
0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E 	 JANUARY/FEBRUARY 2024 | IEEE SOFTWARE � 25

AT GOOGLE, WE regularly get
asked to help teams measure how
different developer tools and pro-
cesses impact productivity. A com-
mon form of this request is a team
that has built a new developer tool
and wants to show that this tool in-
creases developer velocity.

Speed, Ease, and Quality
Yet developer velocity is clearly not
the only goal; we also want to build
high-quality products. After all, we
can easily increase velocity…by
removing code review or test suites.
Doing so might make our developer
velocity appear faster, but it would
clearly not be a good strategy for
the company. So while we do want
higher velocity, we don’t want it to
come at the expense of our software
quality. We also don’t want it to
come at the expense of our engineers;
we could increase velocity by asking
everyone to work overtime, but that’s
also going to be trading off short-
term positive gains for long-term
negative impact.

Due to these tradeoffs, we mea-
sure three components of developer
productivity: speed, ease, and quality.
Even if we are expecting to influence
only one of those three, it’s impor-
tant to measure all three components
to ensure that we aren’t making an
unexpected tradeoff. This is not an
unheard of idea; Microsoft uses the
SPACE framework,1 which has sev-
eral overlapping concepts, and both
frameworks have their origins from
a Dagstuhl seminar in March 2017
where 27 researchers from across aca-
demia and industry gathered to discuss
developer productivity.2 At the end of
that seminar, we had a similar set of
components and published the discus-
sions in a book.3 In the end, it doesn’t
really matter which specific compo-
nents one uses; what matters is the
recognition that developer productivity
is a complex topic with several inter-
woven factors, and we need to measure
each of them to ensure that we get a
complete picture of productivity.

In this installment of our column,
we’re going to dive in on just one of
these components: quality. Of the
three components, quality is the most
difficult to measure because it is also

the most difficult to define. What is
software quality anyway? Software
quality means different things to dif-
ferent people. To the vice president
concerned about their business, high
software quality means having a
product that people want to use, pay
for, and recommend to others. To
the developer, high software quality
means that the code itself is maintain-
able and easy to work with. To opera-
tions, high software quality means a
site that is reliable, fault tolerant, and
resilient to security threats. These are
all valuable perspectives on software
quality, but if these three people en-
ter into a conversation about “how
will we increase software quality,”
they’re likely to find disagreement in
how they approach the problem and
how they measure success. We’ve seen
these conversations play out even at
Google, so it became imperative for us
to provide everyone with a shared un-
derstanding of software quality that
would encompass these viewpoints
and how they interact.

Four Types of Software Quality
To better understand what “quality”
means to a software developer, we

Developer Productivity
for Humans, Part 7:
Software Quality
Collin Green, Ciera Jaspan , Maggie Hodges, and Jessica Lin

Digital Object Identifier 10.1109/MS.2023.3324830
Date of current version: 20 December 2023

DEVELOPER PRODUCTIVITY
FOR HUMANS

Editor: Ciera Jaspan
Google
ciera@google.com

Editor: Collin Green
Google
colling@google.com

https://orcid.org/0000-0003-4500-1392
mailto:colling@google.com

DEVELOPER PRODUCTIVITY FOR HUMANS

26	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

conducted two series of interviews
with developers at Google. In the first
series, we asked eight engineers about
code quality, and in the second series,
we asked a different set of nine engi-
neers about product quality. (Notice
that we asked only engineers for their
takes on these topics; we did not spe-
cifically ask product managers, execu-
tives, or other roles.)

Before the code quality interviews,
we did an extensive literature review
to understand how the research treats
code quality. We looked for closely
related terms and identified the goals
of the research and the approach to
understand what underlying theory
the researchers had about code qual-
ity. For example, in “The Influence
of Organizational Structure on Soft-
ware Quality,” Nagappan et al.4 ex-
plore whether metrics about code
ownership are predictive of failures
in released binaries; this indicates
that they are presuming that the de-
fect rate is a component of software
quality. Meanwhile, in “Program Com-
plexity Metrics and Programmer
Opinions,” Katzmarski and Koschke5
explore whether complexity metrics
are correlated with developer percep-
tions about their ease of modifying

the software; this indicates that they
are presuming that maintenance is
the target. We found that there were
seven items that regularly appeared
in the research literature related to
code quality

•	 defect rate
•	 reliability
•	 maintainability
•	 testability
•	 complexity
•	 comprehensibility (clarity of over-

all purpose/structure)
•	 readability (clarity at line/method

level).

In our interviews, we first asked
the engineers how they would define
code quality. We also asked how they
would describe the impacts and conse-
quences of code quality on their own
productivity, their projects, their de-
pendent projects, and the organization
as a whole. Finally, we asked the engi-
neers which of the seven items noted
earlier influences their satisfaction
with code quality in their projects.

We ran a similar series of inter-
views about product quality with
nine engineers. As in the first set, we
asked the engineers to define product

quality. We also provided the follow-
ing list of attributes and asked en-
gineers about their relation with
product quality:

•	 ability to meet user’s needs
•	 performance and reliability
•	 product complexity
•	 privacy and security
•	 innovativeness.

Finally, we asked the engineers the
extent to which code quality impacts
product quality.

Based on these interviews and read-
ing the prior literature on software
quality, we’ve created a “theory of
quality” that posits that there are four
types of quality that influence each
other. Figure 1 includes a nonexhaus-
tive list of indicators of each type of
quality. While there are other major
influencing factors as well, and while
these types of quality also influence
other aspects of the development pro-
cess, we theorize that they have the re-
lationship shown in Figure 1.

Process Quality
Our theory is that everything begins
with a high-quality development pro-
cess. Signals of a high-quality process

FIGURE 1. A theory for how "software quality" is broken into four component types. The arrows represent the direction of influence:

process quality is believed to influence code quality.

Process Quality

Code Review
Test Coverage
Flakiness of Tests
Distribution of Work
Stability of Strategy

Code Quality

Maintainability
Complexity
Testability
Readability
Comprehensibility

System Quality

Defect Rate
Reliability
Performance
Security
Privacy

Product Quality

User Experience
Brand Reputation
Costs and Overhead
Revenue and Sales

Utility Usability

DEVELOPER PRODUCTIVITY FOR HUMANS

	 JANUARY/FEBRUARY 2024 | IEEE SOFTWARE � 27

include things like having comprehen-
sive and deterministic testing, thor-
ough code reviews, organizational
consistency, and an effective planning
process. There is good evidence that
these measures can predict the over-
all software quality; multiple studies
have shown that process-based met-
rics are more predictive of postrelease
defects than existing code quality met-
rics.4,6,7,8,9 Our theory is that when
an organization has higher process
quality, it does lead to higher code
quality, but perhaps existing "code
quality" metrics are not capturing the
underlying phenomenon of code qual-
ity. Therefore, the research literature
is capturing the influence of process
quality on system quality instead.

Code Quality
The entire point of achieving a higher
process quality is to have a higher
code quality. But what is code qual-
ity? All eight of our participants in
the code quality interviews defined
code quality as primarily relating to
maintainability, and they viewed test-
ability, comprehensibility, complex-
ity, and readability as subcategories
of maintainability. This is consistent
with a recently published study by
Börstler et al.10 about developer per-
ceptions of code quality, where their
interviews of 34 developers found
nearly identical results.

Overall, our developers described
code quality as the ease of working
with and understanding the code so
that they can easily make changes to
it. Developers noted that, with high-
quality code files, “you know immedi-
ately what it’s trying to do” and that
“it’s neatly organized into files, each
with its own piece of logic.” When
developers see high-quality code,
they are seeing code that has a clear
purpose; the code provides a single
and coherent mental model for the

developer. This clarity is what makes
it easy to comprehend and easy to
modify later.

The impact of code quality on re-
liability and fewer defects was more
tenuous; only half of our participants
stated that these are connected. The
other half noted that other factors
could impact reliability and defect
rates (“Code can still break even
if there were no bugs due to exter-
nal factors”) or that reliability may
not even fully depend on code qual-
ity at all (“I’ve seen lots of reliable
code that’s poor quality.”) They in-
dicated that while these are related,
they are not the same concept as
“code quality.”

Developers noted that the impact
of code quality was twofold, though;
while it improves the quality of the
system by reducing defects and in-
creasing reliability, high code quality
also leads to higher velocity for them-
selves. Maintainability in particular is
important because, as one developer
put it, “Code is written once and read
many many times—everyone within
the system has to understand and be
able to make changes to it.” We’ve
seen this connection before though; in
prior research, we found that develop-
ers’ perceptions of code quality were
early indicators of their later percep-
tions of developer velocity.11 This is
interesting because it highlights that
our three components of productiv-
ity (speed, ease, and quality) are not
always in strict tradeoffs with each
other; in some cases, they can also
amplify each other.

System Quality
System quality is where we shift from
“quality as the developers see it” to
“quality as the business sees it.” Most
developers hear “software quality”
and think about their code and pro-
cess quality, but when you talk with

executives and product managers,
they’re more interested in product
quality. (This insight comes from ca-
sual discussions with executives and
product managers, not the interview
studies.) These two viewpoints come
together at system quality, and in-
deed, we’ve seen that most discus-
sions between these groups at Google
result in a focused discussion about
system quality. However, these two
viewpoints can cause a disconnect; it
can result in an engineering executive
asking for higher product quality (be-
cause they want to increase customer
satisfaction) and then being surprised
when the software developers respond
by improving their code’s modularity.
While we hypothesize that these are
connected through system quality, the
connection isn’t obvious to both par-
ties; each is only thinking about their
half of the work.

A high-quality system has high re-
liability, high performance, and low
defect rates. Having high code quality
is a necessary requirement for having
high system quality, but factors such
as security and privacy can really be
measured only at the system level, and
they also play a part in overall system
quality. Similarly, high system qual-
ity is a necessary, but not sufficient,
requirement for having high product
quality; there are other factors that
come into play at the product quality
level as well.

In our experience, one of the larg-
est difficulties with measuring system
quality is the sparsity of data. Out-
ages are (and should be!) a very rare
event. This means that if a team had
only two small outages in a year, and
then they had no outages in the next
year, we can’t really tell for certain
whether system quality improved.
It might have, or it might be that we
were measuring statistical noise, and
they just got lucky. Similarly, security

DEVELOPER PRODUCTIVITY FOR HUMANS

28	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

threats and privacy incidents are very
impactful but also very rare. In all
these metrics, we’re aiming for a met-
ric value of “zero,” but it’s hard to tell
whether we’ve actually improved on a
single project.

Process and code quality metrics
enable tracking of the indicators that
determine system quality. Whether
they are validated metrics derived
from logs or are based on self-report
data from engineer surveys, such mea-
sures allow engineers to communicate
areas in need of attention as well as
the impact of code health investments.
Without these intermediary metrics,
stakeholders may think that a year
with no outages is evidence that the
system is high quality because they
lack visibility into how developers are
experiencing the code base and the
ways in which it may be slowing them
down. If stakeholders interpret a low
defect rate as a guarantee of high-qual-
ity code, they may encourage a more
exclusive focus on launching features
to improve product quality without
allocating sufficient resources to im-
prove a potentially high-risk system.

In a year with no outages or inci-
dents, two realities could be at play.
In the worst-case scenario, developers
may have been effective at inefficiently
working around various weaknesses
to prevent bugs in a poorly operat-
ing system. In the best-case scenario,
developers were working in a system
with a low risk of defects and were
free to focus on enhancements and
iterating on new features. Without
code quality metrics, leadership can’t
be sure, and they won’t know how to
direct engineering efforts to ensure de-
veloper velocity and product quality
over the long term.

Product Quality
Product quality is primarily experi-
enced by the customers, but we did

also ask developers about how they
thought of product quality. In these
interviews, developers identified three
key factors of product quality: utility,
usability, and reliability. Interestingly,
engineers identified “innovativeness”
as a distinct concept that is not part
of product quality. One engineer ex-
plained it like this: “I think quality
is how well does it do what it says
it’s doing, and innovativeness is like
whatever it says it’s doing—Is that in-
teresting or not? Is that complicated
or not? Is that… exciting or not?”

Engineers noted that they primar-
ily have influence over reliability but
that they worked with product man-
agers and with user experience de-
signers and researchers to contribute
to the utility and usability of their
product. Engineers made the connec-
tion back to code quality in two ways.
They again noted that low code qual-
ity can slow the engineering velocity
and consequently delay product im-
provements or even render them in-
feasible. The participants also made
the connection to lower code quality
increasing the risk of defects (and thus
system quality), which would influ-
ence product quality.

Connecting the Types
of Quality
These four types of quality are not
wholly independent of each other. We
do theorize that there’s a connection
between these—that process qual-
ity affects code quality, which affects
system quality, which affects product
quality. Research has already shown
that some process quality metrics can
be used to predict defect rates (system
quality). The connections are tenuous,
though, and other research has shown
that the predictive power is not con-
sistent across projects6,12,13,15,15 and
not reliable over time.6,14,16 For ex-
ample, Nagappan et al.12 attempted

to predict postrelease defects using
code quality metrics, but each project
had a different set of metrics that pre-
dicted defects. Most concerning was
the work by Ekanayake et al., which
found that, even for a single project,
the predictive value of metrics de-
creased significantly over time. Our
field needs more research to under-
stand why we are seeing such results
when our intuition would say that the
metrics of quality should be the same
across products and should be stable
across time for a given product.

We hypothesize that part of the
problem here is that the existing code
quality metrics are not actually mea-
suring the underlying concepts of code
quality, as engineers see them, which
is possibly what is leading to those
metrics not being predictive of system
quality. Plenty of prior research, for
example, has found that cyclomatic
complexity is effectively the same as
measuring lines of code,17 to the point
that controlling for this effect through
some means is now standard practice
in the research community. This makes
cyclomatic complexity a poor proxy
of code quality, which is likely why so
much research has found that it doesn’t
predict defect rates or represent devel-
opers’ views of complexity.10 That’s
only a single example, but given the
depth of this space, there are many fur-
ther opportunities for improved met-
rics across all four types of quality.

What Does an Engineering
Lead Do With This?
Our theory provides a more nuanced
view of quality, which we hope leads
to better outcomes when in discus-
sions about how to improve soft-
ware quality by ensuring that all
participants are referring to the same
thing. If the team is trying to improve
product quality, this might indeed re-
quire improving process quality and

DEVELOPER PRODUCTIVITY FOR HUMANS

	 JANUARY/FEBRUARY 2024 | IEEE SOFTWARE � 29

code quality, but everyone needs to
be aware that product quality is the
end goal, and the connection between
the changes being made and prod-
uct quality needs to be clear. While
increasing test coverage might help
product quality a little bit, the connec-
tion is farther away. It might be better
to focus on (and measure the impact
of) changes to system quality. Mean-
while, if the team is concerned with
code quality, there is a different set of
metrics to consider, and focusing on
improved process quality might be in
order. The actions taken to improve
software quality—and the metrics to
measure it—depend on which type of
quality we want to improve.

In this article, we explored the
components that make up soft-
ware quality, but that’s only one

aspect of the entire story around pro-
ductivity. In future articles, we’ll also
look at how we’ve tried to reason
about speed and ease as well as the
connection between these three com-
ponents of productivity. The most

important part when measuring pro-
ductivity, though, is recognizing that
there are many aspects at play here,
and measuring only one of them will
result in inadvertent consequences. Even
within a single component, such as
quality, we quickly find that there are
many forms of quality, and it’s impor-
tant to recognize which one we are try-
ing to improve so that we can use the
best possible measures of impact.

References
1.	N. Forsgren, M.-A. Storey, C. Mad-

dila, T. Zimmermann, B. Houck, and

J. Butler, “The SPACE of developer

productivity: There’s more to it than

you think,” Queue, vol. 19, no. 1,

Jan./Feb. 2021, Art. no. 10,

doi: 10.1145/3454122.3454124.

2.	C. Sadowski and T. Zimmerman,

Rethinking Productivity in Soft-

ware Engineering. Berkeley, CA,

USA: Apress, 2019. [Online]. Avail-

able: https://link.springer.com/

book/10.1007/978-1-4842-4221-6

3.	“Rethinking productivity in

software engineering (Dagstuhl

Seminar 17102),” Schloss

Dagstuhl-Leibniz-Zentrum für Infor-

matik, Dagstuhl, Germany, 2017.

[Online]. Available: https://www.

dagstuhl.de/en/seminars/seminar

-calendar/seminar-details/17102

4.	N. Nagappan et al., “The influence

of organizational structure on

software quality,” in Proc. ACM/

IEEE 30th Int. Conf. Softw.

Eng., 2008, pp. 521–530, doi:

10.1145/1368088.1368160.

5.	B. Katzmarski and R. Koschke, “Pro-

gram complexity metrics and program-

mer opinions,” in Proc. 20th IEEE

Int. Conf. Program Comprehension

(ICPC), Jun. 11–13, 2012, pp. 17–26,

doi: 10.1109/ICPC.2012.6240486.

6.	F. Rahman and P. T. Devanbu, “How,

and why, process metrics are better,”

in Proc. 35th Int. Conf. Softw. Eng.

(ICSE), 2013, pp. 432–441, doi:

10.1109/ICSE.2013.6606589.

7.	R. Moser et al., “A comparative

analysis of the efficiency of change

metrics and static code attributes

for defect prediction,” in Proc.

ACM/IEEE 30th Int. Conf. Softw.

Eng., 2008, pp. 181–190, doi:

10.1145/1368088.1368114.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

COLLIN GREEN is the user experience

research lead for the Engineering Productivity

Research team at Google, Mountain View, CA

94043 USA. Contact him at https://research.

google/people/107023/ or colling@google.com.

MAGGIE HODGES is a user experience

researcher on the Engineering Productivity

Research team at Google, Mountain View, CA

94043 USA. Contact her at https://research.

google/people/108095/ or hodgesm@google.

com.

CIERA JASPAN is the software engineering

lead for the Engineering Productivity Research

team at Google, Mountain View, CA 94043 USA.

Contact her at https://research.google/people/

CieraJaspan/ or ciera@google.com.

JESSICA LIN is a user experience researcher

on the Engineering Productivity Research team

at Google, Mountain View, CA 94943 USA.

Contact her at jsclin@google.com.

https://link.springer.com/book/10.1007/978-1-4842-4221-6
https://link.springer.com/book/10.1007/978-1-4842-4221-6
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/17102
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/17102
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/17102
http://dx.doi.org/10.1109/ICSE.2013.6606589
http://dx.doi.org/10.1145/1368088.1368114
https://research.google/people/107023/
https://research.google/people/107023/
mailto:colling@google.com
https://research.google/people/108095/
https://research.google/people/108095/
mailto:hodgesm@google.com
mailto:hodgesm@google.com
https://research.google/people/CieraJaspan/
https://research.google/people/CieraJaspan/
mailto:ciera@google.com
mailto:jsclin@google.com

DEVELOPER PRODUCTIVITY FOR HUMANS

8.	M. D’Ambros et al., “On the relationship

between change coupling and software

defects,” in Proc. 16th Working Conf.

Reverse Eng., 2009, pp. 135–144,

doi: 10.1109/WCRE.2009.19.

9.	M. Pinzger et al., “Can developer-

module networks predict failures?”

in Proc. 16th ACM SIGSOFT Int.

Symp. Found. Softw. Eng. (SIG-

SOFT/FSE), 2008, pp. 2–12,

doi: 10.1145/1453101.1453105.

10.	J. Börstler et al., “Developers

talking about code quality,” Em-

pirical Softw. Eng., vol. 28, no. 6,

2023, Art. no. 128, doi: 10.1007/

s10664-023-10381-0.

11.	L. Cheng et al., “What improves de-

veloper productivity at Google? Code

quality,” in Proc. 30th ACM Joint

Eur. Softw. Eng. Conf. Symp. Found.

Softw. Eng., 2022, pp. 1302–1313,

doi: 10.1145/3540250.3558940.

12.	N. Nagappan et al., “Mining

metrics to predict component fail-

ures,” in Proc. Int. Conf. Softw.

Eng. (ICSE), 2006, pp. 452–461,

doi: 10.1145/1134285.1134349.

13.	A. B. Binkley and S. R. Schach,

“Validation of the coupling de-

pendency metric as a predictor of

run-time failures and maintenance

measures,” in Proc. 20th Int. Conf.

Softw. Eng., 1998, pp. 452–455,

doi: 10.1109/ICSE.1998.671604.

14.	S. Kim et al., “Predicting faults from

cached history,” in Proc. 29th Int.

Conf. Softw. Eng. (ISEC), 2007, pp.

489–498, doi: 10.1109/ICSE.2007.66.

15.	A. E. Hassan, “Predicting faults using

the complexity of code changes,” in

Proc. IEEE 31st Int. Conf. Softw.

Eng., 2009, pp. 78–88, doi: 10.1109/

ICSE.2009.5070510.

16.	J. Ekanayake et al., “Tracking concept

drift of software projects using defect

prediction quality,” in Proc. 6th IEEE

Int. Working Conf. Mining Softw.

Repositories, 2009, pp. 51–60, doi:

10.1109/MSR.2009.5069480.

17.	K. E. Emam et al., “The confound-

ing effect of class size on the validity of

object-oriented metrics,” IEEE Trans.

Softw. Eng., vol. 27, no. 7, pp. 630–

650, Jul. 2001, doi: 10.1109/32.935855.

Over the Rainbow: 21st Century
Security & Privacy Podcast
Tune in with security leaders of academia,
industry, and government.

www.computer.org/over-the-rainbow-podcast
Subscribe Today

Bob Blakley Bob Blakley

Lorrie CranorLorrie Cranor

Digital Object Identifier 10.1109/MS.2023.3334596

http://dx.doi.org/10.1109/WCRE.2009.19
http://dx.doi.org/10.1145/1453101.1453105
http://dx.doi.org/10.1007/s10664-023-10381-0
http://dx.doi.org/10.1007/s10664-023-10381-0
http://dx.doi.org/10.1145/3540250.3558940
http://dx.doi.org/10.1109/ICSE.2009.5070510
http://dx.doi.org/10.1109/ICSE.2009.5070510

	025_41ms01-developerprod-3324830

