
0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E 	 NOVEMBER/DECEMBER 2023 | IEEE SOFTWARE � 139

REQUIREMENTS
Editor: Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

SOUNDING BOARD

THINK OF A child learning how to
catch a ball repeatedly thrown to her
by her father. As the child practices
or continues with this activity, she
becomes better at it. Through a pro-
cess of trial and error and across sev-
eral attempts, the child, in essence, is
gathering more data on what works
well and what does not work and,
in this manner, mapping what she
learns to the outcome (ball catching).
If the child could possibly articulate
what she learned, the result could be
represented as a function: an exten-
sional mathematical device mapping
ball paths to the appropriate actions.
With better and more and more tri-
als, the accuracy of the function in-
creases. Nonetheless, the function
remains dependent on the available
data (ball catching experiences).

Now, suppose that, after growing
up, the child is able to understand
what occurs when ball throwing,
in terms of concepts and proper-
ties of relevant things in the world,
e.g., gravity, the initial force of
throwing the ball, throwing angles,
air resistance, distance, and so on.
That understanding could then be
synthesized in one single equation

(a symbolic artifact). Moreover, un-
derstanding (in terms of concepts)
gives meaning to the elements in the
equation, and it also explains why
that equation (now an intentional
artifact) can account for all the pre-
vious trials (data points) and all pos-
sible future trials. At that point, the
data points themselves are no lon-
ger needed. The equation, as a sym-
bolic intentional artifact, is all that
one needs to predict how to behave
in possible ball-throwing/catching

circumstances. Note that the equa-
tion describing the possible move-
ments of the ball describes this class
of events but does not explain it. For
the explanation, we need to refer to
laws of nature and the concepts and
properties populating the ontology
of the domain.1

Data-Driven Versus
Theory-Driven Knowledge
The ball-catching story illustrates the
two complementary strategies that

Thinking Fast and Slow
in Software Engineering
Giancarlo Guizzardi , Oscar Pastor, and Veda C. Storey

Digital Object Identifier 10.1109/MS.2023.3306132
Date of current version: 1 December 2023

©SHUTTERSTOCK.COM/TIERNEYMJ

https://orcid.org/0000-0002-3452-553X

SOUNDING BOARD

140	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

we, as humans, employ to acquire
knowledge and reason about the
world. We use a bottom-up approach
starting from data (e.g., ball-throw-
ing events) to generalize mathematical
descriptions and, ultimately, concep-
tualizations that explain or identify
patterns in the data. We also use
a top-down approach, which starts
by conceptualizing important con-
cepts (e.g., physical agents having
goals and physical objects, with
their related mass, gravity, dis-
tance, and force). We then repre-
sent them so that appropriate data
can be obtained that correspond
to these concepts. In the top-down
approach, we can test our conceptu-
alizations against empirical data in
the world, which, in turn, can trig-
ger the evolution of our descriptions
and conceptualizations.

These two strategies also bear
some similarities to Daniel Kahne-
man’s two systems of reasoning in
his Thinking Fast and Slow. Sys-
tem 1 refers to forming (inexact, fal-
lible, and perhaps biased) patterns
from sense data (experiences). Sys-
tem 2 refers to sensemaking by con-
necting data to higher-level concepts
via deliberative logical reasoning. As
Kahneman writes, “The automatic
operations of System 1 generate sur-
prisingly complex patterns of ideas,
but only the slower System 2 can
construct thoughts in an orderly se-
ries of steps.”2

Both data-driven (bottom-up) and
theory-driven (top-down) forms of
knowledge acquisition strategies
are essential and can be captured
in the following paraphrase of
Immanuel Kant: “Concepts with-
out data are empty; data without
concepts are blind. Only in their
unison can knowledge arise.” How-
ever, from the perspective of an or-
ganism that wishes to reliably and

efficiently transfer knowledge from
one situation to the next, sym-
bolic intentional artifacts (e.g., al-
gorithms, systems of equations, and
logical theories) that are explain-
able in terms of domain concepts
are the highest form of knowledge
representation structures our cog-
nitive processes are able to produce.
In contrast, vast amounts of data are
an imperfect replacement when we
are not able to synthesize knowl-
edge in this form. In other words,
although we need these two ap-
proaches working in tandem, and
a data-driven strategy is essential
for validating and evolving our
theories of the world, the theories
themselves are the most reliable
and efficient form of knowledge we
can produce.

Software Engineering
The software engineering discipline
has historically loosely mimicked
these two strategies. Classical soft-
ware engineering uses a theory-driven
(again, top-down, deliberate, and
explicit) approach that starts by con-
ceptualizing real-world concepts, re-
lationships, properties, constraints,
or stakeholders’ goals. These lead to
symbolic descriptions (i.e., programs)
that ultimately lead to (runtime)
data. Software tests, deployment,
use, and maintenance then supply
new data to correct and evolve both
the underlying description and the
conceptualization.

With the availability of big data
and computing power, a new data-
driven approach (bottom-up, inex-
act, possibly biased, and strongly
based on subsymbolic artificial intel-
ligence techniques) has become dom-
inant. In this approach, there is no
symbolic description of the data but,
rather, a mathematical description
of the regularities found in the data

(basically, a complex extensional func-
tion) that is generated (“learned”) from
the data, most likely using machine
learning techniques. The data-driven
approach promises to generate soft-
ware from data without the need to
program, in other words, descriptions
without a descriptor.

There is a fundamental asymme-
try in the use of theory-driven and
data-driven approaches in software
engineering. This is in contrast to
our theory-driven and data-driven
cognitive processes, which do work
in tandem. While in the theory-
driven approach, the theory is al-
ways validated and corrected using
real-time execution data, in our
current data-driven practices, we
never move from description (an
executable program implementing
a complex function) to concep-
tualization (an explanation of the
program in terms of real-world con-
cepts). As a result, in the latter ap-
proaches, we inevitably end up with
software that is unexplained (and
unexplainable). This is because ex-
planation necessarily requires real-
world semantics.1,3 That is, it requires
a mapping to concepts that are pos-
sessed by the explanation seeker.1
Moreover, since software produced
by a data-driven process is a func-
tion of the existing data (in which it
was trained), it is not able to reflect
on how its own instructions map to
things and properties in the world,
including human values and goals.
Therefore, the software is unable to
adapt to a large range of phenomena
that can occur in reality. This step
to conceptualization is missing, but
necessary, for a software engineer-
ing practice to be able to make sense
of data and deliver software systems
that are trustworthy. However, soft-
ware systems that are not trustwor-
thy cannot be ethical.

SOUNDING BOARD

	 NOVEMBER/DECEMBER 2023 | IEEE SOFTWARE � 141

Toward Meaningful Software
A software engineering strategy
that relies solely on data, without
considering connection to a con-
ceptualization of the domain, is
not guaranteed to produce software
systems that are trustworthy and,
hence, ethical.

In software engineering, we are
increasingly required to produce
software artifacts that impact hu-
man goals. For example, there are
systems that decide whether mort-
gages are approved or parole granted.
They can decide what information is
disseminated and how and what ac-
tions are taken in cases of conflicts
of interest or inconsistencies in the
principles followed. Moreover, as dis-
cussed in Guizzardi et al.,4 ethical
requirements are always ecological
requirements. That is, the stakehold-
ers of these systems are not only the
users directly interacting with the
systems but the entire ecosystem of
agents whose goals can be affected
by the system. For example, autono-
mous vehicles do not involve only the
passengers of a car itself. There are
also other drivers, pedestrians, and
citizens concerned with energy con-
sumption as well as the cost of roads,
unemployment, and so on. To be ethi-
cally designed, software systems must
adhere to the principles of benefi-
cence (contributing positively to the
goals of these stakeholders), nonma-
leficence (not diminishing the goals
of these stakeholders), autonomy, ex-
plainability, and fairness.4 Without
explicitly considering these ethical
requirements, we cannot produce
autonomous systems that are truly
explainable and exhibit beneficence/
nonmaleficence.

Explainability is a key challenge to
current data-driven approaches. This
is expected: we have descriptions
without a descriptor, so the meaning

of these descriptions must be pro-
duced a posteriori. There are roughly
two classes of strategies for explain-
ing the behavior of these data-driven
generating processes1: the white-box
approaches and the black-box ap-
proaches. In the former, we aim at
generating a symbolic artifact (typi-
cally, a decision tree) that mimics the
behavior of that process. In the lat-
ter, we aim at explaining the process
without opening the black box (e.g.,
via the description of counterfac-
tual scenarios).

In both cases, an explanation in-
volves generating a symbolic arti-
fact. However, as discussed at length
in Guizzardi et al.,1 these strategies
rest on the false assumption that
the symbolic artifacts generated
are self-explanatory simply by vir-
tue of being symbolic! Instead, and
referring back to our initial story,
we can understand, explain, and
judge the quality (correctness and
completeness) of our ball trajec-
tory equations only by interpreting
them in terms of domain concepts
(forces, distances, throwing angles,
and so on). There is no explanation
without real-world semantics.1,3
The challenging problem of seman-
tics is exactly what is represented
in the mapping from symbols to a
conceptualization.

Now, consider beneficence/non-
maleficence. From the outset, it should
be obvious that to preserve human and
societal values, principles, and goals,
especially under conflicting situa-
tions, software systems must be fully
aware of what these values, prin-
ciples, and goals are as well as how
they influence one another. These es-
sential components of ethical design
will not emerge from the data them-
selves but must be explicitly elicited
and modeled as a result of careful
meticulous conceptual work.4

Furthermore, suppose it is possible
to embed these ethical components
into a software program, perhaps
by explicit instructions or as learned
rules. If an artifact operates in an
open-world environment over which
we cannot have control, then how
can we guarantee that it will act
with beneficence/nonmaleficence to-
ward all relevant stakeholders under
all possible conditions?

In short, we cannot. This is be-
cause of the nature of the descriptions
that are generated in a bottom-up
fashion. Specifically, the mathemati-
cal functions abstracted to account
for specific datasets are extensional;
i.e., their mappings reflect regulari-
ties present in those datasets. Again,
referencing our story, if one gener-
ates a function merely based on one’s

To meet the challenge of producing
ethical software, we need to consider

the analogy with human cognitive
systems and knowledge acquisition

processes seriously.

SOUNDING BOARD

142	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

ball-catching experiences, that func-
tion cannot offer mappings from
inputs under completely different con-
ditions, for example, much heavier
balls, ball throwing in very heavy
wind, or ball throwing on Mars. To
generalize beyond the actual history
of experiences to experiences in new
possible worlds, we need to contend
with domain concepts and properties
of the relevant things themselves. It
is only by understanding these con-
cepts and properties that we can map
situations to behaviors beyond actual
experiences and move from exten-
sional descriptions to intentional de-
scriptions. This is a key point for a

simple reason: reality seems to pres-
ent itself in a “long-tailed” fashion.
In other words, most of our experi-
ences exemplify only a small set of
situation types. However, there are
many situation types that can mani-
fest themselves in different excep-
tional situations. If this is the case,
then by simply gathering more data,
we end up acquiring only more and
more data about the same small set
of situations.

In our current data-driven trend
in software engineering, there are
often hidden assumptions that all
we need to produce software is
heaps of data and general learning

algorithms, that meaning will simply
emerge from data, and that, by au-
tomating away human intervention,
we can produce software at a faster
pace. However, to meet the chal-
lenge of producing ethical soft-
ware, we need to consider the analogy
with human cognitive systems and
knowledge acquisition processes se-
riously. Specifically, we require a
proper integration of the software
engineering equivalents of data-
driven and theory-driven strategies.
To have that, we must properly con-
nect data to their symbolic descrip-
tions with meaning, both in the sense
of semantics and in the sense of pur-
pose/significance. To achieve that, we
cannot remove from software engi-
neering the human-centric processes
of domain conceptualization, con-
ceptual analysis and clarification,
semantic elaboration and onto-
logical grounding, and ethical re-
flection, even if these processes seem
to slow us down at first.

References
1.	G. Guizzardi and N. Guarino,

“Semantics, ontology and explana-

tion,” 2023, arXiv:2304.11124.

2.	D. Kahneman, Thinking, Fast and

Slow. New York, NY, USA: Farrar,

Straus and Giroux, 2011.

3.	K. Browne and B. Swift, “Semantics

and explanation: Why counterfactual

explanations produce adversarial

examples in deep neural networks,”

2020, arXiv:2012.10076.

4.	R. Guizzardi et al., “An ontology-

based approach to engineering

ethicality requirements,” Softw.

Syst. Model., early access, 2023, doi:

10.1007/s10270-023-01115-3.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

GIANCARLO GUIZZARDI is a full professor and chair of Se-

mantics, Cybersecurity, and Services at the University of Twente,

7500 AE Enschede, The Netherlands. Contact him at g.guizzardi@

utwente.nl.

OSCAR PASTOR is a full professor and Internationalization and

Technology Transfer Director at the Valencian Research Institute

for Artificial Intelligence, Universitat Politècnica de València, 46022

València, Spain. Contact him at opastor@dsic.upv.es.

VEDA C. STOREY is a full professor of Computer Information

Systems at Georgia State University, Atlanta, GA 30303 USA.

Contact her at vstorey@gsu.edu.

mailto:g.guizzardi@utwente.nl
mailto:g.guizzardi@utwente.nl

	139_40ms06-soundboard-3306132

