
60 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y
This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see

https://creativecommons.org/licenses/by/4.0/

FEATURE: STATIC QUALITY ASSURANCE FOR CHATBOTS

CHATBOTS ARE INCREASINGLY
present in our lives as a natural lan-
guage interface to software services.
They are popular because they en-
able a natural human–computer in-
teraction, and can be deployed on
multiple channels like websites, so-
cial networks usable from mobile de-
vices, or intelligent speakers.

Chatbots are classified as open-do-
main if they can converse on arbitrary
topics, as is the case of OpenAI’s Chat-
GPT (https://openai.com/chatgpt)
or Google’s Gemini (https://gemini.
google.com/). Instead, task-oriented
chatbots target particular tasks, like
booking flights or ordering food.
They are the default option when en-
terprises grant conversational access
to their services, and so they must be
carefully designed, programmed, and
tested. However, currently, there are
scarce quality assurance (QA) tech-
niques designed to help in the chatbot
development process, especially in the
early phases, when the chatbot is not
fully functional yet.1 Static analyses
can be applied in early development
stages, and for general programming
languages, they serve to uncover prob-
lems and as indicators of expected
prerelease defects, helping to inform
decisions on code inspection, testing
or redesigns.2 However, conventional
static analysis methods are not suit-
able for chatbots due to their unique
design focused on concepts like in-
tents, training phrases, and conversa-
tion flows rather than on traditional
programming constructs. Thus, there
is a lack of static analyses targeting
structural design issues in chatbots,
with potential functional impact.

Part of the problem is the plethora
of available technologies (e.g., Google’s
Dialogflow,3 Amazon Lex,4 and
Rasa5) for developing task-oriented
chatbots. This causes technology lock-
in since developers can only use the

Integrating
Static Quality
Assurance
in CI Chatbot
Development
Workflows
Jesús Sánchez Cuadrado , University of Murcia

Daniel Ávila , Sara Pérez-Soler , Pablo C. Cañizares ,
Esther Guerra , and Juan de Lara , University Autónoma
of Madrid

// To fill a gap in proposals to integrate

automated quality assurance mechanisms

into the chatbot development workflow, we

present a continuous integration workflow

for chatbot development, implemented as

GitHub actions, and show its usefulness by

its application to open source chatbots. //

Digital Object Identifier 10.1109/MS.2024.3401551
Date of publication 17 May 2024; date of current version 13 August 2024.

©SHUTTERSTOCK.COM/PRODUCTION PERIG

https://openai.com/chatgpt
https://gemini.google.com/
https://gemini.google.com/
https://orcid.org/0000-0001-9755-5616
https://orcid.org/0000-0001-7371-6104
https://orcid.org/0000-0002-4558-7111
https://orcid.org/0000-0002-2084-1558
https://orcid.org/0000-0002-2818-2278
https://orcid.org/0000-0001-9425-6362
http://www.SHUTTERSTOCK.COM

 SEPTEMBER/OCTOBER 2024 | IEEE SOFTWARE 61

QA mechanisms that the selected
chatbot development platform pro-
vides.1 Moreover, the abundance of
technologies makes it difficult to
develop QA techniques—especially
static ones—applicable to all of them.

To alleviate this problem, we pro-
pose chatbot QA techniques execut-
able as part of continuous integration
(CI) workflows via a ready-to-use
GitHub action. Our proposal is tech-
nology-independent since our QA
techniques are applicable to several
chatbot platforms and versions by the
use of an intermediate chatbot repre-
sentation.6 For instance, the same QA
workflow can be executed on a chat-
bot implemented in Rasa 2.0, on its
evolution to Rasa 3.0, or on a Dialog-
flow chatbot. Our workflow supports
the extraction of the chatbot design,
its graphical visualization, its static
analysis (e.g., to detect issues like
poorly trained chatbot intents, or de-
fects in the designed conversations),
and its measurement (e.g., to compare
design aspects, like size or complex-
ity, against thresholds established by
the development organization).

This article describes our pro-
posal and evaluates its usefulness for
the QA of open source chatbots built
with heterogeneous technologies.

Task-Oriented Chatbots
Open-domain chatbots, like Chat-
GPT or Gemini, rely on large-lan-
guage models (LLMs). These are
deep-learning architectures trained
on vast amounts of data and able
to generate text upon user prompts.
Our interest is on chatbots that per-
form specific tasks like booking a
flight on an airline information sys-
tem. While open-domain chatbots
could be fine-tuned for the task, and
prompts could be designed to instruct
the LLM to complete the task, the
technology to achieve reliable, robust,

trustworthy task-oriented chatbots
using LLMs is still in the making.7

Instead, task-oriented chatbots
are designed around the intents, or
tasks, that the chatbots must ad-
dress. Prominent technologies for de-
veloping these chatbots are Google’s
Dialogflow,3 IBM Watson,8 Amazon
Lex,4 or Rasa.5 Each intent defines
training phrases that exemplify how
to express the user’s intention (e.g.,
“I’d like to book a flight to London”
if the intent is booking a flight). As
Figure 1 depicts, the user interacts
with the chatbot through a channel,
e.g., a website or a social network
like Slack or Telegram. When the
user produces an utterance (step 1 in
the figure), the chatbot matches the
most similar intent with a confidence

level (step 2). If the confidence is be-
low a threshold, then a fallback in-
tent is selected (if one is available),
which informs that the user utter-
ance was not understood (step 3a).

Intents may also declare param-
eters, which are pieces of informa-
tion that the chatbot needs to extract
from the utterances (step 3b). For ex-
ample, in the flight booking intent,
the chatbot needs the origin, destina-
tion, and date of the trip. Parameters
are typed by entities, which can be
predefined (e.g., numbers, dates) or
domain-specific (e.g., airport codes).
Parameters may also be optional or
mandatory. Whenever the user does
not provide a mandatory parameter,
the chatbot will prompt the user for
it. After extracting the parameters,

FIGURE 1. Working scheme of intent-based chatbots.

…
…

Utterance
User

Channel
(Social Network, Web, Smart Speakers)

Chatbot

Utterance Fallback
Intent

Reply With
Fallback

Yes

No

Confi<
thresh?

Reply
Message

Reply
Message

51

2 3b

3a

4b

U
tte

ra
nc

e

Intenti

Intenti

Match
Intent

Extract
Params

Execute
Actions

Backend

Act1

Actn

P
ar

am
s

62 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: STATIC QUALITY ASSURANCE FOR CHATBOTS

the chatbot will execute the actions
associated to the intent, like query-
ing an external application program-
ming interface (e.g., to retrieve the
available flights) or replying to the
user (steps 4b and 5).

Finally, intents can be organized
into conversations, whose entry points
are called flows. Each conversation
flow may then bifurcate into several
paths, depending on the user responses.

Chatbot QA
Since chatbots are a kind of soft-
ware, analyzing their quality using
dedicated tools is a fundamental task
in their development cycle. Three
main approaches can be used for this
purpose: testing, metrics, and static
design validation.

Testing is a widespread technique
for checking the correctness of soft-
ware systems, recently applied to chat-
bots.9,10,11 In industry, Botium (https://
cyara.com/products/botium/) per-
mits defining test cases (scenarios of
expected user-chatbot interactions)
and executing them against chatbots.
Likewise, Rasa provides a continu-
ous integration/continuous deploy-
ment (CI/CD) pipeline (https://rasa.
com/docs/rasa/setting-up-ci-cd) with
mechanisms for testing the chatbot
message processing and dialogue man-
agement. In particular, the train-test

GitHub action (https://github.com/
marketplace/actions/rasa-train-test
-model-github-action) facilitates the
training and testing of Rasa chatbots
on GitHub. Overall, the applicability
and usefulness of chatbot testing is well

recognized. However, testing requires
having a functional chatbot (preclud-
ing its use in early development phases),
defining test scenarios of user–chatbot
interactions, and it may consume con-
siderable time and resources.

As a complement to testing, re-
searchers have investigated ways to
detect potential defects in chatbots
earlier, at the design level. For exam-
ple, Chatbottest12 outlines guidelines
for identifying chatbot design issues
in categories like answering, error
management, intelligence, navigation,
personality, and understanding. How-
ever, the burden of assessing whether
a chatbot meets the guidelines is on
the developer.

Also at design level, we propose
metrics and static analysis as inex-
pensive mechanisms for detecting
chatbot design issues automatically.
The goal is being able to uncover
common errors related to user expe-
rience (e.g., chatbots issuing mostly
messages with negative sentiment),
chatbot comprehensibility (e.g.,
wordy or long conversations) or in-
tent quality (e.g., insufficient training

phrases) effortlessly and without re-
quiring a functional version of the
chatbot. Our chatbot design metrics
and static analyzer are defined on
a neutral chatbot design language,
called Conga.6 This encompasses
the features of 15 of the most widely
used intent-based chatbot construc-
tion platforms1 which enables map-
ping the design concepts of Conga
from and to these platforms. This
way, the metrics and analyses applied
to Conga designs can be considered
technology-agnostic, being applica-
ble to many chatbot platforms.

A CI Workflow for
Chatbot Development
To help improve the chatbot de-
velopment, release, and mainte-
nance process, we have defined the
CI workflow depicted in Figure 2.
It comprises a GitHub action (see
https://github.com/satori-chatbots/
chatbots-actions/) that triggers auto-
mated static quality assurance (SQA)
checks whenever a change to a chat-
bot is pushed into the repository.
Our action assumes that the chatbot
is in the repository, so for platforms
like Dialogflow, the chatbot needs to
be exported from the platform and
then imported into the repository.

To achieve technology indepen-
dence, the action first transforms the
chatbot into the Conga language.
Then, it produces a graphical visu-
alization of the chatbot design; com-
putes metrics of the chatbot design,
comparing their value against pre-
defined thresholds; and performs
static analysis of the chatbot design
to detect potential problems. Finally,
it reports the workflow results to the
developer. Compared to the Rasa
CI/CD workflow, we focus on static
analyses—rather than on testing—
and remain technology-independent.
Next, we detail the workflow steps.

Our proposal is technology-
independent since our QA

techniques are applicable to several
chatbot platforms and versions by
the use of an intermediate chatbot

representation.

https://cyara.com/products/botium/
https://cyara.com/products/botium/
https://rasa.com/docs/rasa/setting-up-ci-cd
https://rasa.com/docs/rasa/setting-up-ci-cd
https://github.com/marketplace/actions/rasa-train-test-model-github-action
https://github.com/marketplace/actions/rasa-train-test-model-github-action
https://github.com/marketplace/actions/rasa-train-test-model-github-action
https://github.com/satori-chatbots/chatbots-actions/
https://github.com/satori-chatbots/chatbots-actions/

 SEPTEMBER/OCTOBER 2024 | IEEE SOFTWARE 63

Transformation into Conga: In
previous work,6 we created the Conga
language using model-driven engi-
neering. Its abstract syntax is defined
by a metamodel, and its concrete
syntax is textual. Its architecture is
modular and extensible, enabling the
provision of parsers and code genera-
tors from/to different chatbot tools.
This makes our CI workflow inde-
pendent of the chatbot technology
since adding a parser from a specific
technology to Conga makes the ac-
tion available for that technology.
Currently, Rasa (versions 1.10 to 3.0)
and Dialogflow are supported.

Design visualization: To facilitate
comprehension, our action produces a
graphical visualization of the chatbot
design that abstracts away the acci-
dental complexity that specific chat-
bot technologies may introduce. For
example, Rasa chatbots are defined
in multiple files and use Python pro-
gramming, while Dialogflow chatbots
are defined via web forms, making it
difficult to understand the design un-
derlying the implementation. Instead,
the produced visualization represents

the chatbot design as a state machine,
where messages in arrows correspond
to user utterances, and states corre-
spond to chatbot actions.

Design metrics: In previous work,13
we developed a suite of metrics (cf. Ta-
ble 1) measuring internal quality prop-
erties of chatbot designs about their
size (number of intents, supported lan-
guages, flows, paths), intent quality
(number and complexity of training
phrases, similarity of intents), output
phrases (length, reading time, com-
plexity, readability, sentiment), vocabu-
lary (number of entities, complexity
of entity literals), and conversations
(length, paths, actions).

Metrics can help uncovering po-
tential problems, like intents with
similar training phrases (so the chat-
bot may get confused and not rec-
ognize the intention behind a user
utterance), low number of train-
ing phrases, too long conversations
(difficult for users to complete), or
lengthy chatbot responses (tedious to
read, to listen to in case of voice chat-
bots, or even impossible to deploy in
certain channels like X/Twitter).

Our action enables measuring de-
signs and defining thresholds to en-
sure adherence to internal company
guidelines or quality standards, like
setting a minimum number of train-
ing phrases per intent (e.g., 10 are
recommended in Abdellatif et al.14)
or a maximum output length (e.g.,
when targeting restricted channels).

Design validation: Our static anal-
ysis performs checks on the chatbot
design to detect issues. These checks
complement metrics, detecting well-
formedness problems (e.g., duplicate
identifiers, several conversation flows
starting with the same intent, mal-
formed regular expressions), unused
elements (e.g., unused intents), nonter-
minating conversation loops, repeated
training phrases, or lack of a fallback
intent, among others. We support
both technology-agnostic validations
that any chatbot design should fulfill,
and technology-specific ones. For ex-
ample, Rasa does not support multi-
ple fallback intents or multilanguage
chatbots, and Dialogflow can issue
at most one HTTP request in every
conversation turn. The issues are

FIGURE 2. Scheme of our CI workflow for chatbots.

Commit

Github

Chatbot
Repository

Chatbot
Developer

Local
Repository

Push

Dialogflow

Rasa

Chatbot Technology

…

…
Action

CONGA

Design
Metrics

Design
Validation

Static QA
Report

Design
Visualiz.

64 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: STATIC QUALITY ASSURANCE FOR CHATBOTS

classified into errors (i.e., the design
is malformed, so the chatbot will
not compile or will fail at run-time)
and warnings (i.e., quality problems

that may make the chatbot not work
as expected). We currently support
20 technology-agnostic validations
(eight errors and 12 warnings), two

specific validations for Dialogflow,
and three for Rasa.

We designed our validations con-
sidering several sources. Errors and
technology-specific checks stem from
an analysis of existing platforms.1
The remaining ones reflect our ex-
perience on developing chatbots, the
analysis of open source chatbots,13
and guidelines and recommenda-
tions from the literature (e.g., few
training phrases in intents).14

Results report: Figure 3 shows a
screenshot of the results of the ac-
tion execution, triggered upon push-
ing into the repository. The action
is lightweight, typically completed
in seconds (29 s in the figure) since
it does not require executing the
chatbot. This allows an inexpen-
sive, early assessment of the chatbot
quality even when the chatbot is not
fully functional. The results com-
prise: 1) a diagram (generated with
PlantUML) of the chatbot design
represented as a state machine; 2)
a table with the metric values, and
indicators of their compliance to the
thresholds established within the
project; and 3) a table with the prob-
lems found. The metrics to calculate
and their thresholds are configu-
rable. In the figure, the developer
filtered out some metrics and estab-
lished thresholds based on her ex-
perience and knowledge about the
expected chatbot usage. Empirical
studies about chatbot usage could be
used to identify metric outliers (too
low or too high values) and fine tune
such thresholds.13 In this example,
the metrics identify potential is-
sues due to intents with few training
phrases and entities with no literals.
Moreover, the static analysis detects
unused intents (i.e., intents that are
not part of any conversation) and in-
tents with a low number of training
phrases (<3).

Table 1. Chatbot design metrics.

Metric Description Type

Global chatbot size

INT Number of intents Design size

NL Number of supported languages Internationalization

FLOW Number of conversation entry points Conversation diversity

PATH Number of conversation paths Conversation complexity

Intent quality

TPI Number of training phrases per intent Topic complexity

CNF Number of confusing phrases Bot understanding

WPTP Number of words per training phrase Topic complexity

VPTP Number of verbs per training phrase Topic complexity

PPTP Number of parameters per training phrase Topic complexity

Chatbot output phrases

WPO Number of words per output Readability

CPO Number of characters per output Readability

VPOP Number of verbs per output phrase Readability

READ Reading time of the output phrases Readability

OPRE Output phrase readability Readability

SNT Number of positive, neutral, negative output phrases User experience

Chatbot vocabulary

ENT Number of user-defined entities Vocabulary size

LPE Number of literals per entity Vocabulary complexity

SPL Number of synonyms per literal Vocabulary complexity

WL Word length Readability

Conversation

FACT Number of actions per flow Bot response complexity

FPATH Number of conversation paths per flow Conversation complexity

CL Conversation length Conversation complexity

 SEPTEMBER/OCTOBER 2024 | IEEE SOFTWARE 65

FIGURE 3. Screenshot of the execution of the SQA action.

66 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: STATIC QUALITY ASSURANCE FOR CHATBOTS

FIGURE 4. Summary of results of the SQA action on the selected chatbots.

Technology Name Commits
(Total)

Total
Issues

Final
Issues

Avg Commits
to Resolution

Remaining
Issue Types

Rasa 2.8

Rasa 2.6

Rasa 2.0

Rasa 2.1

Rasa 2.0

Rasa 3.0

Dialogflow

Dialogflow

Rasa 2.8

Rasa 2.8

Rasa 3.0

Rasa 3.0

Rasa 2.0

Rasa 2.6

Rasa 2.0

Rasa 2.0

Rasa 2.0

Rasa 2.6

Rasa 2.0

Rasa 2.5

agent-bot-new

agents-bot

chatbot

chatbot w conv.repa

chloe

Cinebot

Conf-Chatbot

ISU-Jovo-v2

Cooking Assistant

faster-Sharon

helpdesk-assistant

Knowl. based chatbot

rasa-cfs

rasa-chatbot

rasa_project

rhit_IRPA_2023

STDs_Bot

team saga

IEEE_Chatbot_v2

CS310Project

36 (73)

68 (102)

91 (388)

87 (299)

65 (80)

6 (7)

7 (42)

9 (23)

15 (208)

50 (65)

13 (198)

25 (65)

22 (74)

40 (87)

38 (80)

77 (545)

37 (60)

31 (144)

44 (76)

42 (62)

19,8

17

112,8

50

14

4,6

22

11,9

21,4

16,3

39,8

16,5

28,1

4,2

22

59,1

23,8

51

39,9

18,3

G16, G19

G9, G13, G18, G19

G13, G15, G16, G16

G9, G15, G17, G19

G9, G16, G17, G18

G13, G15

G9, G15, G18

G9

G15, G17

G19

G13, G16, G17, G19

G9, G13, G17

G16, G19

G19

G9, G13, G16, G19

G15, G16, G19

G9, G13, G16, G17

2

7

10

0

12

13

65

14

1

13

0

1

7

27

2

1

16

4

7

0

27

51

37

116

51

14

80

15

18

56

12

13

14

38

95

12

32

31

18

65

250

200

150

100

50

0

#I
ss

ue
s

100
90
80
70

10
20
30
40
50
60

0

%
C

ha
tb

ot
s

15

66

1

0

158

91

50

25 44

227

24

3

66 10
4

9

Pending Issues
Corrected Issues

G9 G12 G13 G15 G16 G17 G18 G19G9 G12 G13 G15 G16 G17 G18 G19

40

0

35
30

40

30

15

50

(a) (b)Pending and Corrected Issues % Chatbots With Unsolved Issue Type

Legend
G9 = The chatbot supports LANGUAGE, but the INTENT does not have an input in this language.
G12 = ENTITY should be used by some parameter.
G13 = The INTENT is never used in a flow. Intents should be used in some flow.
G15 = The INTENT must contain at least three training phrases for each language.
G16 = Confusing intents: two intents are in the start of a flow and contain equal training phrases.
G17 = Repeated training phrases for the INTENT. Two training phrases cannot be equal in the same intent.
G18 = The INTENT contains a training phrase with only a text parameter. Training phrases should contain something
 more than a text parameter.
G19 = The chatbot should contain at least one fallback intent.

 SEPTEMBER/OCTOBER 2024 | IEEE SOFTWARE 67

Evaluation
To assess the usefulness of our pro-
posal, we analyzed the commit his-
tory of open source chatbots with
the goal of answering the research
question (RQ): “Could our SQA ac-
tion have helped detecting potential
issues committed during the chatbot
development process?”.

The top of Figure 4 shows the
analyzed chatbots. We selected them
by crawling GitHub to identify rel-
evant repositories containing Rasa
or Dialogflow chatbots, as well as
a history with at least six commits
modifying the chatbot specification
(i.e., not only changing the backend).
We filtered out non-English chatbots
using a language identification ser-
vice and then kept the chatbots with
more commits. Overall, we selected
20 chatbots, 18 built with Rasa,
and two with Dialogflow. The latter
chatbots are much less common in
GitHub since they must be exported
from Google’s Dialogflow platform
before pushing them into GitHub,
e.g., along with their backend.

Then, we applied our SQA ac-
tion to each commit modifying the
chatbot. Figure 4 summarizes the re-
sults (full data at https://github.com/
satori-chatbots/chatbots-actions
-experiments). The table shows the
number of commits (modifying the
chatbot and total), different issues
throughout the commit history, re-
maining issues after the last commit,
average number of total commits un-
til an issue is resolved, and types of
pending issues. The types of identi-
fied issues are G9 (intent without
training phrases in one of the chat-
bot languages), G12 (unused en-
tity), G13 (intent not used in any
conversation), G15 (intent poorly
trained, with less than three train-
ing phrases), G16 (two intents start-
ing different conversation flows have

common training phrases), G17 (in-
tent with duplicate training phrases),
G18 (improper use of text parameter
in training phrase), and G19 (miss-
ing fallback intent). After the last
commit, only three chatbots were
free of defects.

Graph (a) in Figure 4 shows the
number of issues corrected across
commits, and the remaining ones.
From the eight issue types detected,
all except G12 are present in the last
version of some chatbot, and glob-
ally, 25.5% of issues remain. Graph

(b) shows the percentage of chatbots
with a given issue in their last ver-
sion. Overall, 85% of chatbots have
some issue in their final version.
Moreover, the average number of
commits before an issue is resolved
ranges between 4.6 and 112.8. This
suggests that the projects could have
benefited from our QA action.

Not all detected issues affect the
chatbot behavior. For example, Conf-
Chatbot has many unused intents
(G13), and many of their intents lack
at least three training phrases (G15).
However since Conf-Chatbot does
not use these intents in any conversa-
tion flow, their presence does not af-
fect the chatbot behavior. However,
it includes unnecessary data in the
chatbot definition—akin to “dead
code.” Similarly, issue G17 (an intent
has duplicate training phrases) does

not affect behavior but gives the false
impression of high-quality training.
This issue is present in 30% of chat-
bots. Since training phrases in Rasa
are defined in text files, this is prone
to copy–paste mishaps.

However, some encountered is-
sues interfere with the proper chat-
bot operation and become errors
which should be fixed before re-
leasing the chatbot. For instance,
Cinebot features issue G16 from the
second to its last version. Specifi-
cally, its intents “book_tickets” and

“collect_tickets” define the same
training phrase “tickets please.”
Since these intents are entry points
for two conversation flows, there is
a conflict. Actually, if a user says
this phrase to Cinebot, its natural
language understanding model fa-
vors the “book_tickets” intent (with
a confidence of 0.9091, against
0.0890 for intent “collect_tickets”).
In practice, this precludes starting
the conversation to collect tickets us-
ing this phrase. Additionally, both
Dialogflow chatbots have few train-
ing phrases (G15, metric TPI), and
rather short (metric WPTP), which
may hinder these chatbots from rec-
ognizing the user intention, produc-
ing incorrect outcomes. Notably,
50% of chatbots have issue G19
(missing fallback intent). This means
that the chatbot will not reply when

The detected problems generally
persisted through numerous

commits and, at the end, the last
version of 85% of chatbots have

design problems.

https://github.com/satori-chatbots/chatbots-actions-experiments
https://github.com/satori-chatbots/chatbots-actions-experiments
https://github.com/satori-chatbots/chatbots-actions-experiments

68 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: STATIC QUALITY ASSURANCE FOR CHATBOTS

it does not understand the intent of
the user. Finally, 40% of chatbots
have intents without training phrases
(G9), which makes the chatbots un-
able to recognize the user intention
in those cases. For example, the wel-
come intent of ISU-Jovo-v2 lacks
phrases, so the chatbot does not

recognize when the user starts a con-
versation by greeting.

Regarding performance, the exe-
cution time is in the order of seconds
for the whole process (between 30
and 90 s for the analyzed chatbots),
which is reasonably fast for the num-
ber of analyses performed.

Overall, the detected problems
generally persisted through numer-
ous commits and, at the end, the
last version of 85% of chatbots have
design problems. Even the three
chatbots without final issues had
a substantial number of them dur-
ing development, which remained in

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JESÚS SÁNCHEZ CUADRADO is an

associate professor at the Languages and

Systems Department of the University of

Murcia, 30100 Murcia, Spain. His research

interests include model driven engineer-

ing topics, notably model transformation

languages, metamodeling, and domain

specific languages and recently in the

application of AI to software modeling.

Caudrado received his Ph.D. in computer

science from the University of Murcia.

Contact him at http://sanchezcuadrado.es

or jesusc@um.es.

PABLO C. CAÑIZARES is an assistant

professor at the University Autónoma of

Madrid, 28049 Madrid, Spain. His research

interests include software testing, model-

driven engineering, distributed systems,

and chatbots. Cañizares received his Ph.D.

in computer science from the Complutense

University of Madrid. Contact him at pablo.

cerro@uam.es.

DANIEL ÁVILA is a research project

associate with the University Autónoma of

Madrid (UAM), 28049 Madrid, Spain. His

research interests include the development

of computational intelligence, sentiment

analysis, machine learning, model-based

engineering, and chatbots. Ávila received

his master’s in research and innovation in

computational intelligence and interac-

tive systems from UAM. Contact him at

rdavilao@outlook.com.

ESTHER GUERRA is a full professor in

the Computer Science Department, Uni-

versity Autónoma of Madrid (UAM), 28049

Madrid, Spain. Her research interests

include model-driven engineering, flexible

modeling, domain-specific languages, and

chatbots. Guerra received her Ph.D. in

computer science from UAM. Contact her

at esher.guerra@uam.es.

SARA PÉREZ-SOLER is an assistant

professor at the University Autónoma of

Madrid (UAM), 28049 Madrid, Spain. Her

research interests include model-driven

engineering, conversational agents, and

domain-specific languages. Pérez-Soler

received her Ph.D. in computer science

from UAM. Contact her at sara.perezS@

uam.es.

JUAN de LARA is a full professor in the

Computer Science Department, Univer-

sity Autónoma of Madrid (UAM), 28049

Madrid, Spain. His research interests

include automated software development,

model-driven engineering, domain-specific

languages, and chatbots. De Lara received

his Ph.D. in computer science from UAM.

Contact him at juan.delara@uam.es.

mailto:pablo.cerro@uam.es
mailto:pablo.cerro@uam.es
mailto:rdavilao@outlook.com
mailto:esher.guerra@uam.es
mailto:sara.perezS@uam.es
mailto:sara.perezS@uam.es
mailto:juan.delara@uam.es

 SEPTEMBER/OCTOBER 2024 | IEEE SOFTWARE 69

many commits. Hence, we can an-
swer the RQ affirmatively: Our SQA
action has detected these problems,
which is a first step toward their
resolution. Actually, to assess the re-
solvability of the detected problems,
we successfully fixed by hand those
present in chatbot Cinebot. As a va-
lidity threat, these results are spe-
cific to the analyzed chatbots and
cannot be generalized, i.e., other
open source chatbots may have other
problems or lack problems. To miti-
gate any possible bias, we tried to se-
lect quality chatbots.

C hatbots should be devel-
oped following sound soft-
ware engineering principles.

We claim that CI can help to achieve
this aim, as is the case for other types
of software. CI automates the inte-
gration of code changes by multiple
contributors into a common reposi-
tory, after asserting the correctness
of the new code. Our proposed CI
workflow comprises a GitHub action
covering design visualization, mea-
surement, and static analysis for chat-
bots. We challenge the community to
provide further chatbot quality as-
sessments, which can be integrated as
part of CI workflows. In this respect,
we are currently working on a tech-
nology-independent unit testing ac-
tion, using Botium as a basis.

Our SQA action is technology-in-
dependent. We used it to analyze the
history of 20 open source Rasa and
Dialogflow chatbots, detecting prob-
lems in 85% of them, which suggests
the usefulness of these techniques.
While we focused on intent-based
chatbots, emerging chatbot construc-
tion paradigms based on LLMs, like
LangChain (https://www.langchain.
com/), will demand QA mechanisms,
likely integrated into CI workflows.

Finally, we foresee the need to mi-
grate intent-based into LLM-based
chatbots, and to make both chatbot
types interoperable. A technology-
independent approach like Conga
can help in this respect.

Acknowledgment
This work was supported by the
Spanish Ministry with the follow-
ing grants: TED2021-129381B-
C21 and TED2021-129381B-C22
(MICIU/AEI/10.13039/501100011033
and U E / Nex tG enerat ion EU),
PID2022-140109NB-I00 (MICIU/
AEI/10.13039/501100011033 and FEDER/
UE), PID2021-122270OB-I00 (MICIU/
AEI/10.13039/501100011033 and
FEDER/UE), and RED2022-134647-T
(MICIU/AEI/10.13039/501100011033).

References
 1. S. Pérez-Soler, S. Juárez-Puerta, E.

Guerra, and J. de Lara, “Choos-

ing a chatbot development tool,”

IEEE Softw., vol. 38, no. 4, pp.

94–103, Jul./Aug. 2021, doi: 10.1109/

MS.2020.3030198.

 2. N. Nagappan and T. Ball, “Static anal-

ysis tools as early indicators of pre-re-

lease defect density,” in Proc. 27th Int.

Conf. Softw. Eng. (ICSE), New York,

NY, USA: ACM, 2005, pp. 580–586,

doi: 10.1145/1062455.1062558.

 3. Dialogflow. Accessed: May 2024. [On-

line]. Available: https://dialogflow.com/

 4. Lex. Accessed: May 2024. [Online]. Avail-

able: https://aws.amazon.com/en/lex/

 5. Rasa. Accessed: May 2023. [Online].

Available: https://rasa.com/

 6. S. Pérez-Soler, E. Guerra, and J. de

Lara, “Model-driven chatbot devel-

opment,” in Proc. 39th Int. Conf.

Conceptual Modeling, vol. 12400,

Cham, Switzerland: Springer-Verlag,

2020, pp. 207–222, doi:

10.1007/978-3-030-62522-1_15.

 7. J. D. Zamfirescu-Pereira et al.,

“Herding AI cats: Lessons from

designing a chatbot by prompting

GPT-3,” in Proc. ACM Designing In-

teractive Syst. Conf., New York, NY,

USA: ACM, 2023, pp. 2206–2220,

doi: 10.1145/3563657.

3596138.

 8. “Watson.” IBM. Accessed:

May 2024. [Online]. Available:

https://www.ibm.com/cloud/

watson-assistant/

 9. S. Bravo-Santos, E. Guerra, and

J. de Lara, “Testing chatbots with

CHARM,” in Proc. 13th Int.

Conf. Qual. Inf. Commun. Tech-

nol., vol. 1266, Cham, Switzerland:

Springer-Verlag, 2020, pp. 426–438,

doi: 10.1007/978-3-030-58793-2_34.

 10. J. Bozic and F. Wotawa, “Testing

chatbots using metamorphic rela-

tions,” in Proc. 31st IFIP WG 6.1

Int. Conf. Testing Softw. Syst., vol.

11812, Cham, Switzerland: Springer-

Verlag, 2019, pp. 41–55, doi:

10.1007/978-3-030-31280-0_3.

 11. M. B. dos Santos, A. P. C. C.

Furtado, S. C. Nogueira, and D. D.

Moreira, “OggyBug: A test automa-

tion tool in chatbots,” in Proc. 5th

Brazilian Symp. Systematic Au-

tom. Softw. Testing, New York, NY,

USA: ACM, 2020, pp. 79–87, doi:

10.1145/3425174.3425230.

 12. Chatbottest. Accessed: May 2024. [On-

line]. Available: https://chatbottest.com/

 13. P. C. Cañizares, J.-M. López-Mo-

rales, S. Pérez-Soler, E. Guerra, and

J. de Lara, “Measuring and cluster-

ing heterogeneous chatbot designs,”

ACM Trans. Softw. Eng. Methodol.,

vol. 33, no. 4, pp.1–43, 2023, doi:

10.1145/3637228.

 14. A. Abdellatif, K. Badran, D. Costa,

and E. Shihab, “A comparison of

natural language understanding

platforms for chatbots in software

engineering,” IEEE Trans. Softw.

Eng., vol. 48, no. 8, pp. 3087–

3102, Aug. 2022, doi: 10.1109/

TSE.2021.3078384.

https://www.langchain.com/
https://www.langchain.com/
http://dx.doi.org/10.1109/MS.2020.3030198
http://dx.doi.org/10.1109/MS.2020.3030198
http://dx.doi.org/10.1145/1062455.1062558
https://dialogflow.com/
https://aws.amazon.com/en/lex/
http://dx.doi.org/10.1007/978-3-030-62522-1_15
http://dx.doi.org/10.1145/3563657
https://www.ibm.com/cloud/watson-assistant/
https://www.ibm.com/cloud/watson-assistant/
http://dx.doi.org/10.1007/978-3-030-58793-2_34
http://dx.doi.org/10.1007/978-3-030-31280-0_3
http://dx.doi.org/10.1145/3425174.3425230
https://chatbottest.com/
http://dx.doi.org/10.1145/3637228
http://dx.doi.org/10.1109/TSE.2021.3078384
http://dx.doi.org/10.1109/TSE.2021.3078384

	60_41ms05-delara-3401551

