
124 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y

T h i s w o r k i s l i c e n s e d u n d e r a C r e a t i v e C o m m o n s
A t t r i b u t i o n 4 . 0 L i c e n s e . F o r m o r e i n f o r m a t i o n ,

s e e h t t p s : //c r e a t i v e c o m m o n s .o r g / l i c e n s e s / b y /4 . 0 /

FEATURE: POLYGLOT SOFTWARE DEVELOPMENT

// We propose a concise

and unambiguous

definition of polyglot

software development

with a conceptual

model and characterize

the techniques used

for the specification

and operationalization

of polyglot software

development with a

feature model. //

MODERN SOFTWARE DEVELOP-
MENT commonly requires the use of
several languages in almost all activ-
ities, whether they involve require-
ments engineering, programming
in one or more languages, or con-
tinuous integration and delivery. For
example, requirements may be speci-
fied using templates for use cases or
user stories and Gherkin scenarios.1
Continuous integration and delivery
may be specified with GitHub Ac-
tions and build languages such as
Maven or Gradle.2 The proliferation
of domain-specific languages further
adds to the incentive to use different
languages for an activity.3 Even a so-
called Ruby project, such as Mast-
odon, an open source, distributed
social media platform, in fact al-
ready uses many languages.4 Besides
Ruby, specifications in Docker Com-
pose, Dockerfile, GitHub Actions,
Haml, HTML, JavaScript, package.
json, Rakefile, SCSS, and Structured
Query Language are used to handle
user interface, persistence, and build
issues. Mastodon is not an isolated
example. In 2017, Mayer et al. con-
ducted a survey to gather responses

Polyglot
Software
Development
Wait, What?

Gunter Mussbacher , McGill University and INRIA

Benoit Combemale , Université de Rennes

Jörg Kienzle , Universidad de Málaga and McGill University

Lola Burgueño , Universidad de Málaga

Antonio Garcia-Dominguez , University of York

Jean-Marc Jézéquel , Gwendal Jouneaux , and Djamel-Eddine
Khelladi , Université de Rennes and CRNS

Sébastien Mosser , McMaster University

Corinne Pulgar , Université du Québec

Houari Sahraoui , Université de Montréal

Maximilian Schiedermeier , McGill University

Tijs van der Storm , Centrum Wiskunde & Informatica and
Rijksuniversiteit Groningen

Digital Object Identifier 10.1109/MS.2023.3347875
Date of publication 3 January 2024; date of current version 12 June 2024.

©SHUTTERSTOCK.COM/JIRSAK

https://orcid.org/0009-0006-8070-9184
https://orcid.org/0000-0002-7104-7848
https://orcid.org/0000-0001-6611-5431
https://orcid.org/0000-0002-7779-8810
https://orcid.org/0000-0002-4744-9150
https://orcid.org/0000-0002-0582-9745
https://orcid.org/0000-0003-1158-9335
https://orcid.org/0000-0002-2218-650X
https://orcid.org/0000-0001-9769-216X
https://orcid.org/0000-0002-6260-8279
https://orcid.org/0000-0001-6304-9926
https://orcid.org/0000-0001-6318-5610
https://orcid.org/0000-0001-8853-7934

 JULY/AUGUST 2024 | IEEE SOFTWARE 125

from 139 professional software de-
velopers, who reported an average
of seven languages per project, with
more than 90% of developers re-
porting problems related to lan-
guage interactions.5

There are many reasons why sev-
eral languages are used in combina-
tion: sociotechnical reasons, such
as practitioner expertise/preferences
and best practices; conceptual rea-
sons, such as separation of concerns,
design decisions, and variability man-
agement; technical reasons, such as
availability of libraries/functionality,
efficiency, automation/reproduction,

reasoning/analysis, and quality as-
surance; and business reasons, such
as coping with legacy applications/
systems, technological debt, and
vendor lock-in.

It is therefore no surprise that
many communities are investigating
the combination of several languages.6
Yet, a long and ambiguous list of terms
exists for polyglot software develop-
ment from different communities.
We have illustrated all of the terms
we discovered in Figure 1, and we
also provide references to representa-
tive articles in the scientific literature
that use that terminology. While by

no means exhaustive, this list already
showcases the lack of a common
view; that is, different communities
often use the same term with differ-
ent meanings, or use different terms
for the same meaning. The effect is a
vastly ambiguous picture of the term
polyglot as well as a merely blurry
sketch of common associated impli-
cations for a development process.
Our goal is to clarify this fuzziness
by providing a clear definition of
polyglot software development. In
turn, this may qualify as a common
denominator for individual domain
experts, to leverage an antisilo effect

FIGURE 1. Ambiguous terms related to polyglot software development.

Multilanguage
Development

Polyglot Programming/
Polylingual Software

Cross-Language
2

Multilingual

Multilanguage Tools and
Development Environments

Hybrid Programming

Language Composition

1
3

4 5

6

7

8

10 11 12

9
Multiparadigm
Modeling/
Globalization

Legend

 1) “Lightweight Multilingual Software Analysis” doi.org/10.48550/arXiv.1808.01210
 2) “CLCDSA: Cross Language Code Clone Detection Using Syntactical Features and
 API Documentation” doi.org/10.1109/ASE.2019.00099
 3) “On Multilanguage Software Development, Cross-Language Links and Accompanying Tools: a Survey of Professional
 Software Developers” doi.org/10.1186/s40411-017-0035-z
 4) “Cross-Language Interoperability in a Multi-Language Runtime” doi.org/10.1145/3201898
 5) “The Design Space of Multilanguage Development Environments” doi.org/10.1007/s10270-013-0376-y
 6) “Multilanguage Debugger Architecture” doi.org/10.1007/978-3-642-11266-9_61
 7) “Debug All Your Code: Portable Mixed-Environment Debugging” doi.org/10.1145/1640089.1640105
 “Code Smells for Multilanguage Systems” doi.org/10.1145/3361149.3361161
 8) “An Empirical Assessment of Polyglot-ism in GitHub” doi.org/10.1145/2601248.2601269
 “Investigating the Effect of Polyglot Programming on Developers” doi.org/10.1109/VL/HCC51201.2021.9576404
 “Automated Support for Seamless Interoperability in Polylingual Software Systems” doi.org/10.1145/250707.239123
 9) “Multiparadigm Modeling for Cyber–Physical Systems: A Systematic Mapping Review” doi.org/10.1016/j.jss.2021.111081
10) “Globalizing Modeling Languages” doi.org/10.1109/MC.2014.147
11) “Language Composition Untangled” doi.org/10.1145/2427048.2427055
12) “A Hybrid Synchronous Language With Hierarchical Automata: Static Typing and Translation to Synchronous Code”
 doi.org/10.1145/2038642.2038664

126 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: POLYGLOT SOFTWARE DEVELOPMENT

that facilitates the exchange of con-
tained knowledge.

In the remainder of this article, we
first introduce a conceptual model for
polyglot software development that
allows us to clearly define polyglot
software development and its polyglot
processes and tasks and to discuss
whether polyglot stakeholders are
required. We exemplify the concep-
tual model with Mastodon and other
examples. We further characterize
polyglot software development and
elaborate on polyglot programming,

before concluding with open chal-
lenges and perspectives.

Conceptual Model
To unify the large variety of terms
related to the use of languages, this
section proposes a conceptual model
for software development with mul-
tiple languages in Figure 2. Note
that we focus only on those develop-
ment concepts that directly involve
or somehow relate to languages.

At the heart of our conceptual
model is the Task, which is a unit

of work (for example, “specify web
views”) that involves a set of Stake-
holderRoles (such as “developer”).
One Stakeholder may play one or
more stakeholder roles. A task requires
the use of one or several Artifacts ex-
pressed in one or more Languages be-
cause the artifacts are either consumed
as input or produced as output by the
task. Some artifacts may be integrated
with each other using one or several
IntegrationTechniques. A language of-
fers one or more Paradigms in which
to formulate the intended properties

FIGURE 2. A conceptual model for polyglot software development and a feature model illustrating different integration techniques.

ProcessStakeholder
0..*

subProcesses

1..*

stakeholders

StakeholderRole

Task

Artifact

IntegrationTechnique

IntegrationTechnique

Operationalization

Interpretation

Call

Local RemoteOutputInputDataStreamSharedMemory

SharedData

Composition Interoperability Compilation

Specification

Legend

Mandatory

Optional

Alternative (OR)

Exclusive (XOR)

0..* tasks

1..* processes

0..*

contexts

techniques

0..*

outputs 0..*

producedBy 0..*

0..* inputs

0..* consumedBy

LanguageParadigm

roles 1..*

task

1

0..* roles
0..*

roles

editedArtifacts

0..*

0..*

paradigms

languages

0..*

1..* languages

0..* artifacts

S
tr

in
g

S
tr

in
g

0..*

artifacts

0..*

languages

usedLanguages

0..*

Conceptual Model

Feature Model

 JULY/AUGUST 2024 | IEEE SOFTWARE 127

or behavior of the system under devel-
opment (for example, “object-oriented
programming,” “functional program-
ming,” and “procedural programming”
for Ruby).

An important distinction for a
stakeholder role to be associated
with an artifact of a language is
that the role needs to actively edit
something in the artifact (for exam-
ple, write code, or add a model el-
ement). If this is not the case, then
the stakeholder does not use the lan-
guage. Simply viewing or executing
an artifact does not qualify (such as
the result of a model generation or
compilation, respectively). For ex-
ample, while the task of compiling
code will require an input artifact
and will output bytecode/machine
code, most stakeholders will not di-
rectly engage with the compilation
results. Hence, the stakeholders do
not use the bytecode/machine code
language, nor do they use the lan-
guage of the input artifact since they
do not edit it.

A ternary association is required
since an artifact may be expressed
in several languages, and a stake-
holder role may only use some of
those languages. For example, a per-
formance specialist may edit only
the MARTE annotations in a UML
class diagram.

To bring artifacts of languages
together for a task, a certain Inte-
grationTechnique is used, where
each artifact and its language(s)
play a role, captured in the concep-
tual model by the qualified associa-
tions between integration technique
and artifact and between integration
technique and language.

As an example, the “specify web
views” task in Mastodon involves
the creation of a “Haml” output ar-
tifact for the front-end developer
and a “Ruby” output artifact for the

back-end developer. These developers
may in fact be the same person as a
stakeholder may play multiple roles.
Since this is a task that requires in-
tegrating two or more languages, the
task uses an integration technique
where Haml plays the role of “tem-
plate” and Ruby is the “interpreter”.
The follow-up runtime task “gener-
ate web views” that produces arti-
facts in “HTML” from the integrated
Haml+Ruby specifications is a task
that involves no editing stakeholders
but has two input artifacts and one
output artifact.

Finally, during software develop-
ment, tasks are typically performed
in some order. For this purpose, our
conceptual model contains the Pro-
cess concept, which groups a set of
tasks and a set of stakeholders. For
the sake of practicality, we also al-
low processes to contain subpro-
cesses, that is, to form hierarchies.
We are not explicitly modeling the
partial ordering of tasks within a
process, though, as it is of no rel-
evance regarding our discussion on
polyglotism. Implicitly, a partial or-
dering is established nevertheless
because tasks that require input ar-
tifacts can only be performed once
the artifacts have been output by a
preceding task in the process.

To finalize, we need to make
the definition of a task more pre-
cise to avoid confusion among pro-
cess, subprocesses, and tasks. A
task is supposed to be the small-
est unit of work; that is, it should
not arbitrarily consist of artifacts
with many languages that are not
directly related to each other (for
example, one task is defined for
a whole process instead of split-
ting the process into several atomic
tasks). We can do this by adding
the following constraint to the con-
ceptual model:

A task may only contain artifact(s)
of more than one language if the lan-
guages are integrated by a technique.
context Task:
inv: roles.usedLanguages asSet() size()

2 implies techniques.artifacts
 includesAll(roles.editedArtifacts)

and techniques.languages
 includesAll(roles.usedLanguages)

In the Mastodon project, for exam-
ple, an activity such as “specify web
views and build script” that includes
Ruby, Haml, and Dockerfile would
have to be modeled as two tasks.

Polyglotism
Since the production of software always
involves translation from human-read-
able languages to machine languages,
all software development can be seen as
polyglot. However, we are going to give
a more nuanced definition of polyglot
based on the use of languages for a task
as explained earlier.

The conceptual model introduced
allows for thinking about polyglot-
ism at multiple levels, that is, at the
task and the process levels and also
with respect to stakeholder roles
and stakeholders.

A task is polyglot if the stakeholder
roles of the task edit artifact(s) in more
than one language.
context Task def isPolyglot(): Boolean
 roles.usedLanguages asSet() size() 2

For example, consider a task
“specify web page” with an output
artifact in two languages: HTML
and Cascading Style Sheets (CSS).
The task could require two stake-
holder roles, one for HTML and one
for CSS, or the same stakeholder role
for both languages. In both cases
the task is polyglot, and an integra-
tion technique is required because
two languages are used in an edited

128 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: POLYGLOT SOFTWARE DEVELOPMENT

artifact. Another common situation
occurs when a low-level language is
embedded within a high-level pro-
gramming language. For example,
it is common to embed C code in
Python to increase the performance
of computationally expensive al-
gorithms, and therefore any pro-
gramming task with such a setup is
polyglot. However, if the task is fully
automated, that is, there is no stake-
holder role, then the task is not poly-
glot. A polyglot task requires active
stakeholder involvement with mul-
tiple languages.

This distinction is also exemplified
by the tasks “write model transfor-
mation” and “run model transfor-
mation”. Both tasks are not polyglot.
The former is not polyglot because it
involves a stakeholder role that ed-
its the output artifact in only a sin-
gle language, for example, an ATL
script for the model transformation,
based on two input artifacts, that is,
the metamodels for the source and
target languages of the transforma-
tion. The latter is not polyglot be-
cause it is automated and does not
involve an active stakeholder role
but three input artifacts (for exam-
ple, the ATL script and two models
corresponding to the source and tar-
get metamodels) and an automati-
cally created output artifact in the
target language.

Similarly, the specification of
a consistency rule or an analysis
script (such as energy consumption
for webpages) is a task that is not
polyglot unless the specification it-
self requires multiple languages. The
metamodels of the languages for
which a consistency rule is specified
are the input artifacts and are not
edited. Likewise, the webpages that
are analyzed are also input artifacts
that are not edited. The execution
of the consistency rule (which may

perform changes to the input mod-
els) and the running of the analysis
are automated, and hence they are
not polyglot because no stakeholder
is actively involved.

Based on the definition of a poly-
glot task, similar definitions for
stakeholder roles, stakeholders, and
processes can be formulated:

A stakeholder role is polyglot if it re-
quires to edit artifact(s) in more than
one language.
context StakeholderRole def: isPolyglot():
 Boolean usedLanguages asSet()

size() 2

A stakeholder needs to be poly-
glot if the union of roles they play
edits artifact(s) in more than one
language.
context Stakeholder def: isPolyglot(): Boolean
 roles.usedLanguages asSet() size() 2

A process is polyglot if the stake-
holder roles of the tasks that it or
any of its subprocesses contains edit
artifact(s) in more than one language.
context Process def: isPolyglot(): Boolean
 self.closure(subprocesses).tasks.roles

.usedLanguages asSet() size() 2

For example, the earlier Ruby+
Haml “specify web views” task has
task-level polyglotism, but some other
systems may exhibit process-level
polyglotism. For instance, in a “data
visualization” process, one task may
use Python to transform data, and
another task may use R to visual-
ize the transformed data. At the up-
permost process level, many modern
systems will exhibit polyglotism (for
example, using a formal require-
ments language and an implementa-
tion language).

On the other hand, there are still
many projects that are not polyglot.
For instance, there are numerous

domains, such as data science, biol-
ogy, or finance, whose projects use a
single language (such as Python) for
all tasks (for example, data curation,
analysis, computation, visualization,
etc.). Such a task is represented in
the conceptual model by a task that
produces an output artifact edited by
a stakeholder role but only in the Py-
thon language and without any inte-
gration technique.

In the literature and in practice,
different communities refer to the
concepts in our conceptual model
differently. This existing terminology
(see Figure 1) can be mapped to our
conceptual model as follows. “Poly-
glot development/programming” is
in line with our definition of poly-
glotism. Within it, “multiparadigm
modeling/globalization” are seminal
approaches with an explicit focus on
language integration (or composi-
tion) techniques. “Polyglot program-
ming” and “polylingual software”
as well as “multilanguage develop-
ment” refer to a development pro-
cess with tasks that span more than
one language, but multilanguage
development is more general and re-
fers to approaches without language
integration techniques. These terms
should not be confused with “multi-
lingual” software development tools,
which include all language-agnostic
tools that can be reused across a
well-defined range of existing lan-
guages. “Cross-language” refers to
tools that can operate across mul-
tiple languages while relating them
(for example, when performing clone
detection across Java and Python
programs, the tool not only has to
work on both Java and Python pro-
grams but also has to relate them).
“Multilanguage tools and develop-
ment environments” focus on the
tooling aspect but do not contrib-
ute to the underlying foundations of

 JULY/AUGUST 2024 | IEEE SOFTWARE 129

software development with multiple
languages. By contrast, “language
composition” techniques refer to
work on the foundations for dealing
with multiple languages, which may
involve polygot development but also
language design and implementation
for hybrid programming languages,
that is, with multiple paradigms but
without language integration tech-
niques. Finally, “hybrid program-
ming” refers to a single language
that combines more than one para-
digm (for example, continuous and
discrete programming).

All communities depicted in Fig-
ure 1 build on the foundations of
model-driven engineering (MDE) as
well as language-oriented program-
ming (LOP). In MDE, models play
a central role during software devel-
opment as the whole software life
cycle is seen as a process of model
production, refinement, and integra-
tion.7 Similarly, in LOP a language is
treated like any other development
artifact, and, instead of using gen-
eral-purpose languages, the creation
and implementation of domain-spe-
cific languages for solving problems
are preferred.8

Integration Techniques
In this section, we provide more de-
tails on existing language integra-
tion techniques mentioned in the
conceptual model by focusing on
polyglot programming and hence ex-
ecutable artifacts. Figure 2 depicts
the possible choices for the integra-
tion technique of executable artifacts
as a feature model. Each feature rep-
resents a choice.

Each integration technique re-
quires at least one choice for its
Specification and one for its Opera-
tionalization. The former handles
how we define the interaction be-
tween languages at design time, and

the latter specifies how the interac-
tion is realized during execution. The
specification can be implemented
with a Composition solution9 and/or
an Interoperability solution.10 Com-
position covers all various techniques,
from embedding of a language into
another to unifying two languages
at the syntax and/or semantic level.
We do not provide further details on
the many existing composition tech-
niques and their classification, but

the interested reader is referred to
the survey article by Erdweg et al.11

Interoperability covers the com-
munication among different lan-
guages. Interoperability needs to
deal with two important aspects,
namely how data sharing (Shared-
Data) and Calls are handled. The
calls between languages can be either
Remote, when the call goes through
a network, or else Local. The shared
data can either be implemented with
a SharedMemory, a data streaming
mechanism (DataStream), or simply
by one language writing some out-
put that another language consumes
as an input, for example, through a
file on disk (OutputInput).

Operationalization represents how
the specification will be realized dur-
ing execution. This can either be
achieved through Compilation and/
or Interpretation, that is, either by ex-
ecuting the relationships between the
two languages at compile time, for ex-
ample, in Melange,6 or by interpreting

the specified relationships at runtime,
for example, in BCOoL.12

For example, a Scala program call-
ing Java libraries fits the following
choices in the feature model of Fig-
ure 2: shared memory and local call
interoperability, and compilation op-
erationalization. Another example is
the case where code in one language
invokes code in another language; for
instance, the new Foreign Function
and Memory application program-

ming interface (API) in Java allows
Java code to invoke low-level code
and access data outside the Java vir-
tual machine on the same machine. In
other cases, interoperability happens
through the use of an interface defi-
nition language, such as OpenAPI,
from which client and server stubs are
generated. This integration technique
would use output/input and remote
call interoperability. If, for example,
Python talks to compiled C++, then
the operationalization would use in-
terpretation on the Python side and
compilation on the C++ side.

Taking again the example of
Mastodon, different integration tech-
niques are used at various times. For
instance, the integration technique
between Haml and Ruby uses in-
teroperability as specification through
local calls to Haml code as well as
shared memory, and it is operation-
alized using the Haml interpreter.
A second used integration technique
between Ruby and JavaScript relies

New opportunities await with the
application of AI techniques to

polyglot software development.

130 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: POLYGLOT SOFTWARE DEVELOPMENT

on interoperability as specification
with a data stream using Redis and
remote calls, and interpretation as
operationalization.

As mentioned in the previous sec-
tion, not every integration technique
is associated with a polyglot task be-
cause stakeholder involvement is re-

quired. A fully automated task that
is not polyglot may still have an inte-
gration technique. However, the ear-
lier integration techniques between
Haml and Ruby and between Ruby
and JavaScript belong indeed to
polyglot tasks since the stakeholders
edit artifacts in all languages.

Challenges and
Perspectives
As mentioned previously, most soft-
ware development is already polyglot

to some extent, and it is not sur-
prising that we see increasingly
more languages appearing in mod-
ern software projects, for example,
to build systems more efficiently or
to separate concerns (see “To Make
a Program”). Polyglot software de-
velopment, however, faces many

technical, process-related, educa-
tional, and community challenges.
We discuss them and provide re-
lated perspectives.

Technical Challenges
and Perspectives
Some software development activities
that are well understood within a sin-
gle language become challenging in
polyglot software development. For
example, we need to develop novel
and intuitive tools and techniques

for polyglot software comprehension,
polyglot software analysis (includ-
ing, for example, semantic alignment,
debugging, and profiling), and poly-
glot software documentation. Simi-
larly, whereas testing each language
separately is well supported, testing
the overall polyglot program and its
different interactions remains a chal-
lenge. Indeed, a test case would re-
quire one to integrate the “oracle
states” of different programs written
in different languages.

Techniques for software secu-
rity will have to be revisited in the
context of polyglot software devel-
opment. For example, we need to en-
sure secure communication channels
among languages and enable cross-
language access control.

When developing polyglot pro-
grams, we often have to write the lan-
guage integration logic from scratch.
As a first step, our current code gen-
erators should be extended with a
layer that automatically exposes the
services by system components writ-
ten in one language to the other lan-
guages. Ultimately, the goal is to have
full-fledged code generation for poly-
glot programs that includes the inte-
gration logic.

Finally, new opportunities await
with the application of artificial

TO MAKE A PROGRAM
To make a program, it takes a language and a machine.
One language and a machine—at least in theory.
But practice asks for separation of concerns,
a division of labor between you, and me, and her.
The people demand speed and efficiency, but alas,
a language can compute anything, but is it fast?
So then we invite another and thus transgress
out of paradise with a bite, a sudden kiss of death,
and descend the tar pit of our fetished Babylon,

sentenced to tame the Hydra that we have
spawned.
Let’s study the techniques of our tongues’ embrace:
A language alongside another wants to communicate.
A language on top of another is one that generates.
A language within a language, a hatch for my escape.

So many tradeoffs at stake
when complexity procreates.— Tijs van der Storm

To bring artifacts of languages
together for a task, a certain

Integration Technique is used, where
each artifact and its language(s) play

a role.

 JULY/AUGUST 2024 | IEEE SOFTWARE 131

intelligence techniques to polyglot
software development. More spe-
cifically, we should investigate how
to capitalize on multilingual trained
large language models.13

Process-Related Challenges
and Perspectives
We must develop strategies to deter-
mine the most appropriate combina-
tion of languages to use for a given
task, also taking into account the
sociotechnical context. We might
even benefit from identifying anti-
patterns of language combinations
from unsuccessful projects. We need
to develop a theory for tradeoffs be-
tween productivity and complexity
involved with polyglotism. Adding
a language that is well suited to a
task can speed up development, but
it might also increase the cognitive
load for the developer and require a
broader range of development skills.
Finally, a completely new challenge
arises regarding language evolution.
As many languages are used and
interact with each other, when one
evolves, others may be impacted as
well. We would need to develop tools
and techniques for polyglot impact
analysis that can reason over multi-
ple languages simultaneously. Then,
when impacts are identified, they
must be considered and languages
have to coevolve accordingly.

Educational Challenges
and Perspectives
Most software engineering curricula
contain courses that teach languages
and paradigms, but only rarely are
students explicitly exposed to poly-
glot software development with dedi-
cated support for the coordinated use
of multiple languages.14 We need to
find ways to use the presented con-
ceptual model as an education tool
to convey the real-life complexities to

students who are used to “lab” proj-
ects as well as augment our teaching
practices with examples of polyglot
development activities and tech-
niques to give a more holistic view of
real-life software development.

Community Challenges and
Perspectives
In this article, we have identified
similarities and variabilities in the
terminology related to polyglot de-
velopment used by various software
engineering communities. Tradition-
ally, different communities have been
working in relative isolation from
each other, and work like the one
presented here can help break down
the silos that separate them. Yet this
work needs to be amended by the
plethora of other communities deal-
ing with polyglotism to enable global
cross-fertilization.

References
 1. M. S. Murtazina and T. V. Avdeenko,

“Ontology-based approach to the

requirements engineering in agile

environment,” in Proc. 14th Int. Sci-

entific-Tech. Conf. Actual Problems

Electron. Instrum. Eng. (APEIE),

Piscataway, NJ, USA: IEEE Press,

2018, pp. 496–501, doi: 10.1109/

APEIE.2018.8546144.

 2. M. Shahin, M. A. Babar, and L. Zhu,

“Continuous integration, delivery

and deployment: A systematic review

on approaches, tools, challenges and

practices,” IEEE Access, vol. 5, pp.

3909–3943, 2017, doi: 10.1109/

ACCESS.2017.2685629.

 3. T. Kosar, S. Bohra, and M. Mernik,

“Domain-specific languages: A system-

atic mapping study,” Inf. Softw. Tech-

nol., vol. 71, pp. 77–91, Mar. 2016,

doi: 10.1016/j.infsof.2015.11.001.

[Online]. Available: https://www.

sciencedirect.com/science/article/pii/

S0950584915001858

 4. A. Raman, S. Joglekar, E. D. Cris-

tofaro, N. Sastry, and G. Tyson,

“Challenges in the decentralised web:

The mastodon case,” in Proc. Internet

Meas. Conf., 2019, pp. 217–229, doi:

10.1145/3355369.3355572.

 5. P. Mayer, M. Kirsch, and M. A.

Le, “On multi-language software

development, cross-language links

and accompanying tools: A survey of

professional software developers,” J.

Softw. Eng. Res. Develop., vol. 5,

no. 1, 2017, Art. no. 1, doi: 10.1186/

s40411-017-0035-z.

 6. T. Degueule, B. Combemale,

A. Blouin, O. Barais, and J.-M.

Jézéquel, “Melange: A meta-lan-

guage for modular and reusable

development of DSLs,” in Proc.

ACM SIGPLAN Int. Conf. Softw.

Lang. Eng. (SLE), New York, NY,

USA: Association for Computing

Machinery, 2015, pp. 25–36, doi:

10.1145/2814251.2814252.

 7. D. C. Schmidt, “Guest Editor’s

 Introduction: Model-driven engineer-

ing,” Computer, vol. 39, no. 2, pp.

25–31, Feb. 2006, doi: 10.1109/

MC.2006.58.

 8. R. Pickering, “Language-oriented pro-

gramming,” in Beginning. Berkeley,

CA, USA: Apress, 2010, pp. 327–349.

 9. J. Kienzle, G. Mussbacher,

B. Combemale, and J. Deantoni,

“A unifying framework for homoge-

neous model composition,” Softw.

Syst. Model., vol. 18, no. 5, pp.

3005–3023, Jan. 2019, doi: 10.1007/

s10270-018-00707-8.

 10. M. Grimmer, R. Schatz, C.

Seaton, T. Würthinger, M. Luján,

and H. Mössenböck, “Cross-lan-

guage interoperability in a multi-

language runtime,” ACM Trans.

Program. Lang. Syst., vol. 40,

no. 2, May 2018, Art. no. 8, doi:

10.1145/3201898.

 11. S. Erdweg, P. G. Giarrusso, and T.

Rendel, “Language composition

https://www.sciencedirect.com/science/article/pii/S0950584915001858
https://www.sciencedirect.com/science/article/pii/S0950584915001858
https://www.sciencedirect.com/science/article/pii/S0950584915001858

132 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: POLYGLOT SOFTWARE DEVELOPMENT
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

GUNTER MUSSBACHER is an associate

professor at McGill University, Montreal,

QC H3A 0E9, Canada. His research inter-

ests include model-driven requirements

and software language engineering, sus-

tainability, and human values. Mussbacher

received his Ph.D. in computer science

from the University of Ottawa. Contact

him at gunter.mussbacher@mcgill.ca and

http://www.ece.mcgill.ca/~gmussb1/.

ANTONIO GARCIA-DOMINGUEZ is

a lecturer in software engineering in the

 Department of Computer Science at the

University of York, YO10 5GH York, U.K.

His research interests are model-driven

software engineering and software testing.

Garcia-Dominguez received his Ph.D. in

engineering and architecture from the Uni-

versity of Cádiz. Contact him at a.garcia-

dominguez@york.ac.uk and https://www

-users.york.ac.uk/~agd516/

BENOIT COMBEMALE is a full profes-

sor of software engineering at the ESIR,

University of Rennes, 35065 Rennes,

France, and cohead of the DiverSE

research team. His research interests

include model-driven and software

language engineering and DevOps.

Combemale received his a Ph.D. in

software engineering from the University

of Toulouse. He is a Member of IEEE.

Contact him at benoit.combemale@irisa.

fr and http://combemale.fr/.

JEAN-MARC JÉZÉQUEL is a professor at

the University of Rennes, 35042 Rennes,

France, and a member of the DiverSE

team at IRISA/Inria. His research interests

include model-driven software engineering.

Jézequel received his Ph.D. in computer

science from the University of Rennes. He

is a Senior Member of IEEE. Contact him at

jezequel@irisa.fr and http://people.irisa.fr/

Jean-Marc.Jezequel.

JÖRG KIENZLE is a researcher at ITIS

Software, Universidad de Málaga, Málaga,

Spain, and a full professor at McGill

University, Montreal, QC H3A 0E9, Canada.

His research interests include model-driven

software development, software product

lines, and modularity. Kienzle received his

Ph.D. in computer science from the Swiss

Federal Institute of Technology. Contact

him at joerg.kienzle@uma.es, joerg.

kienzle@mcgill.ca, and https://djeminy.

github.io.

GWENDAL JOUNEAUX is a Ph.D. student

in software engineering at the University

of Rennes, 35042 Rennes, France, and a

member of the DiverSE research team. His

research interests are model-driven and

software language engineering and self-

adaptable languages. Jouneaux received

his master’s degree in software engineer-

ing from the University of Rennes. Contact

him at gwendal.jouneaux@irisa.fr and

https://www.gwendal-jouneaux.fr.

LOLA BURGUEÑO is an associate profes-

sor at the University of Málaga, 29071
Malaga, Spain. Her research interests

include artificial intelligence in software

development, uncertainty management, and

software testing. Burgueño received her

Ph.D. in software engineering and artificial

intelligence from the University of Málaga.

Contact her at lolaburgueno@uma.es and

https://lolaburgueno.github.io.

DJAMEL-EDDINE KHELLADI is a CNRS

researcher at the IRISA lab in the DiverSE

team, Université Rennes 1, 35000 Rennes,

France. His research interests are model-

driven engineering, scaling code analysis,

and software processes. Khelladi received

his Ph.D. in computer science from the

University of Paris 6. Contact him at

djamel-eddine.khelladi@irisa.fr and http://

people.irisa.fr/Djamel-Eddine.Khelladi/.

mailto:gunter.mussbacher@mcgill.ca
http://www.ece.mcgill.ca/~gmussb1/
http://a.garcia-dominguez@york.ac.uk
http://a.garcia-dominguez@york.ac.uk
https://www-users.york.ac.uk/~agd516/
https://www-users.york.ac.uk/~agd516/
mailto:benoit.combemale@irisa.fr
mailto:benoit.combemale@irisa.fr
http://combemale.fr/
mailto:jezequel@irisa.fr
http://people.irisa.fr/Jean-Marc.Jezequel
http://people.irisa.fr/Jean-Marc.Jezequel
mailto:joerg.kienzle@uma.es
http://joerg.kienzle@mcgill.ca
http://joerg.kienzle@mcgill.ca
https://djeminy.github.io
https://djeminy.github.io
mailto:gwendal.jouneaux@irisa.fr
https://www.gwendal-jouneaux.fr
mailto:lolaburgueno@uma.es
https://lolaburgueno.github.io
http://djamel-eddine.khelladi@irisa.fr
http://people.irisa.fr/Djamel-Eddine.Khelladi/
http://people.irisa.fr/Djamel-Eddine.Khelladi/

 JULY/AUGUST 2024 | IEEE SOFTWARE 133

untangled,” in Proc. 12th Work-

shop Lang. Descriptions, Tools,

Appl. (LDTA), New York, NY,

USA: Association for Comput-

ing Machinery, 2012, pp. 1–8, doi:

10.1145/2427048.2427055.

 12. M. E. Vara Larsen, J. DeAntoni,

B. Combemale, and F. Mallet, “A

behavioral coordination operator

language (BCOoL),” in Proc. ACM/

IEEE 18th Int. Conf. Model Driven

Eng. Lang. Syst. (MODELS),

2015, pp. 186–195, doi: 10.1109/

MODELS.2015.7338249.

 13. T. Ahmed and P. Devanbu,

“Multilingual training for

software engineering,” in Proc.

IEEE/ACM 44th Int. Conf. Softw.

Eng. (ICSE), Los Alamitos, CA,

USA: IEEE Computer Society,

May 2022, pp. 1443–1455, doi:

10.1145/3510003.3510049.

 14. M. Ardis, D. Budgen, G. W. His-

lop, J. Offutt, M. Sebern, and

W. Visser, “SE 2014: Curriculum

guidelines for undergraduate degree

programs in software engineering,”

Computer, vol. 48, no. 11, pp.

106–109, Nov. 2015, doi: 10.1109/

MC.2015.345.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

SÉBASTIEN MOSSER is a professor

of software engineering at McMaster

University, Hamilton, ON L8S 4L8, Canada,

and a member of the McSCert centre. His

research interests are related to domain-

specific modeling and software composi-

tion from a language point of view. Mosser

received his Ph.D. in software engineering

from the Université de Nice-Sophia Antipo-

lis. Contact him at mossers@mcmaster.ca

and https://mosser.github.io/.

MAXIMILIAN SCHIEDERMEIER is a

Ph.D. student in computer science at McGill

University, Montreal, QC H3A 0E9, Canada.

His research focuses on domain-specific

language-based tools for Representational

State Transfer development/security proto-

col integration and empirical assessments.

Schiedermeier received his master's degree

in computer science from Universität Pas-

sau. Contact him at max.schiedermeier@

mcgill.ca and https://m5c.github.io/.

CORINNE PULGAR is a master’s student

at Ecole de Technologie Supérieure,

Université du Québec, Montreal, QC, H3C

3P8 Canada. Their research interests

include model-driven engineering, domain

specific languages, DevOps, and inclusiv-

ity. Pulgar received their bachelor’s degree

in computer science from the Université

du Québec. Contact them at corinne.

pulgar.1@ens.etsmtl.ca and https://www.

linkedin.com/in/corinne-pulgar-12a58190/

TIJS VAN DER STORM is a senior re-

searcher and group leader of the Software

Analysis & Transformation group at CWI,

1098 XG Amsterdam, The Netherlands,

and a professor of software engineering at

the University of Groningen. His expertise

spans language engineering, domain-

specific languages, and model-driven

engineering. Van der Storm received his

Ph.D. from the University of Amsterdam.

Contact him at storm@cwi.nl and http://

www.cwi.nl/~storm.

HOUARI SAHRAOUI is a professor in

the Department of Computer Science and

Operations Research at the Université de

Montréal, Montreal, QC H3C 3J7, Canada.

His research interests include artificial in-

telligence applied to software engineering

and search-based software and model-

driven engineering. Sahraoui received his

Ph.D. in computer science from Université

Pierre et Marie Curie. Contact him at

sahraouh@iro.umontreal.ca.

mailto:mossers@mcmaster.ca
https://mosser.github.io/
mailto:max.schiedermeier@mcgill.ca
mailto:max.schiedermeier@mcgill.ca
https://m5c.github.io/
mailto:corinne.pulgar.1@ens.etsmtl.ca
mailto:corinne.pulgar.1@ens.etsmtl.ca
https://www.linkedin.com/in/corinne-pulgar-12a58190/
https://www.linkedin.com/in/corinne-pulgar-12a58190/
mailto:storm@cwi.nl
http://www.cwi.nl/~storm
http://www.cwi.nl/~storm
mailto:sahraouh@iro.umontreal.ca

	124_41ms04-kienzle-3347875

