
4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

WITH THIS ISSUE, I will take over
as the new Editor in Chief (EIC) for
IEEE Software, a magazine I have
followed most of my working life. It
will not be easy as I am following the
formidable Ipek Ozkaya, who served
here as EIC for the past five years. I
am jumping in when all of next year’s
issues are already planned. What a

fantastic setup to ease myself into the
agenda. It is easy to forget that this
magazine is built by so many skilled
and wonderful coeditors, guest editors,
reviewers, and authors, not to mention
boards and committees. I might need

to remind you—everyone is a volun-
teer. Very impressive!

In addition, we have professional
and dedicated staff to keep it all aligned,
to make systems work, and to ensure
that we adhere to a large set of policies.
Together, there is a strong will from all
of us to keep the magazine timely and
interesting for this grand community

of smart and curious readers. I feel
blessed to have this opportunity, and
I hope that the magazine will continue
to be a guide and an inspiration.

Being in touch with research helps
us to understand the frontiers, and
being in touch with industry makes
us aware of opportunities and chal-
lenges. We will address issues close

to us who realize that software runs
the world. The magazine is and will
remain a beacon.

Are We Building the
“Product Right”? Or the
“Right Product”?
Forty years have passed since IEEE
Software came to life. In the first is-
sue of IEEE Software, I cannot help
but smile when reading Prof. Barry
Boehm’s article “Verifying and Vali-
dating Software Requirements and
Design Specifications.”1 In this ar-
ticle, there are two statements ex-
pressed that are probably repeated at
every software testing course:

“Verification. “Am I building the
product right?”

Validation. “Am I building the
right product?””

By including such an article,
IEEE Software has contributed to
forming the field of software testing.
The statement is profound, yet much
has changed since then—most of all,
the scale of things, but also the num-
ber of graduating computer scientists

Digital Object Identifier 10.1109/MS.2023.3328199
Date of current version: 20 December 2023

FROM THE EDITOR
Editor in Chief: Sigrid Eldh
Ericsson AB, Mälardalen University,
Carleton University
sigrid.eldh@ieee.org

A 40-Year Impact
Perspective
Meet Your New Editor in Chief
Sigrid Eldh

Together, there is a strong will from all
of us to keep the magazine timely and
interesting for this grand community

of smart and curious readers.

https://orcid.org/0000-0002-5070-9312

FROM THE EDITOR

 JANUARY/FEBRUARY 2024 | IEEE SOFTWARE 5

and software engineers. In 1984, I
was in the first batch of computer
science students in Sweden. We were
then promised virtual keyboards and
screens instead of the clumsy boxes.
These virtual interactions were to be
like moving paper on a desk, creat-
ing a keyboard by resizing a dot (like
widgets) on the entire screen that
was supposed to be like a cloth to
put on any desk.

Today, we still use boxes of hard-
ware, screens, keyboards, and cords,
even if the technology for virtual
keyboards and screens is here. The
reason is more about business than
technology, paired with a better un-
derstanding of ergonomics. The
driver of software evolution is busi-
ness. We simply like boxes. Boxes are
tangible. And virtual reality software
is much more difficult when it comes
to getting it just right. It will still take
time before we can tap on our virtual
keyboards in the air. But why have
keyboards at all when we can simply
use eye tracking and voice recognition
instead? We instead buy more things.
Things are easier to sell. We must
hope that the virtual software experi-
ence will be more sustainable—fewer
boxes, more software. Obviously, the
“right” in “right product” is not so
simple. Today, our validation exercise
is replaced with what closes the Dev
Ops loop: automatic data collected
from the user.

The development of “building the
product right” has also changed over
these 40 years. Verification has be-
come testing. Testing has become
diagnosing. We prefer tests to be gen-
erated, and if not, to be expressed
directly in code to be repeated. Auto-
mated tests are far more efficient and
effective. The other part of this state-
ment is: What are effective ways to
build software? How can organiza-
tions, with the right tools and ways

of working, create the software re-
flecting the goal for the “product” or
software system? How can we break
down our ideas?

Today in agile organizations, re-
quirements are often translated into
textual “user stories.” Is the architec-
ture organizing these concepts enough
to build software in the right way?
In fact, in agile design, many organi-
zations are no longer documenting
design specifications at the level of de-
tail sufficient for verification. It is too
costly. One solution is to automatically
capture the text and turn it into a
model that can generate the code we
want—or everyone must learn how
to express ideas in a more software-
friendly format. Making text into
models and/or code is often the core of
what drives “digitalization.” Another
solution to look at this is to say that
we transform or curate the data to the
right format for a model. My hope is
that this transformation also includes
a more verification-friendly format to
be able to “build it right” automati-
cally as an extra benefit.

Ongoing Digitalization
Today, system documentation has be-
come one important data source serv-
ing localized large language models
(LLMs) to query for a new generation
of developers. Digitalization is on-
going in both industries and govern-
ments. And digitalization is especially
important for those who have binders
of documentation for the legacy code.

Software systems are seldom thrown
out but have had to adapt. It takes a
lot of effort to retrain staff to express
themselves more formally in a model
instead of writing a text, sometimes
presented as slide text. It is costly for
most industries to transform manual
work to automation and prepare the
software to be tuned by AI mod-
els for which customers may not be

CONTACT
US

AUTHORS

For detailed information on submitting
articles, visit the “Write for Us” section at
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org
(please specify IEEE Software.)

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org

MISSING
OR DAMAGED COPIES

contactcenter@ieee.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions
requests. For more information, visit www.
ieee.org/publications/rights/rights-link.html

http://www.computer.org/software
mailto:software@computer.org
http://www.computer.org/software
http://www.computer.org/subscribe
mailto:address.change@ieee.orgplease
mailto:address.change@ieee.orgplease
mailto:member.services@ieee.org
mailto:contactcenter@ieee.org
http://www.ieee.org/publications/rights/rights-link.html
http://www.ieee.org/publications/rights/rights-link.html

FROM THE EDITOR

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

willing to pay. This is the dilemma
of software development. Who will
pay for upgrades, better developer
tools and infrastructure, tests, and
migrating to the latest platform? It
is still very hard to make clear busi-
ness cases for maintenance costs
and to truly honor backward com-
patibility in upgrades.

Today, the integration of soft-
ware into ecosystems makes it even
more costly to untangle software,
processes, and tools. Yet, untangling
is what most of us need and want.
We need tools to aid us in automatic
refactoring, something that is rather
difficult, but often necessary, to be
able to keep up with new demands.

Code Cloning and the Need
for Automatic Refactoring
By looking at code cloning research,
it is relatively easy to identify clones,
but unfortunately, much of this re-
search stops at this first step. So
now what? Knowing that your code
is filled with clones is like a measur-
able lack of communication (and
the lack of reusable libraries). The
solution should of course be to auto-
matically refactor and remove these
clones from the code base. We still
have a long way to go to make sure
the refactored code is equivalent to
the old code, with the same or im-
proved performance, and with
fewer faults. This is too time con-
suming today, except maybe for
type 1 clones (the duplications)—if
they are big enough.

In addition, most of us rely on
unit tests for verification, which
would be rather useless after such
a transformation. No customer
wants to pay for this, even if it in-
creases effectiveness, lowers the
code footprint, and saves energy.
You still need to simultaneously
create new sellable functionality.

Can Large Languages Models
Solve Our Refactoring and
Verification Needs?
It is no wonder why we investigate
having LLMs aid us in generat-
ing more effective and better code.
Hopefully, these models can be
trained to do this more accurately.
LLMs are notorious for giving us
something that looks correct but is,
in fact, wrong. These are known
as hallucinations.

For smaller players and sys-
tems, refactoring is less of an is-
sue. For large organizations and
systems, it is a necessity to invest in
the management of the constantly
increasing complexity and the sys-
tem evolution. The “keep it simple”
mantra does sometimes require us
to completely start over, but that in-
vestment is often too steep. Instead,
most companies work hard to get
their own LLM to learn their pat-
terns and make sure to limit bugs.
Can the developers generate the
code and then continue to happily
generate the tests with these LLMs?
How do you know what is right?
The code or the test? Is there only
one answer to this question? Is this
ground truth, or is this maybe a
 perspective in a specific context that
something is right?

What Is Right for Whom?
What is right and for whom can be
both an ethical and a scientific ques-
tion. It is easy to create a belief sys-
tem where you think you know the
truth. Critical thinking is a skill we
must improve as software engineers.
Improvement should be both in
the scientific method and in under-
standing the context. Where does
“right” come from? The require-
ments? The design documentation?

As a tester, crit ical thinking
is essential, but does that alone

EDITORIAL
STAFF
IEEE SOFTWARE STAFF
Journals Production Manager: Peter Stavenick,
p.stavenick@ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@computer.org
Periodicals Operations Project Specialist:
Christine Shaughnessy
Content Quality Assurance Manager: Jennifer Carruth
Periodicals Portfolio Senior Manager: Carrie Clark
Director of Periodicals and Special Products:
Robin Baldwin
IEEE Computer Society Executive Director:
Melissa Russell
Senior Advertising Coordinator: Debbie Sims

2023 CS PUBLICATIONS BOARD
Greg Byrd (VP of Publications), Terry Benzel,
Irena Bojanova, David Ebert, Dan Katz, Shixia Liu,
Dimitrios Serpanos, Jaideep Vaidya; Ex officio:
Robin Baldwin, Nita Patel, Melissa Russell

2023 CS MAGAZINE
OPERATIONS COMMITTEE
Irena Bojanova (Chair), Lorena Barba,
David Hemmendinger, Lizy K. John, Fahim Kawsar,
San Murugesan, Ipek Ozkaya, George Pallis,
Charalampos (Babis) Z. Patrikakis, Sean Peisert,
Balakrishnan (Prabha) Prabhakaran,
André Stork, Jeff Voas

IEEE PUBLICATIONS OPERATIONS
Senior Director, Publishing Operations: Dawn M. Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Digital Assets & Editorial
Support: Neelam Khinvasara
Senior Manager, Journals Production: Katie Sullivan

Editorial: All submissions are subject to editing for clarity, style, and
space. Unless otherwise stated, bylined articles and departments,
as well as product and service descriptions, reflect the author’s
or firm’s opinion. Inclusion in IEEE Software does not necessarily
constitute endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-based
system, ScholarOne, at http://mc.manuscriptcentral.com/
sw-cs. Be sure to select the right manuscript type when
submitting. For complete submission information, please visit
the Author Information menu item under “Write for Us” on our
website: www.computer.org/software.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2023.3332788

mailto:p.stavenick@ieee.org
mailto:software@computer.org
http://mc.manuscriptcentral.com/sw-cs
http://mc.manuscriptcentral.com/sw-cs
http://www.computer.org/software
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

FROM THE EDITOR

 JANUARY/FEBRUARY 2024 | IEEE SOFTWARE 7

automatically make you the best
test oracle? Can you really know
that what you are deciding is al-
ways right? I hear people discuss
the sequence of the multiple trained
AI models that are used to fix ev-
ery step in the process. This ranges
from cleaning the data and trans-
forming it to analyzing it and cre-
ating an action. Both reinforcement
learning and supervised variants are
interesting techniques in the sense
that it is important who provides
the ground truths for these models.
With what knowledge do you tell
what is right? Is it always obvious?
Probabilities might not be right ei-
ther—as the “right answer” really
could be in the outlier.

As a result, it is not hard to un-
derstand the fear some humans have
of AI. Imagine having to explain to
a future automatic bot that the is-
sues and contexts for your case are
unique. Have not most of us already
had that experience in some horri-
ble phone guidance system? As soft-
ware engineers, we must take this
into account. We must be think-
ing about how to allow for more
“diverse” models by thinking more
holistically.

One new approach is that we aim
to train domain experts to write soft-
ware with automatic code bots in-
stead of having a wall between users
(domain experts) and developers. Are
LLMs not just exactly that—devel-
oper support? We just need to practice
“how to ask the questions right” and
express ourselves more clearly. The
ground truth of what is right might
often come from users. If the user is
“another bot” or a machine interface,
what then? Learning to program on
a higher abstraction level will be like
learning a foreign language. Our brain
processes it similarly, as this study2
partly indicates.

We need to question ourselves
about what we observe and if that
fits “for whom” it is intended. Is
what we observe “right” and in what
context? One example is if we are
looking for a bug in our AI model,

this will look completely different
from someone trying to figure out
the ecosystem of an AI model. This
is why abstraction levels make sense.

A Quest for Truth!
Making any knowledge or process
more observable, possible to debug,
and possible to explain should be a
quest for truth. But are the data suf-
ficient? We humans are not as self-
aware as we think we are, so maybe
handing some of the smaller decisions
over to the computer would not be so
bad after all. Having the human in the
loop is essential for evolution. Other-
wise, we will miss both innovation
and new insights, even if some deep
learning models can show us new pat-
terns. Do not forget the unique cre-
ativity needed and (sorry for repeating
myself) the quest for truth. Our hu-
man perspective is unique, and it mat-
ters. One single person’s truth also
matters. You are important.

We should be satisfied with the
things that are getting better. Soft-
ware engineering is key in this trans-
formation as well as in making it
easier to both build and test. Still, we
must ask ourselves: What is better?

More effective? More sustainable?
More trustworthy? More fun? More
challenging? Or maybe more secure?
Or are you simply holding on to
what is known? Change will happen,
that is for certain.

Therefore, it is with pleasure that
I present an issue that has the theme
of observability and explainability of
system decisions. It will be as valu-
able as it has always been to dive into
the articles.

I can only conclude with the hope
to fulfill the first as well as the
last EIC’s wish to address more

industry-relevant aspects in this
magazine. Remaining open to new
technology shifts, which the indus-
try needs to respond to, is impor-
tant. These technology shifts are
happening now.

References
1. B. W. Boehm, “Verifying and validat-

ing software requirements and design

specifications,” IEEE Softw., vol. 1,

no. 1, pp. 75–88, Jan. 1984, doi:

10.1109/MS.1984.233702.

2. B. Floyd, T. Santander, and

W. Weimer, “Decoding the represen-

tation of code in the brain: An fMRI

study of code review and expertise,”

in Proc. IEEE/ACM 39th Int. Conf.

Softw. Eng. (ICSE), 2017, pp. 175–

186, doi: 10.1109/ICSE.2017.24.

Making any knowledge or process
more observable, possible to debug,
and possible to explain should be a

quest for truth.

http://dx.doi.org/10.1109/MS.1984.233702
http://dx.doi.org/10.1109/ICSE.2017.24

	004_41ms01-editorial-3328199

