
16	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E

DEVELOPER PRODUCTIVITY
FOR HUMANS

IN A FIELD where behavior is often
measured through technology, it’s
important to remember that behind
the signals we use to create devel-
oper productivity metrics, there are
humans at work. Otherwise, it can
be easy (and often tempting) to lean
into the most available (but least hu-
man) signals when measuring devel-
oper behavior. For example, number
of builds is an easily accessible met-
ric that on some level reflects work
being done, but it fails to capture
how the work is being done. Was the
developer rapidly iterating through
a flow state? Or were they stuck on
some frustrating problem, encoun-
tering friction at every step? These
aspects of the experience contribute
to the larger story of developer pro-
ductivity. While we are sadly still
unable to read developers’ minds

and must rely on logs-based signals,
our human-centered approach in de-
veloping these metrics enables us to
contextualize the data and amplify
the voice of the developer.

In this installment of the “Devel-
oper Productivity for Humans” col-
umn, we present two lines of research
that take this approach to emphasizing
the human experience in measuring
developer productivity, specifically:

•	 developer experience of flow or
focus

•	 developer experience of friction.

In each case, these experiences do
not represent productivity on their
own, but they are important inputs to
eventual productivity,1,2 as developers
are happier and more productive when
they are able to complete their work
without experiencing friction and/or
while frequently achieving flow. Un-
like other measures of productivity,

like lines of code or rounds of review,
the flow and friction metrics we de-
fined are grounded in human judg-
ment rather than assumptions made
based on certain tools being used or
actions being taken.

For example, when thinking
about friction, the first instinct may
be to immediately describe any num-
ber of possible speed bumps (slow
builds, flaky tests, etc.) as friction.
However, slow builds may not al-
ways feel like friction, and fast builds
might not always help productivity3;
a slow build might be the proverbial
tree falling in an empty forest: if the
developer doesn’t notice the delay,
then it may not constitute friction.
People have expectations about their
environments and experiences that
build up over time; developers get
used to how often their tests fail and
have expectations about how long a
build might take (even if these expec-
tations aren’t always accurate), and

Developer Productivity
for Humans, Part 6:
Measuring Flow,
Focus, and Friction for
Developers
Adam Brown , Alison Chang, Ben Holtz, and Sarah D’Angelo

Digital Object Identifier 10.1109/MS.2023.3305718
Date of current version: 1 December 2023

Editor: Collin Green
Google
colling@google.com

DEVELOPER PRODUCTIVITY
FOR HUMANS

Editor: Ciera Jaspan
Google
ciera@google.com

mailto:adambrovvn@google.com
https://orcid.org/0000-0002-6246-5327
mailto:alisonchang@google.com
mailto:benholtz@google.com
mailto:sdangelo@google.com
https://orcid.org/0000-0001-9104-8365
mailto:sdangelo@google.com
mailto:colling@google.com

DEVELOPER PRODUCTIVITY FOR HUMANS

	 NOVEMBER/DECEMBER 2023 | IEEE SOFTWARE � 17

for better or worse, they often accept
some degree of slowdown as normal.
Consequently, while a single slow
build is easy to detect quantitatively,
hastily labeling it as friction runs the
risk of crying wolf and claiming fric-
tion without considering the devel-
oper’s judgment or experience.3

Similarly, when thinking about
flow and focus, a naive initial ap-
proach that only considers tool us-
age may assume that moving from an
integrated development environment
(IDE), to documentation, to the code
repository, and then back to the IDE
represents several context switches,
which means that the pattern of be-
havior can’t possibly demonstrate fo-
cused work. But if we zoom out and
think about the developer’s motiva-
tions behind these actions, these tools
may all support a single goal (e.g.,
developing a new piece of code) and
could be focused after all. The ques-
tion is then how to identify actions
across tools as falling within the same
task or not. While biases around what
“being productive” looks like might
lead us to assume that any IDE usage
at all counts as focused work and the
presence of any chat messages means
lack of focus, the broader context is
again important here, as chat could
be a means to an end to unblock
other work and iterative debugging in
an IDE debugging could be slow and
frustrating.

In the following sections, we will
describe the similar approaches we
took to understanding and measur-
ing the human experience of flow
and friction. While it ultimately
comes down to leveraging logs-based
metrics and not directly accessing
developers’ thoughts and feelings,
we do take a generalizable human-
centered approach that empha-
sizes the developer’s point of view
by: 1) understanding developers’

subjective experiences, 2) identi-
fying logs-based signals that most
closely represent these experiences,
and 3) validating our metrics against
self-reported data. We hope our ap-
proach and these examples can be
used to promote a more holistic look
at developer experience that contains
the human in the loop.

Measuring Flow and Focus
Achieving a state of flow has been de-
fined as the optimal experience4 and
is often linked to feeling productive,
focused, and accomplishing goals.
However, as mentioned before, flow
is a personal experience and for many
years has been difficult to measure
in nonintrusive ways.1 As part of our
team’s effort to develop a holistic per-
spective on developer productivity, we
sought to develop a metric that mea-
sures when developers experience flow
in their daily work, starting with a hu-
man-centered, qualitative approach.

We conducted a diary study with
follow-up interviews to hear from
developers directly and identify gen-
eralizable characteristics of flow
that informed our logs-based metric.
This phase revealed three primary
themes that shaped our definition:

•	 developers would describe their
experience as flow only if they
felt positively about the work
they were completing

•	 developers described experi-
encing flow across a variety of
tasks, not just writing code, but
also when responding to emails,
drafting design docs, and read-
ing documentation

•	 once established, flow can with-
stand small distractions.

The first insight presented one of
our main challenges in this effort.
How can we infer human sentiment

from logs-based metrics? Well, we
can’t. But at the end of the day, our
high-level goal is to understand de-
veloper productivity, and we decided
that having a measure that could
potentially capture both focus and
flow, while not being about to tease
the two apart, was far better than
abandoning this work altogether.
This drove us to consider both flow
and focused work, with the view
that humans achieve flow states if
and only if they are doing focused
work, but that they can do focused
work without achieving flow. The
second and third insights introduced
human elements of the experience
of flow and focus that we could in-
corporate into our work, as there
is more to flow for developers than
staying immersed writing code in a
single tool for long periods of time.

Defining the Focus Time Metric
Our qualitative insights formed the
foundation for the next phase, iden-
tifying a logs-based signal that was
agnostic to task, robust to small
distractions, flexible on duration,
and independent of the perceived
outcome of the work. We wanted
the metric to cast a wide net and re-
flect time spent engaging in focused
work, which helped us further un-
derstand flow without assigning a
value judgment to the task at hand
(i.e., we do not need access to an in-
dividual’s internal states). Figure 1
shows our conceptual model for how
flow and focused work are related to
our metric, which we call focus time.

We hypothesized that a proxy
for focus could look at task similar-
ity: performing a number of related
actions in a given window of time
indicates flow or focus, whereas
performing a number of unrelated
actions indicates a lack of flow or
focus. This approach also accounted

DEVELOPER PRODUCTIVITY FOR HUMANS

18	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

for our finding that flow is task-in-
dependent and tool-independent. In
addition, it aligned with our learning
that flow is robust to small interrup-
tions, especially if the interruptions
occurred in related tools.

We derived task similarity using
a natural language processing tech-
nique called word2vec.5 Just as the
relatedness of words can be derived
by comparing their occurrences in
written sentences, we used sequences
of logs generated by a range of com-
monly used tools to model sequences
of tasks.6 We were able to use the out-
put of this model to group the time de-
velopers spent into periods where we
thought they were experiencing focus
and periods where they were not.

Validating the Focus Time Metric
Having a metric that labels periods
of time as being focused or not was
one thing, but having an individual
agree with these values was another.
To ensure that our metric accurately
reflected the human experience, we
validated that our metric was cap-
turing the behaviors of interest us-
ing diary data and quarterly survey

data. Following our standard diary
data collection process,6 we asked
developers to record tasks as they
completed them throughout the
workday, and to aid this particular
project we also had them indicate
whether they felt that the task they
completed felt “in flow or focused.”
We found high agreement between
our metric and the diary data. We
also found our metric to be a positive
correlate to the survey item: “How
often are you able to reach a high
level of focus or achieve ‘flow’ dur-
ing development tasks?” The corre-
lation held even when controlling for
other measures of developer activ-
ity (e.g., the total number of logged
events and sessions). Together, these
findings suggested that our metric
was capturing focus and flow, both
in the moment (as seen in diary data)
and across longer periods of time (as
seen using data from a quarterly lon-
gitudinal survey).

Despite pivoting from measuring
flow alone to considering both flow
and focus, our metric development
experience reaffirmed the value of
taking a human-centered approach.
If we had started with the logs-based
data available to us, we might have
considered tool switching, interrup-
tions, and duration to be more criti-
cal, similar to prior work in this area.
Our multiphased approach enabled
us to understand that developers have
the ability to withstand minor disrup-
tions, contextualize their work within
tooling suites, and experience flow
at a variety of durations. This gave
us the criteria needed to develop and
validate a logs-based metric that accu-
rately reflects when developers experi-
ence flow or focused work.

Measuring Friction
Our interest in measuring developer
friction stemmed from our desire

to better understand the conditions
that lead to productive and happy
developers. We sought to design a
metric that could provide high-level
descriptions of friction across groups
of developers (think something like
“50% of developers experienced
friction last week”), while maintain-
ing enough granularity to point out
areas for potential improvement. To
achieve this second goal, we opted
to model friction as a composite of
simpler components, each of which
potentially detracts from the devel-
oper experience. For example, if we
found that slow build times were a
key driver of friction for develop-
ers, we could increase resources
to reduce build times. This kind of
thinking led us to develop a fric-
tion metric that had the following
characteristics:

•	 The metric contains a number
of components that span key
behaviors within the core devel-
opment workflow.

•	 Each component is aggregated to
the developer within a time pe-
riod (e.g., average build latency
per day for each developer).

•	 Each aggregated component
value gets compared to a thresh-
old value to label whether the
developer experiences fric-
tion within that component.
Thresholds are defined through
research and analysis centered
around developer perception,
rather than distributional prop-
erties of the data (e.g., we don’t
just use the 90th percentile).

•	 If a developer has friction in any
component, then we say that they
experienced friction on that day.

In the spirit of transparency, we
didn’t start at zero. Teams at Google
have been putting together friction

FIGURE 1. Diagram representing the

hypothesized relationship among flow,

focus, and focus time, acknowledging

space for error in which we capture some

work that is neither.

Focused Work

Flow

Focus Time

DEVELOPER PRODUCTIVITY FOR HUMANS

	 NOVEMBER/DECEMBER 2023 | IEEE SOFTWARE � 19

metrics for quite some time; some
use these metrics to understand
the benefit their infrastructure or
tools provide, while others use these
metrics to better understand what
impedes the progress of their devel-
opers. These different goals have led
to fairly different metrics, but all at-
tempt to capture the same thing: hin-
drances to productivity.

For example, teams that are inter-
ested in the impact their tools have
on friction have developed metrics
that look at counts or percentage
of “bad” events across a large col-
lection of events (e.g., the number
of flaky tests across all of Google).
These teams are invested in lowering
these values overall, so these metrics
make sense for their use case. How-
ever, it isn’t clear how developers
are represented here: top-level met-
rics can rise or fall precipitously and
the impact on developers is not im-
mediately apparent (e.g., even if the
number of flakes increased, did this
lead to friction for many developers
or just a few on select teams?). We
suggest that it is critical to aggregate
metrics to the developer, not merely
count “bad” events.

We got the sense that metrics that
don’t center on the developer were
capturing something about produc-
tivity, but maybe not developer pro-
ductivity. It was challenging to tell
a comprehensive story by making
apples-to-apples comparisons be-
tween these metrics that were about
artifacts (like change lists or test
behavior) and other metrics about
developers. If we cared about the ex-
perience of the developer, then why
weren’t we making things about the
developer instead of individual in-
teractions with various tools? With
this in mind, we set out to define a
developer friction metric that cap-
tures when an individual encounters

issues while making code changes,
releasing code, or debugging. Surely
friction occurs in other phases of de-
velopment (red tape, anyone?), but
we started with these pieces of the
development workflow and plan to
expand it to cover other aspects of
development over time.

Letting Developers Define Friction
In the first phase of developing this
metric, we let developers tell us
where they experienced friction. We
didn’t guide them toward specifically
talking about issues with flaky tests
or which tool blocked their work. In-
stead, we let developers define fric-
tion for themselves as anything that
slowed down their progress. Similar
to our investigation of flow and fo-
cus, this was an opportunity for us
to cast a wide net in terms of things
we might consider as components of
friction, as well as to build an under-
standing of the frequency and form
of the friction developers encounter.

To do this, we surveyed a sam-
ple of developers at the end of their
workday each day for a week to
better understand whether they ex-
perienced friction, what they were
working on when this friction oc-
curred, and how they resolved the
friction. We also leveraged the same
diary technique described earlier,
but for this work we had developers
indicate if they experienced friction
while completing the task.

We found that friction was quite
common in our sample of develop-
ers; during the survey period, de-
velopers reported friction on 77%
of their days. When asked how they
were able to avoid friction on a given
day, one participant shared, “I think
I got lucky.” We also found that the
components that tended to map onto
the issues described by our sample
were associated with build and test

latency, flaky tests, and issues with
code changes being blocked due to
continuous integration failures. That
is, the sources of friction that our
participants reported were largely
the same as had been assumed (by
our team and others), but hearing
from developers directly enabled us
to improve upon categorizing these
signals as friction or not friction, as
well as better aggregation strategies.
The results enabled us to lean into
these components with more con-
fidence, knowing they hold actual
meaning to developers themselves,
while still being relevant to infra-
structure teams.

During this phase, we looked for
relationships between the reports of
friction from developers in our sample
and existing friction metrics (average
build latency, number of flaky tests).
We considered these metrics as po-
tential components of our eventual
metric. Often, we found negligible
or small relationships between these
components and actual reports of
friction. To some extent, these weak
correlations made sense considering
the mismatch that we’ve presented
throughout this column: these met-
rics are typically about some artifact
a developer interacts with and not the
developer themself. However, we saw
that if we aggregated these values di-
rectly to the developer, we could in-
crease the agreement between these
metrics and reports of friction. This
provided some evidence that these
components were likely good signals
to use for measuring developer fric-
tion, but their aggregation and thresh-
olding required additional tuning.

We conducted a number of follow-
up interviews with developers about
their diaries and their perspectives
on friction. Interestingly, we found
that the measurements often associ-
ated with friction were thought of as

DEVELOPER PRODUCTIVITY FOR HUMANS

20	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

“part of the job” and did not always
immediately register as an issue.
These developers did admit that at
a certain point (e.g., after too many
flaky tests) they would consider these
experiences as friction. Furthermore,
although these experiences may not
have immediately registered as fric-
tion, they were still hypothesized to
actually lead to lower productivity
(i.e., a single flaky test likely does
slow down progress toward submit-
ting a code change some amount),
which means the developer was still
impacted. Due to this, the remainder
of our research for developing this
metric focused on combining attitu-
dinal and behavioral signals to de-
rive a metric for friction that tracked
both how developers told us they felt
and the metrics we use to measure
productivity.

Balancing Self-Report and Logs Data
In an effort to strike a balance be-
tween developer reports of friction
and logs-based indicators of friction,
we identified components where
higher values were negatively related
to two sources of information:

•	 developer sentiment items from
our quarterly survey that we hy-
pothesized are related to friction
(e.g., lower ratings of satisfaction
with code complexity or project
velocity)

•	 productivity metrics (e.g., fewer
change lists, longer iteration
loops).

These components included the
latencies of local builds and tests,
the latencies of testing that are as-
sociated with submitting change
lists, and issues with flaky tests and
blocked submission attempts. Criti-
cally, these values were aggregated
to the individual developer. We did

not label a developer as experienc-
ing friction if they had a single long
build that exceeded some threshold;
rather, we found the average build
latency that a developer experienced
on a single day and compared this
value to a threshold. We believe that
this subtle difference puts the behav-
ior within a broader context of an
individual’s day: having one long
build may be frustrating if it is the
only build that is run that day, but
if there are tens of builds that run
extremely quickly, this one long
build may not be something mem-
orable. In this second case, unsur-
prisingly, our data suggested that
it depends on how long that build
actually takes. Using the average of
these latencies allowed for outliers
to meaningfully drag the summary
statistic upward, which meant that
a single long build might or might
not cause a developer’s value to cross
the threshold, but it depended on the
rest of the distribution.

The last step was to define
thresholds for our components.
We treated this as a classification
problem aimed at identifying indi-
vidual developers that showed re-
duced productivity as measured by
our logs-based indicators and/or
individual developers who reported
dissatisfaction with tools and de-
velopment at Google, dissatisfac-
tion with development speed, or
being hindered dealing with code
complexity and infrastructure. We
searched a space of thresholds un-
til we found threshold values where
we were most likely to identify de-
velopers that reported experiences
consistent with the construct of
friction, patterns of behavioral data
that were consistent with the con-
struct of friction, or both.

After conducting our multi-
phase approach, we constructed a

measure of developer friction that
was defined with developer input,
aggregated to their experiences, and
blended their sentiments with their
actions. We believe that following
a human-centered approach gets us
closer to understanding the human
experience of friction in software de-
velopment and moves us away from
just measuring when something un-
desirable happens in a given tool.

F low and friction are fuzzy
human constructs. We be-
lieve that prior attempts to

measure these experiences in the
context of software development of-
ten overrepresented the development
tools (and the signals that they pro-
duce) at the expense of more human
aspects. Our approach to building
the focus and friction metrics put
the developers’ personal experience
front and center, enabling us to build
metrics that can look at interven-
tions aimed at increasing focus or
decreasing friction through the lens
of the end impact on the develop-
ers themselves. For example, we can
use the focus time metric to measure
the impact of calendar management
and company-wide interventions.
Do no meeting weeks enable de-
velopers to experience more time
in flow or focus? Can condensing
meetings and supporting focus time
blocks improve developer productiv-
ity? Similarly, examining developers’
workflows using our friction metric
can enable us to identify areas for
improvement. What workflows con-
tribute to the most friction? What
tooling improvements in the past
have reduced friction? We are still
in the early stages of these investi-
gations, but we are excited to see
how our human-centered metrics
can improve our understanding of

DEVELOPER PRODUCTIVITY FOR HUMANS

	 NOVEMBER/DECEMBER 2023 | IEEE SOFTWARE � 21

developer experience and identify
opportunities for new metrics.

In our work, we took a multi-
phased and human-centered ap-
proach. First, we gathered data
directly from developers, includ-
ing interviews, surveys, and dia-
ries, to get a better understanding
of what flow, focus, and friction
meant to them and how they ex-
perienced them throughout their
workday. Then, we leveraged this
foundation to identify how aspects
of those human experiences mani-
fest in available logs-based sig-
nals, rather than jumping directly
to data that is most readily avail-
able. We were able to generate heu-
ristics that allowed us to transform
the signals emitted from develop-
ment tools into metrics that were
more meaningfully related to these
experiences. Finally, we validated
these metrics against additional
self-report and logs-based data to
verify that our measures contin-
ued to be related to the experiences
we cared about. This approach af-
forded us two new measures that
provide insight into how develop-
ers get work done and can pro-
vide additional context into what
makes them happy and productive.
We hope this discussion can moti-
vate further exploration into other
complex aspects of developer expe-
rience with a focus on the human
experience.

References
1.	A. Brown, S. D’Angelo, B. Holtz,

C. Jaspan, and C. Green, “Using

logs data to identify when soft-

ware engineers experience flow

or focused work,” in Proc. CHI

Conf. Human Factors Comput.

Syst., Apr. 2023, pp. 1–12, doi:

10.1145/3544548.3581562.

2.	C. Jaspan and C. Green, “A human-

centered approach to developer pro-

ductivity,” IEEE Softw., vol. 40, no.

1, pp. 23–28, Jan./Feb. 2023, doi:

10.1109/MS.2022.3212165.

3.	C. Jaspan and C. Green, “Developer

productivity for humans, part 4: Build

latency, predictability, and developer

productivity,” IEEE Softw., vol. 40,

no. 4, pp. 25–29, Jul./Aug. 2023, doi:

10.1109/MS.2023.3275268.

4.	M. Csikszentmihalyi, “Toward a

psychology of optimal experience,” in

Flow and the Foundations of Positive

Psychology: The Collected Works of

Mihaly Csikszentmihalyi, Dordrecht,

The Netherlands: Springer, 2014,

pp. 209–226.

5.	T. Mikolov, K. Chen, G. Corrado,

and J. Dean, “Efficient estimation

of word representations in vector

space,” 2013, arXiv:1301.3781.

6.	C. Jaspan et al., “Enabling the study

of software development behav-

ior with cross-tool logs,” IEEE

Softw., vol. 37, no. 6, pp. 44–51,

Nov./Dec. 2020, doi: 10.1109/

MS.2020.3014573.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ADAM BROWN is a quantitative user experience researcher on the

Engineering Productivity Research team at Google, New York, NY

10011 USA. Contact him at adambrown@google.com.

ALISON CHANG is a software engineer on the Engineering

Productivity Research team at Google, Mountain View, CA 94043

USA. Contact her at alisonchang@google.com.

BEN HOLTZ is a software engineer on the Engineering Productivity

Research team at Google, Toronto, ON M5H 2G4, Canada. Contact

him at benholtz@google.com.

SARAH D’ANGELO is a user experience researcher on the Engi-

neering Productivity Research team at Google, Seattle, WA 98103

USA. Contact her at sdangelo@google.com.

http://dx.doi.org/10.1145/3544548.3581562
http://dx.doi.org/10.1109/MS.2022.3212165
http://dx.doi.org/10.1109/MS.2023.3275268
http://dx.doi.org/10.1109/MS.2020.3014573
http://dx.doi.org/10.1109/MS.2020.3014573

	016_40ms06-developerprod-3305718

