
	 MAY/JUNE 2024 | IEEE SOFTWARE � 33

FOCUS: FROM IDEA TO IMPACT

T h i s w o r k i s l i c e n s e d u n d e r a C r e a t i v e C o m m o n s
A t t r i b u t i o n 4 . 0 L i c e n s e . F o r m o r e i n f o r m a t i o n ,
s e e h t t p s : //c r e a t i v e c o m m o n s .o r g / l i c e n s e s / b y /4 . 0 /

// We summarize

difficulties encountered

in the quest for

transferring to the

industry research

work conducted on

software metrics, which

led to the creation of a

startup that became an

international accredited

laboratory. We focus on

the evaluation of two

quality characteristics:

functional suitability

and maintainability. //

METRICS FOR EVALUATING soft-
ware quality, and especially main-
tainability, are as old as the software
engineering discipline itself, since
the earliest work in this field dates
from 1968.1 The following decades
saw the definition of metrics for the
structured and object-oriented pro-
gramming paradigms; methods for
deriving software metrics, such as the
goal question metric2; methods for the
empirical validation of metrics3; and
the publication of the series of stan-
dards ISO/IEC 25000 for software
evaluation and measurement, known
as software product quality require-
ments and evaluation (SQuaRE).4

Introduction
In this article, we present our research
journey in the field of software prod-
uct quality and its application in the
industry, culminating in the estab-
lishment of a laboratory for evaluat-
ing software maintainability initially
and, later, also functional suitability

Connecting
Research
and Practice
for Software
Product Quality
Evaluation and
Certification
A Software Laboratory’s
25-Year Journey

Javier Verdugo , Jesús Oviedo , and Moisés Rodríguez ,
AQCLab and University of Castilla-La Mancha

Mario Piattini , University of Castilla-La Mancha

Digital Object Identifier 10.1109/MS.2024.3357119
Date of publication 22 January 2024; date of current version 11 April 2024.

https://orcid.org/0000-0002-2526-2918
https://orcid.org/0000-0001-7962-1042
https://orcid.org/0000-0003-2155-7409
https://orcid.org/0000-0002-7212-8279

34	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: FROM IDEA TO IMPACT

based on ISO/IEC 25000. Through
the services provided by the labora-
tory we would complement the in-
ternal quality assurance processes of
software development companies, al-
lowing them to obtain rigorous feed-
back from a specialized third party,
and even be able to obtain a quality
certificate for their product from a
certification body.

Here we detail the efforts we made
and the challenges we faced in this
journey, and also share the lessons we
learned and some valuable feedback
we obtained from the companies that
we have collaborated with through-
out the years. Additionally, we pro-
vide some details of the model that
we use to evaluate maintainability.

First Steps in the
Software Quality
Evaluation Journey
In the late 1990s, with the estab-
lishment of several software facto-
ries close to our university and the
increase of software development
outsourcing, we—under the Alar-
cos Research Group—participated
in several projects aimed at improv-
ing the quality of software products.
From the outset, we focused on the
internal quality of software from the

point of view of its maintainability,
the nonfunctional requirement type
on which we had previously con-
ducted research.

Throughout these projects, the
main “complaints” that we usually
encountered were, on the one hand,
that most of the metrics and mea-
surement proposals were too “aca-
demic” and not practical enough,

and on the other hand, that there was
no certification scheme for software
products, similar to those that exist
for other types of products, such as
electronics, food, chemicals, etc.

In fact, despite all of the existing
research on metrics, and especially
those related to software maintain-
ability, it has not been easy to estab-
lish them as a basis for “certifying”
the quality of the software product,
in contrast to models, such as the ca-
pability maturity model/ capability
maturity model integration (CMM/
CMMI), or standards, such as ISO/
IEC 15504 and the subsequent ISO/
IEC 33000 series, which were much
more quickly adopted for the assess-
ment and certification of software
process quality. Although there have
been some promising proposals,5,6,7
they have struggled to make the leap
into the industry.

Challenges and
Barriers in the Transfer
of Software Quality
Evaluation to the
Industry
In the early 2000s, we saw an op-
portunity to provide software qual-
ity evaluation services to companies,
initially focusing on maintainability.
However, there were several barriers
to the feasibility of this idea:

•	 At that time, many software
development companies were
not yet aware of product quality
and did not invest in tools and
techniques in this area. In fact,
advanced tools like SonarQube,
which are nowadays common in
the industry, did not appear on
the market until 2009.

•	 There were not many busi-
ness cases that really proved to
companies that the investment
in software maintainability was
actually worthwhile, despite the
huge cost software maintenance
typically entails (which often ex-
ceeds 80% of a project’s budget).

•	 Some companies to whom we
presented our maintainability
evaluation service stated that
they would not bother to make
their products more maintain-
able unless their customers
demanded it. Some companies
would even consider it detri-
mental to their business, as they
were charging their customers
on turnkey projects for the time
they dedicated to maintenance.

•	 As in the case of products in
other sectors, companies de-
manded not only a third-party
evaluation, but also an “official”
(accredited) quality certificate
that could endorse the adequacy
of their certified products to
their customers.

From the outset, we focused on the
internal quality of software from the

point of view of its maintainability,
the nonfunctional requirement

type on which we had previously
conducted research.

	 MAY/JUNE 2024 | IEEE SOFTWARE � 35

After researching a solution to
these issues, we determined that
aligning our software product evalu-
ation service to the ISO/IEC 25000
standard family would be the op-
timal approach. This new series
of standards revised ISO/IEC 9126
and proposed a set of software qual-
ity characteristics that consider both
functional aspects (through func-
tional suitability) and nonfunctional
aspects, like security, performance
efficiency, reliability, or maintainabil-
ity. The latter was our primary inter-
est and field of expertise, although
we would consider other characteris-
tics in our roadmap, given their rel-
evance to software quality.

Several standards in this series
would be especially relevant for us:
ISO/IEC 25010 as the basis for our
quality model, ISO/IEC 25040 as the
reference for the evaluation process
(defining the activities, tasks, and in-
puts and outputs for each of them),
and ISO/IEC 25023 as the basis for the
metrics to be used. There was a draw-
back to this approach, as ISO/IEC
25023 provides metrics, particularly in
the case of maintainability, that devel-
opers may find unhelpful due to issues,
such as the ones outlined below:

•	 Many of the proposed metrics,
such as “modification capabil-
ity,” which is defined as “X =
A/B, where A = number of
items actually modified within
specified duration and B =
number of items required to be
modified,” can only be mea-
sured once the system is in use.
Instead, it would be more sensi-
ble to measure maintainability-
related metrics during software
development to prevent mainte-
nance issues.

•	 With regards to metrics measured
on the source code itself, only

cyclomatic complexity is consid-
ered, but many others, such as
object-oriented metrics (NOC,
DIT, etc.), duplicated code, or de-
pendency cycles, are neglected.

•	 Analyzability metrics are also
based on aspects to be checked
when the system is in use, such as
the extent to which the system logs
trace operations of the software
or system, rather than considering
readability and other useful attri-
butes of the code itself that would
be useful for its maintenance.

This is often the problem with
metrics proposed by academic re-
searchers and standardization bod-
ies: in principle they are well-thought
and theoretically valid, but when put
into practice by industry profession-
als, they may be difficult to measure
or not as useful in identifying prob-
lems as intended.

Maintainability
Evaluation Model
Because of the aforementioned flaws
in the metrics defined in ISO/IEC
25023 for the maintainability charac-
teristics, we decided not to use them in
the evaluation model that we were de-
fining, and instead use a set of metrics
that could be measured taking only
the software source code as input, so
that they could be obtained at any
point during the development phase.

In this way, we defined an evalu-
ation model that specifies how to
obtain quality scores for the main-
tainability characteristic and its five
subcharacteristics through the defi-
nition of a set of quality properties,
metrics, and functions.

The hierarchical evaluation model
features maintainability at the top
level, followed by its five subchar-
acteristics (analyzability, modular-
ity, modifiability, reusability, and

testability) at the second level. The
third level consists of a set of qual-
ity properties associated to one or
more subcharacteristics. The bottom
level comprises base and derived met-
rics, which are used to determine the
properties’ scores. Table 1 shows the
properties that influence the score for
each subcharacteristic in the model.

A set of functions is used to derive
the quality score for elements in the
upper levels from those directly be-
low. In this way, functions for qual-
ity properties in the model allow us
to aggregate the value of base met-
rics for target elements (such as func-
tions, classes, or packages) so that a
quality score can be obtained for the
whole product. The score for proper-
ties is a normalized value in the range
[0, 100], as is the score for subcharac-
teristics that is derived from the score
of their associated properties. Finally,
the maintainability score takes a dis-
crete value in the range [1, 5], derived
from the subcharacteristics’ scores.

Table 2 presents a summary of
the fundamental concepts concern-
ing the elements in the lower levels of
the model: quality properties and cor-
responding metrics. In some cases,
the metrics are measured at the sys-
tem level, whereas in other cases they
are measured against more specific
targets, such as functions/methods,
classes, or packages. The values for
these individual targets are aggregated
to derive a score for the system with
respect to each specific quality prop-
erty. This aggregation process is car-
ried out by calculating the number
of elements of the system at different
levels (typically three), leading to the
creation of a profile from which the
qualitative score is obtained.

Taking the complexity property
as an example, the metric cyclo-
matic complexity is calculated for
each function in the product under

36	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: FROM IDEA TO IMPACT

evaluation. The profile of the prod-
uct is then obtained by classify-
ing the functions into three levels
(depending on the range in which
their cyclomatic complexity falls,
as shown in Table 2) and obtaining
the number of functions in each of
these levels. Using this profile, the
complexity evaluation function pro-
vides the score in the range [0, 100].

As another example, in the case
of the rule violations property, the
classification into levels is based on
the severity of the issues. The pro-
file in this case consists of the coding
rule violations density for each of
the three levels. The evaluation func-
tion is then applied to this profile to
derive the score for the property.

Implementation
and Accreditation
of the Laboratory
In 2009, in order to respond to
the industry’s need for an official

Table 2. Detail of properties and metrics in the maintainability model.

Range of values

Property Base metric Target Level 3 Level 2 Level 1

Rule violations Coding rule violations per lines of code System Low severity Medium severity High severity

Code duplication Percentage of duplicated code System [0, 4) [4, 7) [7, 100]

Complexity Cyclomatic complexity Function [1, 10] (10, 15] [15, ∞)

Class structuring Number of functions Class [0, 12] (12, 18] (18, ∞)

Function size Lines of code Function [1,15] (15, 30] [0] U (30, ∞)

Code documentation Percentage of lines of commentary System (22, 50) (10, 22] U [50, 60) [0, 10] U [60, 100]

Package structuring Number of classes Package [1, 15] (15, 25] [0] U (25, ∞)

Cohesion Lack of cohesion on methods 5 Class [0, .33) [.33, .66) [.66, 2]

Dependency cycles Percentage of packages involved in
dependency cycles

System [0] (0, 50] (50, 100]

Abstractness and instability
balance

Distance from the main sequence
(;abstractness + instability − 1;)

Package [0, .43) [.43, .68) [.68, 1]

Table 1. Association between properties and
subcharacteristics in the maintainability model.

Subcharacteristics

Analyzability Modularity Modifiability Reusability Testability

Pr
op

er
tie

s

Rule violations X X X X X

Code duplication X X X

Complexity X X X

Class structuring X X X

Function size X X

Code
documentation

X X

Package
structuring

X X X X

Cohesion X X

Dependency
cycles

X X X X

Abstractness
and instability
balance

X X X X

	 MAY/JUNE 2024 | IEEE SOFTWARE � 37

certification of the quality of soft-
ware products , we contac ted
AENOR, the leading interna-
tional certification body in the
Spanish market. One of the require-
ments set by AENOR was that, to
be taken as the basis for official
certification, the software quality
evaluations had to be carried out by
a laboratory accredited to ISO/IEC
17025, the international standard
that establishes the “general require-
ments for the competence of testing
and calibration laboratories.”

Thus, the idea of AQCLab, a labo-
ratory for the evaluation of software
quality, was born. The goal for the
laboratory would be to provide its
clients, software development compa-
nies, with software quality evaluation
services carried out by an expert third
party. The evaluations of the labora-
tory would be intended to be com-
plementary to—and not substitute
for—the continuous quality assurance
improvement practices that compa-
nies may have ingrained in their de-
velopment lifecycle. In this way, the
success of a company’s quality assur-
ance practices would be reflected in
their software products and, through
the evaluation of the laboratory and
subsequent certification, they could
earn a mark of achievement that
would help them to gain the trust
from potential customers.

In addition, this laboratory would
enable collaborative innovation be-
tween academia and industry, al-
lowing not only the transfer of our
software evaluation research to the
industry, but also the improvement
of university teaching by incorpo-
rating lessons learned from the ap-
plication of this research into several
degree subjects related to software
engineering.

To become an accredited labora-
tory, we contacted Entidad Nacional

de Acreditación (ENAC), the Spanish
accreditation body (signatory to the
International Laboratory Accredita-
tion Cooperation mutual recognition
arrangement), and we began to study
and implement the requirements that
we would have to meet.

With these matters in mind, we
started to set up the laboratory,
and since the requirements were not
completely clear from the beginning,
we decided to take an agile approach
for this purpose.8 This would allow
us to make any necessary changes as
we went deeper into implementing
the requirements of ISO/IEC 17025
and adapting them to our particular
case. The whole process took us from
2008 to 2010, when we completed
the quality model for maintainabil-
ity,9 the evaluation methodology and
all of the laboratory procedures, and
the technological environment with
the tools necessary for measurement
and evaluation. Of all the work that
we carried out in this process, the
following achievements are worth
highlighting:

•	 Defining a set of metrics that
could “predict” quality before
software products reach the
market or production environ-
ment: As indicated above, many
metrics proposed by the ISO/IEC
25023 standard are meant to
be measured when the product
is already in use. However, we
intended to determine whether
a software product was of suf-
ficient quality during its develop-
ment stage. For this reason, we
discarded the metrics proposed
by ISO/IEC 25023 and, in-
stead, we carried out systematic
literature reviews, consulted
with experts, and tested doz-
ens of metrics until we selected
a set that would be useful in a

practical development context
and would reflect adequately the
maintainability properties of the
software product.

•	 Expressing the evaluation results
in a way that would be easier for
potential clients to understand:
We decided to establish a quality
product scale, analogous to one
used in process quality assess-
ments by CMMI and ISO/IEC
33000, with values that would
range from 1 (very low quality)
to 5 (very high quality). For this
purpose, we proposed a func-
tion based on the use of profiles
that would provide standardized
quality values for each property,
subcharacteristic, and character-
istic of the quality model.10

•	 Supporting a reasonable set of
technologies and programming
languages: Supporting all existing
programming languages is not
feasible, since there are relevant
differences among them in how
the metrics can be measured,
which programming rules should
be checked, and which tools can
be used for these tasks. Therefore,
we had to decide which subset
to support, finally opting for the
technologies that were most used
and had the best future projec-
tions at the time (Java, .NET,
PHP, JavaScript, Python, etc.).

•	 Having a unified tool environ-
ment that supports the measure-
ment and evaluation of software
product quality: To achieve this,
we reviewed many measurement
tools, since at that time inte-
grated platforms, such as Sonar-
Qube, were not mature. It was
also necessary to create a tool
that would apply the evaluation
functions to obtain the quality
values for the elements in the up-
per levels of the model.

38	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: FROM IDEA TO IMPACT

•	 Carrying out a correlational
study to test that the results ob-
tained with our model and en-
vironment correspond to actual
maintenance effort: To this end,
we carried out the evaluation
of hundreds of products imple-
mented with different languages
and made the necessary adjust-
ments to the metric thresholds
established in our model.

At the beginning of 2012, we ob-
tained the ISO/IEC 17025 accredita-
tion for maintainability evaluations.
In the following years, we identi-
fied that the industry was interested
not only in the maintainability of
software, but also in determining
whether the products they would
purchase were functionally complete
and correct. Therefore, we subse-
quently followed this same process
to implement the evaluation of func-
tional suitability in conformance to
ISO/IEC 25000. To achieve this, we
had to define the corresponding met-
rics (test completeness, functional
correctness, etc.), select and develop
supporting tools, carry out new cor-
relational studies, etc. Finally, in
2015, we became the first laboratory
to be accredited for the evaluation
of this characteristic. Once accred-
ited, we established a collaboration
with certification bodies, such as
AENOR so that functional suitabil-
ity certificates could be issued, based
on our evaluations.

The model that we use in func-
tionality suitability evaluations is pre-
sented in detail in Rodríguez et al.10
In this case, it is worth noting that
the metrics proposed in ISO/IEC
25023 were found to be useful, al-
though some adaptations were still
required to make them fully opera-
tional in our model, such as includ-
ing the coverage of code executed by

tests as a metric that affects the score
of the properties related to the func-
tional correctness subcharacteristic.

Software Product
Certification
Throughout this decade, we have
evaluated nearly a hundred products
from companies of various sizes, in-
dustries, and countries. These com-
panies, originating from countries
such as Spain, Italy, Portugal, and
Peru, have ranged from small busi-
nesses with only a few staff members
to large banking companies with
thousands of employees. The evalu-
ated products featured a wide range
of technologies, such as Java, C,
.NET, PHP, JavaScript, and Python,
among others. Despite the difficulty
in achieving the required quality
level for certification due to its rigor-
ousness, approximately 30 products
have obtained a certificate so far,
which can be consulted on the ISO
25000 portal (https://iso25000.com/
index.php/en/certified-products).

After conducting a high number
of evaluations, we have identified
several recurring problems. In the
case of maintainability, companies
do not always use during their devel-
opment cycle a tool that helps them
to monitor compliance with coding
standards and good practices. This
leads to source code that does not
adhere to said good practices, has
high complexity, a lot of duplicated
code and, consequently, a high level
of technical debt that impacts very
negatively in its maintainability.

As for the case of functional suit-
ability, companies do not always
have a well-defined testing process.
As a result, not all requirements
have test cases to verify their correct
and complete implementation, and
therefore it is not possible to guar-
antee the correct functioning of their

software. In addition, many organi-
zations are unfamiliar with the con-
cept of code coverage, resulting in
many fragments of code remaining
untested.

Over the years, we have also been
collecting feedback from organiza-
tions that went through the whole
process regarding the advantages
that evaluating, improving, and then
certifying their software products
brought them. Here are some of the
most significant insights we have
received:

•	 It enabled reducing the number
of corrective maintenance inci-
dents for the software product
by up to 75%.

•	 The complexity of the product
was decreased by up to 45%.

•	 In some cases, maintenance
times were diminished by up
to 30%.

•	 Several products reduced their
number of lines of code by as
much as 40% after eliminating
duplicated and dead code.

•	 The products considerably
increased the code coverage
achieved by the tests, in many
cases surpassing 80% of the
source code.

•	 In addition, several companies
managed to establish traceabil-
ity between the quality of their
processes with standards such as
ISO/IEC 33000, and the quality
of the software product with the
ISO/IEC 25000 series.

Lessons Learned
As a result of the work carried out
in the laboratory, knowledge trans-
fer between academia and industry
has been boosted over the years in
two ways: in terms of transfer from
academia to industry, an increasing
number of development companies

https://iso25000.com/index.php/en/certified-products
https://iso25000.com/index.php/en/certified-products

	 MAY/JUNE 2024 | IEEE SOFTWARE � 39

have implemented software quality-
control processes, and compa-
nies acquiring software have become
more aware of software quality,
including requirements in their
bidding processes concerning the
certification of compliance to ISO/
IEC 25000. On the other hand, as
far as the transfer from industry
to academia is concerned, every
year more and more university stu-
dents are being trained in aspects
of software quality, which we have
learned from our experience in

industry, with the intention of pre-
paring them to put this knowledge
into practice in their careers.

In addition to the previous points
made in this article, the main lesson
we have learned from this journey
is realizing the mistake we made in
thinking that the process of trans-
ferring research to industry was lin-
ear, and that we needed to spend
many years researching and vali-
dating metrics for software qual-
ity and then, once we had the right
metrics, we could go to industry to

put them into practice. We probably
made a simplification mistake by not
walking side by side with industry11
right from the beginning, because as
Mikkonen et al.12 point out, this ap-
proach is no longer valid.

I n retrospect, it would have been
more suitable to use what is
known today as the coproduc-

tion process,13 involving all of the en-
tities of the ecosystem (organizations
interested in evaluating and certifying

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JAVIER VERDUGO is the technical director

of AQCLab, 13005 Ciudad Real, Spain, and

a part-time professor and part of the Alarcos

Research Group, University of Castilla-La

Mancha, 13071 Ciudad Real, Spain. His

research interests include software product

and data quality evaluation, software

processes, and systems security. Verdugo

received his Ph.D. in computer science

from the University of Castilla-La Mancha.

Contact him at jverdugo@aqclab.es.

MOISÉS RODRÍGUEZ is the CEO of

AQCLab, 13005 Ciudad Real, Spain, and an

associate professor at the Escuela Superior

de Informática, part of the Alarcos Research

Group, University of Castilla-La Mancha,

13071 Ciudad Real, Spain. His research

interests include software processes,

product, and data quality. Rodríguez received

his Ph.D. in computer science from the

University of Castilla-La Mancha Contact him

at mrodriguez@aqclab.es.

JESÚS OVIEDO is a consultant in software

quality at AQCLab, 13005 Ciudad Real,

Spain, and a part-time professor and part

of the Alarcos Research Group, University

of Castilla-La Mancha, 13071 Ciudad Real,

Spain. His research interests include soft-

ware product and data quality evaluation,

software processes, and systems security.

Oviedo received his M.Sc. in computer

science from the University of Castilla-La

Mancha. Contact him at joviedo@aqclab.es.

MARIO PIATTINI is a full professor at the

Escuela Superior de Informática, and leads

the Alarcos Research Group, University of

Castilla-La Mancha, 13071 Ciudad Real,

Spain. His research interests include soft-

ware engineering and information systems

quality. Piattini received his Ph.D. in com-

puter science from the Technical University

of Madrid. He is a Member of IEEE.

Contact him at mario.piattini@uclm.es.

mailto:jverdugo@aqclab.es
mailto:mrodriguez@aqclab.es
mailto:joviedo@aqclab.es
mailto:mario.piattini@uclm.es

40	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: FROM IDEA TO IMPACT

their software products, evaluation
laboratories, certification bodies,
software quality consultants, and
tool vendors) from the beginning, to
understand their requirements, needs,
and functioning processes. The prob-
lem with this ecosystem is that some
actors did not yet exist when we
started, or at least, did not yet act as
such. It was not until the ecosystem
started to operate that the different
entities were able to play their re-
spective roles.

As for the main drivers that lead to
the improvement of quality in the soft-
ware industry, we have identified the
following based on our experience:

•	 It is necessary to create an eco-
system that brings together the
necessary key actors, establish-
ing clear relationships between
them.

•	 Development companies need to
implement tools and processes
that allow them to continuously
control quality throughout the
development life cycle. Other-
wise, episodic evaluations lead
to a quality derailment that is
difficult to get back on track.

•	 Organizations purchasing soft-
ware products should be aware
that they can demand objective
levels of quality in line with in-
ternational standards.

•	 Both software development and
consumer organizations, as well
as universities, should promote
the training of current and
future professionals in aspects
related to software quality.

All of these lessons learned were
subsequently applied in the develop-
ment of a data-quality certification
scheme based on the ISO/IEC 25012
standard.14

Acknowledgment
We thank the rest of our colleagues
at the Alarcos Group and AQCLab,
who have collaborated all these
years to make the experiences pre-
sented in this article possible; Carlos
Manuel Fernandez and Boris Del-
gado from AENOR for their support
and collaboration in making our re-
search materialize into a certifica-
tion scheme in the software industry;
and Elvira González from Entidad
Nacional de Acreditación for her work
and recommendations, which helped
AQCLab to become the first and only
laboratory accredited for software
quality evaluations.

References
	 1.	R. J. Rubey and R. D. Hartwick,

“Quantitative measurement of pro-

gram quality,” in Proc. 23rd ACM

Nat. Conf., Jan. 1968, pp. 671–677,

doi: 10.1145/800186.810631.

	 2.	V. R. Basili and D. M. Weiss,

“A methodology for collecting valid

software engineering data,” IEEE

Trans. Softw. Eng., vol. SE-10, no.

6, pp. 728–738, Nov. 1984, doi:

10.1109/TSE.1984.5010301.

	 3.	C. Wohlin et al., Experimentation in

Software Engineering: An Introduc-

tion. New York, NY, USA: Springer-

Verlag, 2000.

	 4.	Systems and Software Engineer-

ing—Systems and Software Qual-

ity Requirements and Evaluation

(SQuaRE), ISO/IEC Standard

25000 SQuaRE Series. [Online].

Available: https://committee.iso.

org/sites/jtc1sc7/home/projects/

flagship-standards/iso-25000-square

-series.html

	 5.	A. Alvaro et al., “Towards a software

component certification framework,”

in Proc. 7th Int. Conf. Qual. Softw.,

2007, pp. 298–303, doi: 10.1109/

QSIC.2007.4385511.

	 6.	J. H. Yahaya et al., “SCfM_PROD:

A software product certification

model,” in Proc. 3rd Int. Conf.

Inf. Commun. Technol., Theory

Appl. (ICTTA), 2008, pp. 1–6, doi:

10.1109/ICTTA.2008.4530350.

	 7.	P. Heck et al., “A software product

certification model,” Softw. Qual. J.,

vol. 18, no. 1, pp. 37–55, 2009, doi:

10.1007/s11219-009-9080-0.

	 8.	J. Verdugo et al., “Using agile meth-

ods to implement a laboratory for

software product quality evaluation,”

in Proc. Int. Conf. Agile Softw.

Develop., 2014, pp. 143–156, doi:

10.1007/978-3-319-06862-6_10.

	 9.	M. Rodriguez et al., “A hard look at

software quality,” Qual. Prog., vol.

48, no. 9, p. 30, 2015.

	10.	M. Rodriguez et al., “Evaluation of

software product functional suit-

ability: A case study,” Softw. Qual.

Professional, vol. 18, no. 3, p. 18,

2016.

	11.	V. Garousi et al., “Practical relevance

of software engineering research:

Synthesizing the community’s voice,”

Empirical Softw. Eng., vol. 25, no. 3,

pp. 1687–1754, 2020, doi: 10.1007/

s10664-020-09803-0.

	12.	T. Mikkonen et al., “Continuous

and collaborative technology trans-

fer: Software engineering research

with real-time industry impact,”

Inf. Softw. Technol., vol. 95, pp.

34–45, Mar. 2018, doi: 10.1016/j.

infsof.2017.10.013.

	13.	A. Sannö et al., “Increasing the im-

pact of industry–Academia collabora-

tion through co-production,” Technol.

Innov. Manage. Rev., vol. 9, no. 4,

pp. 37–48, 2019, doi: 10.22215/

timreview/1232.

	14.	F. Gualo et al., “Data quality certifica-

tion using ISO/IEC 25012: Industrial

experiences,” J. Syst. Softw., vol. 176,

Jun. 2021, Art. no. 110938, doi:

10.1016/j.jss.2021.110938.

http://dx.doi.org/10.1109/TSE.1984.5010301
http://dx.doi.org/10.1007/s11219-009-9080-0
http://dx.doi.org/10.1007/s10664-020-09803-0
http://dx.doi.org/10.1007/s10664-020-09803-0
http://dx.doi.org/10.1016/j.infsof.2017.10.013
http://dx.doi.org/10.1016/j.infsof.2017.10.013
http://dx.doi.org/10.22215/timreview/1232
http://dx.doi.org/10.22215/timreview/1232
http://dx.doi.org/10.1016/j.jss.2021.110938

	033_41ms03-verdugo-3357119

