to obligations for mandatory
courses. Although the initial response from students is fantastic, due to the
limited sample size, the generalizability of the course results is limited.

Course design improvement: Primarily, the course was given by the SE
department. However, all instructors had ample experience in designing and
implementing AI-intensive systems. The current course setting was adequate
but not ideal. We believe participation from both fields is necessary for teaching
such as course. In the future, we intend to offer this course jointly from AI and
SE departments requiring at least one instructor/subject expert from each field.

6 Conclusion

This research article details our experience of delivering the “Engineering of
AI-intensive Systems” course to postgraduate students at Johannes Kepler Uni-
versity Linz, Austria. The course aimed to unite AI and SE students seamlessly
by allowing them to employ fundamental SE principles to craft AI-intensive sys-
tems. The article covers this cross-disciplinary educational paradigm’s frame-
work, pedagogical approaches, and assessment methods.

15https://www.tensorflow.org
16https://pytorch.org

8

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3346996

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.tensorflow.org
https://pytorch.org


Acknowledgements

We gratefully acknowledge the LIT AI Lab (funded by the State of Upper Aus-
tria) and Austrian Science Fund (FWF) grants I4744 and P31989 for supporting
this work.

References

[1] Y. Jiang, X. Li, H. Luo, S. Yin, and O. Kaynak, “Quo vadis artificial
intelligence?,” Discover Artificial Intelligence, vol. 2, mar 2022.

[2] A. Mashkoor, T. Menzies, A. Egyed, and R. Ramler, “Artificial intelligence
and software engineering: Are we ready?,” Computer, vol. 55, no. 3, pp. 24–
28, 2022.

[3] A. V. Joshi, Machine learning and artificial intelligence. Springer, 2020.

[4] P. A. Laplante and M. Kassab, What every engineer should know about
software engineering. CRC Press, 2022.

[5] A. Bewersdorff, X. Zhai, J. Roberts, and C. Nerdel, “Myths, mis- and pre-
conceptions of artificial intelligence: A review of the literature,” Computers
and Education: Artificial Intelligence, vol. 4, p. 100143, 2023.
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