
Article Type: Original research

Taxing Collaborative Software Engineering
Michael Dorner, Blekinge Institute of Technology, Sweden

Maximilian Capraro, Kolabri, Germany

Oliver Treidler, Kolabri, Germany

Tom-Eric Kunz, Kolabri, Germany

Darja Smite, Blekinge Institute of Technology, Sweden

Ehsan Zabardast, Blekinge Institute of Technology, Sweden

Daniel Mendez, Blekinge Institute of Technology, Sweden and fortiss, Germany

Krzysztof Wnuk, Blekinge Institute of Technology, Sweden

Abstract—The engineering of complex software systems is often the result of a highly

collaborative effort. However, collaboration within a multinational enterprise has an overlooked

legal implication when developers collaborate across national borders: It is taxable. In this

article, we discuss the unsolved problem of taxing collaborative software engineering across

borders. We (1) introduce the reader to the basic principle of international taxation, (2) identify

three main challenges for taxing collaborative software engineering making it a software

engineering problem, and (3) estimate the industrial significance of cross-border collaboration

in modern software engineering by measuring cross-border code reviews at a multinational

software company.

INTRODUCTION

“He’s spending a year dead for tax reasons.”

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy

M odern software systems are too large, too com-
plex, and evolving too fast for single developers
to oversee. Therefore, software engineering has

become highly collaborative. Further, software develop-
ment is often a joint effort of individuals and teams
collaborating across borders, especially in multinational
companies with their subsidiaries spread around the
globe.1 However, collaboration has a legal implication
if individuals collaborate across borders: the profits
from those cross-border collaborations become tax-
able.

In this article, we describe the complexity of applying
the established international taxation standards required
and enforced by national tax authorities in the context

XXXX-XXX © 2023 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

of modern software engineering with its distributed and
fine-grained collaboration crossing borders. We start with
a gentle introduction to international standards in multi-
national taxation and its basic arm’s length principle for
software engineers. We then discuss the challenges of
taxing collaborative software engineering and illustrate
the industrial significance of cross-border collaboration
in an industrial case, namely code review.

Taxation in software industry has been debated for
many decades.2 The problem with taxing the final result
of software engineering, the software product or service,
for example, has shown to be challenging to tackle and is
still subject to ongoing and broad and broad discussion.3

Here, we extend the debate to software engineering,
the way the software products and services are being
developed, which has not yet been covered. Our goal
is to raise a debate and draw attention to this problem
among a software engineering audience. For in-depth
information on basic transfer pricing concepts including
standard methods and tax compliance requirements, we
recommend the interested reader further readings.4

Month Published by the IEEE Computer Society IEEE Software 1

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3346646

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



A GENTLE INTRODUCTION TO TAXING
MULTINATIONAL ENTERPRISE FOR
SOFTWARE ENGINEERS

Consider devnullsoft Group, a multinational enterprise
that develops and sells software-intensive product, has
two legal entities: devnullsoft GmbH in Germany and its
subsidiary devnullsoft AB in Sweden. The German devel-
opment team employed by devnullsoft GmbH develops
the software-intensive product jointly with the Swedish
development team employed by the Swedish subsidiary
devnullsoft AB. The German devnullsoft GmbH sells this
resulting product to customers.

Without any further consideration, solely the German
devnullsoft GmbH generates profits, which are then fully
taxed in Germany according to German law. The Swedish
tax authorities are left out in the cold because devnullsoft
AB has no share of the profit that could be taxed in
Sweden, although devnullsoft AB contributed significantly
to the product through code contributions, code reviews,
bug reports, tests, architectural decisions, or other con-
tributions that made the success of the software possible

To avoid this scenario and to provide a common
ground for international taxation, reducing uncertainty
for multinational enterprises, and preventing tax avoid-
ance through profit shifting, nearly all countries in the
world agreed on and implemented the so-called arm’s
length principle as defined in the OECD Transfer Pricing
Guidelines for Multinational Enterprises and Tax Adminis-
trations.5

The arm’s length principle is the guiding principle and
the de-facto standard for the taxation of multinational
enterprises that requires associated enterprises to operate
as if not associated and regular participants in the market
from a taxation perspective. This principle ensures that
transfer prices between associated companies of multina-
tional enterprises are established on a market value basis
and not misused for profit shifts from high to low tax
regions.

To comply with the arm’s length principle, devnullsoft
GmbH in Germany and devnullsoft AB in Sweden need to
operate from a taxation perspective as if they were not as-
sociated. Since a regular participant in the market would
not provide code contributions, code reviews, tests, or
architectural designs free or other contributions of charge
to a closed-source software project, devnullsoft GmbH in
Germany needs to pay for the received contributions, the
so-called transfer price.

Transfer prices are the prices at which an enterprise
transfers physical goods and intangibles or provides ser-
vices to associated enterprises. Since software is intan-
gible itself, the transfer of intangibles like source code,
code reviews, bug reports, etc., is our focal point. This

transfer price guarantees that devnullsoft AB gets its share
of the profit, which then can be taxed by the Swedish tax
authorities.

In Figure 1, we provide a schematic overview of
transfer pricing between the two associated software
companies from our example. Although devnullsoft AB
contributed significantly to the software-intensive prod-
uct, without a transfer price, devnullsoft AB has no
share of profits; all profits are fully taxable in Germany
only. However, if devnullsoft GmbH in Germany pays a
transfer price reflecting the value for the services and
intangible properties received from its Swedish associated
enterprise, devnullsoft AB realizes profits which then are
taxable in Sweden.

In our case, the devnullsoft Group does not artificially
shift profits to a tax haven. Yet, one can easily imagine
that neglecting to charge arm’s length prices can be
intentionally misused for profit-shifting. Therefore, the
OECD guidelines permit tax authorities like the Swedish
tax authority to adjust the transfer price where the prices
charged are outside an arm’s length range. Such an
adjustment will carry interest and might be coupled with
penalties. In the wake of the OECD’s Base Erosion and
Profit Shifting (BEPS) Projecta, the regulatory framework
has become considerably stricter at an international and
national level. As a result, tax authorities can demand
more comprehensive information to detect misalignments
and enforce tax adjustments. From the companies’ per-
spective, its software development may be—intentionally
or unintentionally—non-compliant and face the risk of
being legally prosecuted.

CHALLENGES
So, what are transfer prices for collaborative software
engineering that comply with this arm’s length principle?
Determining a market price for intangibles is inher-
ently difficult and is reflected in a broad price range.
Collaborative software engineering, however, scales the
problem of a transfer-price determination to a new level
of complexity because the reality of modern software
engineering is significantly more complex than our in-
troductory example above may suggest. Since transfer
price regulations apply to a much broader definition of
intangibles compared to accounting standards, the latter
can not be used as a reliable measure of value for transfer
pricing purposes.5

In the following, we discuss three main high-level
challenges for transfer pricing in collaborative software
engineering within multinational enterprises. Figure 2

ahttps://www.oecd.org/tax/beps/

2 IEEE Software Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3346646

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.oecd.org/tax/beps/


Swedish jurisdiction German jurisdiction

devnullsoft Group

Swedish
tax authorities

German
tax authorities

devnullsoft AB devnullsoft GmbH Customer

Tax on profits Tax on profits

Contributions

Transfer price

Software-
intensive
product

Revenue

FIGURE 1. A schematic overview of the necessity and mechanics of transfer pricing in a multinational enterprise (devnullsoft Group) with two

associated software companies (devnullsoft AB in Sweden and devnullsoft GmbH in Germany): Without considering a market-based compensation,

the so-called transfer price, devnullsoft AB has no share on the profits which could be taxed by the Swedish tax authorities; all profits are with

devnullsoft GmbH and, therefore, all taxes stay within Germany.

highlights the complexity in modern collaborative soft-
ware engineering at devnullsoft Group and where those
three challenges apply.

Challenge 1: What is a taxable transaction in
software engineering?
The trouble for transfer pricing in software engineering
begins with a fundamental question: What is actually a
taxable transaction in the context of collaborative soft-
ware engineering? We simply do not know what types or
characteristics types or characteristics classify a taxable
exchange of intangibles or services across the boundaries
of a country in the context of software engineering.

Among other potentially relevant types of taxable in-
tangibles, such as goodwill or group synergies, we discuss
in this and the following subsections two types of intan-
gibles that are highly relevant for software engineering:
know-how and licenses.

The OECD Transfer Pricing Guidelines define know-
how as the “proprietary information or knowledge that
assist[s] or improve[s] a commercial activity, but that
[is] not registered for protection in the manner of a
patent or trademark“. The commercial activity includes
the manufacturing, marketing, research and development
of and for a software system.

Does the OECD definition imply that all types of
information exchanged during collaborative software en-
gineering are know-how? On the one hand, yes, since
all information is proprietary and, to some extent, con-

tributes to the software being developed or its engineer-
ing processes. But on the other hand, how do we know
which information assists or improves the commercial
activity, meaning the engineering of the software sys-
tem, over time? For example, a quick and dirty bug fix
without sufficient documentation or testing may improve
the software system in the present but makes changes
more costly or even impossible in the future. Making
such sub-optimal decisions leads to incurring technical
debt,6 which is potentially relevant for taxation. Thinking
the concept of technical debt ahead, we have begun
to understand that similar to physical, tangible assets,
software assets degrade and lose value inevitably due to
intentional or unintentional decisions caused by technical
or non-technical manipulation of the asset or associated
assets during all stages of the product life-cycle.7 Such
an asset degradation will also be of great interest from a
taxation perspective.

The second type of intangibles highly relevant to
transfer pricing in software engineering if transferred
across borders is licenses. Although maybe not even
explicit, the company-internal use and reuse of com-
ponents is an instance of licensing. Complex software
systems are not monolithic blocks of code but consist
of components that are developed, shared, and reused
by separate teams. However, we lack a common under-
standing of software components and reuse in software
engineering for taxation. Not every component is directly
used for or in a software-intensive product, but maybe
adds value to the product. For example, a well-engineered

Month 2023 IEEE Software 3

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3346646

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



devnullsoft AB devnullsoft GmbH

Software system

d1

d2

d3

d4

d5

d6

d7

d8

d9

Developer

Software component

Reused software component

Taxable transaction

Non-taxable transaction

1
What is a taxable transaction
in software engineering?

2 How to track taxable transactions?

3 How to value taxable transactions?

FIGURE 2. A schematic overview of collaborative software engineering and three challenges for transfer pricing specific to software engineering.

CI/CD pipeline accelerates the development cycles and
brings new features or bug fixes faster to the customers.8

Furthermore, it is also not always clear who owns, con-
tributes to, or uses a component within a company, and
the roles may even change over time.9 In contrast to open
source, the reuse is often implicit, lacking a company-
wide license agreement that clarifies the responsibility
and accountability between component owners and users.
Even worse, we do not even know if our definition and
understanding of code ownership10 suffices the definition
of ownership in a taxation context.

Additionally, we see an interplay between those two
types of intangibles, know-how and licensing, since they
may be two sides of the same collaboration. For exam-
ple, when code contributions from the component user
support instance of reuse.

Insight

Identifying the taxable transactions requires either
a holistic perspective of software engineering or
at least suitable, practical, and accurate proxies.
Compliant software engineering needs a common
understanding and a taxonomy of taxable transac-
tions specific to software engineering.

Challenge 2: How to track cross-border
transactions in software engineering?
Also, the practical tracking of taxable know-how and
licensing (and potentially other types of intangibles) is
a challenge on its own.

Tracking know-how is an inherently difficult task.
Since the teams collaborating are no longer colocated,
numerous tools enable an exchange of know-how in

4 IEEE Software Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3346646

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



software engineering. Those tools are suitable as rich data
sources to different extents: While domain-specific tools
like issue trackers or collaborative software development
platforms like GitHub or Gitlab often track the exchanges
very thoroughly, other communication and collaboration
tools do not: Online meetings, for example, can facilitate
an exchange of taxable intangibles, but this exchange
is not tracked by any tool. But even if there is a rich
data basis available, leveraging those data sources is
problematic for following reasons:

› Establishing location—It can be difficult to establish
the location of collaborators or capture when a
location of a collaborator has changed, because
organizations often preserve only the latest version
of the organizational structures.

› Privacy—Analyzing the complete communication
of developers may be perceived as a measure of
surveillance, which raises ethical and legal con-
cerns related to privacy.

In contrast to the potentially rich sources for tracing
taxable transactions from collaboration tools used in
software engineering, tracking company-internal reuse
often lacks a solid data basis. Although companies often
track the reuse of external open-source components for
open-source license compliance purposes, those tools are
rarely used or suitable for tracking company-internal
reuse. Also, only reuse that crosses borders is taxable;
information that is often not available or stored over
time—although component ownership is not static and
may be subject to change.

Insight

Data for tracking taxable transactions may be in-
complete, faulty with respect to location, or re-
stricted. There is no dedicated tool support yet for
the practical transfer price determination.

Challenge 3: How to value taxable transactions in
software engineering?
While it is inherently difficult to tax intangibles in
general, things are even more complicated in software
engineering. Potentially taxable intangibles cover a large
range of granularity in software engineering: They may
be as large as a microservice providing user authentica-
tion used by microservices of other teams (→ intangible
licenses) or as small as a code change, code review,
or bug report (→ intangible know-how). Although the
code change or feedback in a code review is small—
maybe even only one line of code, like in the case of
the Heartbleed security bug in the OpenSSL cryptography

library from 201411—the potential impact on the soft-
ware system can be tremendous or even fatal. A software
change or a code review delivers value through impact,
not size.

The same applies to licensing. The number of use
relations of a software component or its size (however de-
fined) does not reflect the value provided to the software-
intensive product. While the software component for
user authentication may be important for operating the
software-intensive product and, therefore, has a large
amount of depedent software components, it is not dif-
ferentiating and may even be considered a commodity.

This means we cannot simply use purely quantitative
measurements for transfer pricing. However, the sheer
mass of small, fine-grained transactions of all types makes
a human qualitative case-by-case evaluation impossible.

Insight

A purely quantitative valuing can hardly reflect the
value of transactions; however, a purely qualitative
assessment does not scale with the magnitude of
cross-border transactions in modern software devel-
opment.

AN INDUSTRIAL EXAMPLE OF
CROSS-BORDER COLLABORATION

So, is cross-border collaboration and, therefore, also the
taxation of it, a real issue? To estimate the prevalence
of cross-border collaboration, we measure cross-border
code reviews as proxy for cross-border collaboration in a
typical industrial setting.

A cross-border code review is code review with partic-
ipants from more than one country. Although it originated
in collocated, waterfall-like code inspections, its modern
stances are lightweight and asynchronous discussions
among developers around a code change. Different tools
are in use, for example, Gerrit or Github and Gitlab
with their implementation of code review as so-called
pull and merge requests. Although code review is by
far not the only type of collaboration that may include
taxable transactions and is also likely not sufficient to
determine company-wide transfer prices, the following
characteristics make code review a suitable first proxy
for cross-border collaboration:

› More than code only—Code review not only in-
cludes the actual code change and its authors but
also includes the feedback from reviewers that may
have formed or changed the code change signif-
icantly but is no longer visible in the repository
after merging the code change into the code base.

Month 2023 IEEE Software 5

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3346646

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2019 2020 2021 2022 2023

5%

10%

15%

20%

25%

30%

C
ro

ss
-b

or
de

r
co

de
re

vi
ew

s

Retrievable location
Estimated location

FIGURE 3. The share of cross-border code review at our case company in the years 2019, 2020, 2021 and 2022 (black line) monthly sampled.

Since not all historical locations of all code review participants could be reliably retrieved, the share of cross-border reviews could be more significant

(indicated by the red area).

Therefore, our proxy goes beyond existing code-
based measurements for collaboration.12

› Accessible & complete—The code review discus-
sions are (company-internally) public by default
and are, thus, accessible. Unlike other tools like
instant messaging services or e-mail, code review
does not split into public and private, whose anal-
ysis may cause privacy concerns.

› Persistent—Code review tools are the backbone
of modern code review and ease data extraction.
Other types of code review (for example, private
or synchronous discussion around a code change
through meetings or instant messaging) may not
be captured through the tooling, though.

We measured the share of cross-border code reviews
at a multinational company delivering software and re-
lated services worldwide with main R&D locations in
three countries. For many years the company has tried
to allocate products to particular sites to avoid the bur-
den of cross-border collaboration. However, our analysis
shows that developers represent more than 25 locations
because the new corporate work flexibility policy permits
relocations.13 The company uses a single, central, and
company-wide tool for its internal software development
and code review. Understandably, our case company

wants to remain anonymous. Therefore, we are not able
to describe the case any further. However, we believe
that our case company is exemplary for a multinational
enterprise developing software.

From the code review tool, we extracted all code
reviews that were completed in 2019, 2020, 2021, and
2022 including their activities. All bot activities were
removed and were not considered in our analysis. We
then modelled code reviews as communication channels
among code review participants.14 We consider a code
review as a discussion thread that is completed as soon as
no more information regarding a particular code change
is exchanged (i.e., the code review is closed). We comple-
ment each code review participant with the information
of the country of the employing subsidiaries at the time
of the code review.

We provide a replication package to reproduce our
results for any GitHub Enterprise instanceb. Due to the
sensitive topic, we are not able to share our data.

Figure 3 shows an increase in relative cross-border
code reviews over time. The share of cross-border code
reviews was between 6% and 10% in 2019 and 2020.
Yet, we see a further steep increase reaching between

bSee https://github.com/michaeldorner/tax_se

6 IEEE Software Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3346646

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/michaeldorner/tax_se


25% and 30% at the end of 2022.

Interestingly, 6% of all cross-border code reviews
involve participants from more than two countries. This
means transfer pricing in collaborative software engi-
neering becomes not only a bilateral but a multilateral
problem with not only two but multiple—in our case com-
pany up to six—different jurisdictions and tax authorities
involved in the transfer pricing process.

Although the share of cross-border collaboration may
vary between companies, yet, our findings suggest that—
through the proxy of cross-border code reviews—cross-
border collaboration becomes a significant part of daily
life in multinational software companies. It is fair to
assume that a further increase in cross-border collabo-
rations in software engineering will draw the attention
of tax authorities.

CONCLUSION
On the one hand, the arm’s length principle is the de-facto
standard for multinational enterprises that any multina-
tional company must comply with. On the other hand,
software engineering is highly collaborative—beyond ge-
ographical and organizational boundaries. Determining a
reasonable transfer price for this cross-border collabora-
tion brings the general challenge of taxing intangibles to
a new level of complexity.

Pretending to be dead for tax reasons is no option
because ignoring the significant cross-border collabora-
tion in modern software development, as we exemplarily
found, is a slippery slope: Cross-border collaborations
in software engineering will draw the attention of tax
authorities. Also, ceasing or forbidding all cross-border
collaboration in software engineering is not a valid so-
lution: Reversing the collaborative nature of modern
software engineering is likely too costly and takes too
long.

Obviously, neither there are simple solutions for such
a complex and interdisciplinary problem, nor a single
article can solve this complex problem potentially affect-
ing every software-developing company with developers
employed by subsidiaries in more than one country. How-
ever, our article aims to bring this eminent and unsolved
problem of taxing collaborative software engineering to
the audience that can solve this issue. As a software
engineering community, we will need to find a common
understanding of what constitutes taxable transactions
and each company that develops software collaboratively
within more than one country needs to learn how to track
and value cross-border collaboration, how to estimate
the transfer pricing, and how to report these to the tax
authorities to be compliant.

ACKNOWLEDGMENTS
We thank our industry partner for providing the data
for this study and interpreting the results. We also thank
the anonymous reviewers for their fruitful feedback. This
work was supported by the KKS Foundation through
the SERT project (Research Profile Grant 2018/010) at
Blekinge Institute of Technology.

References
1) J.D. Herbsleb and D. Moitra. “Global software de-

velopment”. In: IEEE Software 18 (2 2001), pp. 16–
20. DOI: 10.1109/52.914732.

2) OECD. Addressing the Tax Challenges of the Digital
Economy, Action 1 - 2015 Final Report. 2015, p. 288.
DOI: 10.1787/9789264241046-en.

3) Marcel Olbert and Christoph Spengel. “Interna-
tional Taxation in the Digital Economy: Challenge
Accepted?” In: World tax journal 9.1 (2017), pp. 3–
46.

4) Oliver Treidler. Transfer Pricing in One Lesson.
Springer International Publishing, 2020. DOI: 10.
1007/978-3-030-25085-0.

5) OECD. OECD Transfer Pricing Guidelines for Multi-
national Enterprises and Tax Administrations 2022.
2022, p. 659. DOI: 10.1787/0e655865-en.

6) Nicolli Rios, Manoel Gomes de Mendonça Neto,
and Rodrigo Oliveira Spínola. “A tertiary study
on technical debt: Types, management strategies,
research trends, and base information for practi-
tioners”. In: Information and Software Technology
102 (Oct. 2018), pp. 117–145. DOI: 10 .1016/ j .
infsof.2018.05.010.

7) Ehsan Zabardast et al. “Assets in Software Engi-
neering: What are they after all?” In: Journal of
Systems and Software 193 (Nov. 2022), p. 111485.
DOI: 10.1016/j.jss.2022.111485.

8) Brian Fitzgerald and Klaas-Jan Stol. “Continuous
software engineering: A roadmap and agenda”. In:
Journal of Systems and Software 123 (Jan. 2017),
pp. 176–189. DOI: 10.1016/j.jss.2015.06.063.

9) Ehsan Zabardast, Javier Gonzalez-Huerta, and Bin-
ish Tanveer. “Ownership vs Contribution: Inves-
tigating the Alignment Between Ownership and
Contribution”. In: IEEE, Mar. 2022, pp. 30–34. DOI:
10.1109/ICSA-C54293.2022.00013.

10) M.E. Nordberg. “Managing code ownership”. In:
IEEE Software 20 (2 Mar. 2003), pp. 26–33. DOI:
10.1109/MS.2003.1184163.

11) Marco Carvalho et al. “Heartbleed 101”. In: IEEE
Security & Privacy 12 (4 July 2014), pp. 63–67.
DOI: 10.1109/MSP.2014.66.

Month 2023 IEEE Software 7

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3346646

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1109/52.914732
https://doi.org/10.1787/9789264241046-en
https://doi.org/10.1007/978-3-030-25085-0
https://doi.org/10.1007/978-3-030-25085-0
https://doi.org/10.1787/0e655865-en
https://doi.org/10.1016/j.infsof.2018.05.010
https://doi.org/10.1016/j.infsof.2018.05.010
https://doi.org/10.1016/j.jss.2022.111485
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1109/ICSA-C54293.2022.00013
https://doi.org/10.1109/MS.2003.1184163
https://doi.org/10.1109/MSP.2014.66


12) Maximilian Capraro, Michael Dorner, and Dirk
Riehle. “The patch-flow method for measuring in-
ner source collaboration”. In: ACM Press, 2018,
pp. 515–525. DOI: 10.1145/3196398.3196417.

13) Darja Smite et al. “Work-from-home is here to stay:
Call for flexibility in post-pandemic work policies”.
In: Journal of Systems and Software (Jan. 2022),
p. 111552. DOI: 10.1016/j.jss.2022.111552.

14) Michael Dorner et al. “Only Time Will Tell: Mod-
elling Information Diffusion in Code Review with
Time-Varying Hypergraphs”. In: Proceedings of the
16th ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement.
ESEM ’22. Helsinki, Finland: Association for Com-
puting Machinery, 2022, pp. 195–204. DOI: 10 .
1145/3544902.3546254.

8 IEEE Software Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3346646

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1145/3196398.3196417
https://doi.org/10.1016/j.jss.2022.111552
https://doi.org/10.1145/3544902.3546254
https://doi.org/10.1145/3544902.3546254

	Introduction
	A gentle introduction to taxing multinational enterprise for software engineers
	Challenges
	An industrial example of cross-border collaboration
	Conclusion

