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SOUNDING BOARD

THINK OF A child learning how to 
catch a ball repeatedly thrown to her 
by her father. As the child practices 
or continues with this activity, she 
becomes better at it. Through a pro-
cess of trial and error and across sev-
eral attempts, the child, in essence, is 
gathering more data on what works 
well and what does not work and, 
in this manner, mapping what she 
learns to the outcome (ball catching). 
If the child could possibly articulate 
what she learned, the result could be 
represented as a function: an exten-
sional mathematical device mapping 
ball paths to the appropriate actions. 
With better and more and more tri-
als, the accuracy of the function in-
creases. Nonetheless, the function 
remains dependent on the available 
data (ball catching experiences).

Now, suppose that, after growing 
up, the child is able to understand 
what occurs when ball throwing, 
in terms of concepts and proper-
ties of relevant things in the world, 
e.g., gravity, the initial force of 
throwing the ball, throwing angles, 
air resistance, distance, and so on. 
That understanding could then be 
synthesized in one single equation 

(a symbolic artifact). Moreover, un-
derstanding (in terms of concepts) 
gives meaning to the elements in the 
equation, and it also explains why 
that equation (now an intentional 
artifact) can account for all the pre-
vious trials (data points) and all pos-
sible future trials. At that point, the 
data points themselves are no lon-
ger needed. The equation, as a sym-
bolic intentional artifact, is all that 
one needs to predict how to behave 
in possible ball-throwing/catching 

circumstances. Note that the equa-
tion describing the possible move-
ments of the ball describes this class 
of events but does not explain it. For 
the explanation, we need to refer to 
laws of nature and the concepts and 
properties populating the ontology 
of the domain.1 

Data-Driven Versus  
Theory-Driven Knowledge
The ball-catching story illustrates the 
two complementary strategies that 
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we, as humans, employ to acquire 
knowledge and reason about the 
world. We use a bottom-up approach 
starting from data (e.g., ball-throw-
ing events) to generalize mathematical 
descriptions and, ultimately, concep-
tualizations that explain or identify 
patterns in the data. We also use 
a top-down approach, which starts 
by conceptualizing important con-
cepts (e.g., physical agents having 
goals and physical objects, with 
their related mass, gravity, dis-
tance, and force). We then repre-
sent them so that appropriate data 
can be obtained that correspond 
to these concepts. In the top-down  
approach, we can test our conceptu-
alizations against empirical data in 
the world, which, in turn, can trig-
ger the evolution of our descriptions 
and conceptualizations.

These two strategies also bear 
some similarities to Daniel Kahne-
man’s two systems of reasoning in 
his Thinking Fast and Slow. Sys-
tem 1 refers to forming (inexact, fal-
lible, and perhaps biased) patterns 
from sense data (experiences). Sys-
tem 2 refers to sensemaking by con-
necting data to higher-level concepts 
via deliberative logical reasoning. As 
Kahneman writes, “The automatic 
operations of System 1 generate sur-
prisingly complex patterns of ideas, 
but only the slower System 2 can 
construct thoughts in an orderly se-
ries of steps.”2

Both data-driven (bottom-up) and 
theory-driven (top-down) forms of 
knowledge acquisition strategies 
are essential and can be captured 
in the following paraphrase of 
Immanuel Kant: “Concepts with-
out data are empty; data without 
concepts are blind. Only in their 
unison can knowledge arise.” How-
ever, from the perspective of an or-
ganism that wishes to reliably and 

efficiently transfer knowledge from  
one situation to the next, sym-
bolic intentional artifacts (e.g., al-
gorithms, systems of equations, and 
logical theories) that are explain-
able in terms of domain concepts 
are the highest form of knowledge 
representation structures our cog-
nitive processes are able to produce. 
In contrast, vast amounts of data are 
an imperfect replacement when we 
are not able to synthesize knowl-
edge in this form. In other words, 
although we need these two ap-
proaches working in tandem, and 
a data-driven strategy is essential 
for validating and evolving our 
theories of the world, the theories 
themselves are the most reliable 
and efficient form of knowledge we 
can produce.

Software Engineering
The software engineering discipline 
has historically loosely mimicked 
these two strategies. Classical soft-
ware engineering uses a theory-driven 
(again, top-down, deliberate, and 
explicit) approach that starts by con-
ceptualizing real-world concepts, re-
lationships, properties, constraints, 
or stakeholders’ goals. These lead to 
symbolic descriptions (i.e., programs) 
that ultimately lead to (runtime) 
data. Software tests, deployment, 
use, and maintenance then supply 
new data to correct and evolve both 
the underlying description and the 
conceptualization.

With the availability of big data 
and computing power, a new data-
driven approach (bottom-up, inex-
act, possibly biased, and strongly 
based on subsymbolic artificial intel-
ligence techniques) has become dom-
inant. In this approach, there is no 
symbolic description of the data but, 
rather, a mathematical description 
of the regularities found in the data 

(basically, a complex extensional func-
tion) that is generated (“learned”) from 
the data, most likely using machine 
learning techniques. The data-driven 
approach promises to generate soft-
ware from data without the need to 
program, in other words, descriptions 
without a descriptor.

There is a fundamental asymme-
try in the use of theory-driven and 
data-driven approaches in software 
engineering. This is in contrast to 
our theory-driven and data-driven 
cognitive processes, which do work 
in tandem. While in the theory-
driven approach, the theory is al-
ways validated and corrected using 
real-time execution data, in our 
current data-driven practices, we 
never move from description (an 
executable program implementing 
a complex function) to concep-
tualization (an explanation of the 
program in terms of real-world con-
cepts). As a result, in the latter ap-
proaches, we inevitably end up with 
software that is unexplained (and 
unexplainable). This is because ex-
planation necessarily requires real-
world semantics.1,3 That is, it requires 
a mapping to concepts that are pos-
sessed by the explanation seeker.1 
Moreover, since software produced 
by a data-driven process is a func-
tion of the existing data (in which it 
was trained), it is not able to reflect 
on how its own instructions map to 
things and properties in the world, 
including human values and goals. 
Therefore, the software is unable to 
adapt to a large range of phenomena 
that can occur in reality. This step 
to conceptualization is missing, but 
necessary, for a software engineer-
ing practice to be able to make sense 
of data and deliver software systems 
that are trustworthy. However, soft-
ware systems that are not trustwor-
thy cannot be ethical.
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Toward Meaningful Software
A software engineering strategy 
that relies solely on data, without 
considering connection to a con-
ceptualization of the domain, is 
not guaranteed to produce software 
systems that are trustworthy and, 
hence, ethical.

In software engineering, we are 
increasingly required to produce 
software artifacts that impact hu-
man goals. For example, there are 
systems that decide whether mort-
gages are approved or parole granted. 
They can decide what information is 
disseminated and how and what ac-
tions are taken in cases of conflicts 
of interest or inconsistencies in the 
principles followed. Moreover, as dis-
cussed in Guizzardi et al.,4 ethical 
requirements are always ecological 
requirements. That is, the stakehold-
ers of these systems are not only the 
users directly interacting with the 
systems but the entire ecosystem of 
agents whose goals can be affected 
by the system. For example, autono-
mous vehicles do not involve only the 
passengers of a car itself. There are 
also other drivers, pedestrians, and 
citizens concerned with energy con-
sumption as well as the cost of roads, 
unemployment, and so on. To be ethi-
cally designed, software systems must 
adhere to the principles of benefi-
cence (contributing positively to the 
goals of these stakeholders), nonma-
leficence (not diminishing the goals 
of these stakeholders), autonomy, ex-
plainability, and fairness.4 Without 
explicitly considering these ethical  
requirements, we cannot produce 
autonomous systems that are truly  
explainable and exhibit beneficence/
nonmaleficence.

Explainability is a key challenge to 
current data-driven approaches. This 
is expected: we have descriptions 
without a descriptor, so the meaning 

of these descriptions must be pro-
duced a posteriori. There are roughly 
two classes of strategies for explain-
ing the behavior of these data-driven 
generating processes1: the white-box 
approaches and the black-box ap-
proaches. In the former, we aim at 
generating a symbolic artifact (typi-
cally, a decision tree) that mimics the 
behavior of that process. In the lat-
ter, we aim at explaining the process 
without opening the black box (e.g., 
via the description of counterfac-
tual scenarios).

In both cases, an explanation in-
volves generating a symbolic arti-
fact. However, as discussed at length 
in Guizzardi et al.,1 these strategies 
rest on the false assumption that 
the symbolic artifacts generated 
are self-explanatory simply by vir-
tue of being symbolic! Instead, and 
referring back to our initial story, 
we can understand, explain, and 
judge the quality (correctness and 
completeness) of our ball trajec-
tory equations only by interpreting 
them in terms of domain concepts 
(forces, distances, throwing angles, 
and so on). There is no explanation 
without real-world semantics.1,3 
The challenging problem of seman-
tics is exactly what is represented 
in the mapping from symbols to a 
conceptualization.

Now, consider beneficence/non-
maleficence. From the outset, it should 
be obvious that to preserve human and 
societal values, principles, and goals, 
especially under conflicting situa-
tions, software systems must be fully 
aware of what these values, prin-
ciples, and goals are as well as how 
they influence one another. These es-
sential components of ethical design 
will not emerge from the data them-
selves but must be explicitly elicited 
and modeled as a result of careful 
meticulous conceptual work.4

Furthermore, suppose it is possible 
to embed these ethical components 
into a software program, perhaps 
by explicit instructions or as learned 
rules. If an artifact operates in an 
open-world environment over which 
we cannot have control, then how 
can we guarantee that it will act 
with beneficence/nonmaleficence to-
ward all relevant stakeholders under 
all possible conditions?

In short, we cannot. This is be-
cause of the nature of the descriptions 
that are generated in a bottom-up 
fashion. Specifically, the mathemati-
cal functions abstracted to account 
for specific datasets are extensional; 
i.e., their mappings reflect regulari-
ties present in those datasets. Again, 
referencing our story, if one gener-
ates a function merely based on one’s 

To meet the challenge of producing 
ethical software, we need to consider 

the analogy with human cognitive 
systems and knowledge acquisition 

processes seriously.
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ball-catching experiences, that func-
tion cannot offer mappings from 
inputs under completely different con-
ditions, for example, much heavier 
balls, ball throwing in very heavy 
wind, or ball throwing on Mars. To 
generalize beyond the actual history 
of experiences to experiences in new 
possible worlds, we need to contend 
with domain concepts and properties 
of the relevant things themselves. It 
is only by understanding these con-
cepts and properties that we can map 
situations to behaviors beyond actual 
experiences and move from exten-
sional descriptions to intentional de-
scriptions. This is a key point for a 

simple reason: reality seems to pres-
ent itself in a “long-tailed” fashion. 
In other words, most of our experi-
ences exemplify only a small set of 
situation types. However, there are 
many situation types that can mani-
fest themselves in different excep-
tional situations. If this is the case, 
then by simply gathering more data, 
we end up acquiring only more and 
more data about the same small set 
of situations.

In our current data-driven trend 
in software engineering, there are 
often hidden assumptions that all 
we need to produce software is 
heaps of data and general learning 

algorithms, that meaning will simply 
emerge from data, and that, by au-
tomating away human intervention, 
we can produce software at a faster 
pace. However, to meet the chal-
lenge of producing ethical soft-
ware, we need to consider the analogy 
with human cognitive systems and 
knowledge acquisition processes se-
riously. Specifically, we require a 
proper integration of the software 
engineering equivalents of data-
driven and theory-driven strategies. 
To have that, we must properly con-
nect data to their symbolic descrip-
tions with meaning, both in the sense 
of semantics and in the sense of pur-
pose/significance. To achieve that, we 
cannot remove from software engi-
neering the human-centric processes 
of domain conceptualization, con-
ceptual analysis and clarification, 
semantic elaboration and onto-
logical grounding, and ethical re-
flection, even if these processes seem 
to slow us down at first. 

References
1.	G. Guizzardi and N. Guarino, 

“Semantics, ontology and explana-

tion,” 2023, arXiv:2304.11124.

2.	D. Kahneman, Thinking, Fast and 

Slow. New York, NY, USA: Farrar, 

Straus and Giroux, 2011. 

3.	K. Browne and B. Swift, “Semantics 

and explanation: Why counterfactual 

explanations produce adversarial 

examples in deep neural networks,” 

2020, arXiv:2012.10076.

4.	R. Guizzardi et al., “An ontology-

based approach to engineering 

ethicality requirements,” Softw. 

Syst. Model., early access, 2023, doi: 

10.1007/s10270-023-01115-3.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

GIANCARLO GUIZZARDI is a full professor and chair of Se-

mantics, Cybersecurity, and Services at the University of Twente, 

7500 AE Enschede, The Netherlands. Contact him at g.guizzardi@

utwente.nl.

OSCAR PASTOR is a full professor and Internationalization and 

Technology Transfer Director at the Valencian Research Institute 

for Artificial Intelligence, Universitat Politècnica de València, 46022 

València, Spain. Contact him at opastor@dsic.upv.es.

VEDA C. STOREY is a full professor of Computer Information  

Systems at Georgia State University, Atlanta, GA 30303 USA. 

Contact her at vstorey@gsu.edu.

mailto:g.guizzardi@utwente.nl
mailto:g.guizzardi@utwente.nl

	139_40ms06-soundboard-3306132

