
FOCUS: SOFTWARE ENGINEERING EDUCATION AND TRAINING

 NOVEMBER/DECEMBER 2023 | IEEE SOFTWARE 55

Lessons Learned
From a Learning
Program for
Software
Architects
Frances Paulisch , Matthias Backert, and Thomas Blum,
Siemens Healthineers

// About 15 years ago, a role-based learning

program aimed primarily at software architects

was established and has evolved as a key

part of our company’s learning landscape.

This article shares lessons that can be applied

to readers’ own learning endeavors. //

but also development attributes such
as maintainability and testability.
Software professionals working on
creating such systems not only face
these challenges but also must be
able to grasp and apply new concepts
quickly. This also includes new tech-
nological approaches, processes, and
business models such as continuous
delivery and DevOps, ecosystems,
microservices, machine learning, etc.,
but also how to apply these to the
business situation and domain and in
the context of long-living systems.

Especially with so many things
changing, we find it important to
have a strong focus on the architec-
ture of the system and, consequently,
the education and training of the ar-
chitects. Because architecture is such
a cross-cutting concern, this allows
us to have the most business impact,
avoiding the biggest potential prob-
lems and enabling, where feasible, a
fast pace of change. The architecture
focus is also necessary because de-
sign and architecture are known as
“wicked problems,”1 which implies
that there is no single right solu-
tion, but one must consider different
stakeholder perspectives and evalu-
ate tradeoffs. Therefore, establishing
a way of thinking about problems
and learning to consider the alterna-
tives and tradeoffs is an extremely
useful approach, especially in the
area of architecture.

Many of the large complex sys-
tems that are developed today are
developed by teams including soft-
ware engineers, product managers,
and many other roles. Long past are
the days of an individual developer
focused almost exclusively on tech-
nology aspects. Alistair Cockburn
in his book Agile Software Develop-
ment: The Cooperative Game2 and
Kevlin Henney in his work “What
Do You Mean?”3 state clearly how

This work is l icensed under a Creat ive Commons
At t r ibut ion-NonCommercia l-No Der ivat ives 4.0
L icense. For more informat ion, see
ht tps://creat ivecommons.org/ l icenses/by-nc-nd/4.0/.

TODAY’S WORLD IS changing quick-
ly in multiple dimensions: technology
is becoming a key part of our world,
systems are becoming increasingly

complex, and the environment is be-
coming more volatile and uncertain.
At the same time, the quality attributes
(also known as the “nonfunctional re-
quirements”) are growing, including
attributes of the system like safety, se-
curity, availability, and performance

Digital Object Identifier 10.1109/MS.2023.3311267
Date of current version: 1 December 2023

https://orcid.org/0000-0001-7941-4326

56 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING EDUCATION AND TRAINING

very important communication, col-
laboration, and knowledge acquisi-
tion are. The lack of these frequently
contributes to project failures. There-
fore, these topics play an important
role in our architecture-based learn-
ing program. The best technical
approach cannot be successfully im-
plemented if the architect is unable
to convey the underlying ideas and
concepts clearly to teammates and
other stakeholders.

The History of Our
Learning Program for
Software Architects
In 2006 a cross-company core team
at Siemens (including the healthcare
part of the company) started work-
ing on this topic and soon realized
that for the mentioned reasons a
standard off-the-shelf training would
not be sufficient for our purposes.
Similar to how we develop complex
products, we considered our busi-
ness case, our stakeholders, and the
nonfunctional requirements of our
“learning program” product, and es-
tablished a team with good commu-
nication and social skills to pilot and
grow the learning program. Through
a series of interviews and other
means, we gathered information on
the root causes underlying insuffi-
cient attention to software architec-
ture, the characteristics of software
architects who have been successful
on multiple complex projects in the
past, and the key success factors and
pitfalls for software architects in the
context of our high-quality, often
safety-critical, complex cyberphysi-
cal systems.

Our initial focus was on the
software architects working for
products and programs where the
impact of software architecture
was the highest. These “senior soft-
ware architects” (SSWAs), as we

call them, contribute to products
and programs involving systems of
systems, product lines, ecosystems,
etc. A (normal) “software architect”
(SWA) is typically the responsible
architect of a single complex prod-
uct. After starting with the SSWA
program, we later rolled out the
SWA program. Subsequently, we ap-
plied a similar approach to roll out
programs for test architects (TeAs),
and system architects (SyAs) as well
as for collaborating roles like prod-
uct managers. In a previous paper,4
we describe the set of architecture
programs and how we used tech-
niques such as commonality and
variability analysis to determine
which approaches are common
across all the four programs and
which are role specific.

After Siemens Healthineers be-
came a separate company, most as-
pects of the SWA learning program
were retained and further enhanced.
Siemens Healthineers, who had been
one of the drivers from the begin-
ning, established some additional as-
pects, for example, ensuring that our
trainers are experienced architects
with excellent communication skills
and the integration of the learning
program with our personnel pro-
cesses and career paths.

Related Work
Several publications, e.g., Galster
and Angelov,5 make the challenges
of teaching software architecture
clear. Lago and van Vliet, in their
pioneering work on teaching soft-
ware architecture in an academic
setting, also refer to software archi-
tecture as being a wicked problem6
partly due to the fact that there is
no single best solution and that one
must address the tradeoffs. de Boer
et al.7 similarly argue that since such
wicked problems are not addressed

well in more traditional active lec-
turer–passive student scenarios,
a collaborative learning approach
for them is more effective. More
recently, van Deursen et al.8 also
describe a collaborative approach
based on open source projects that
enables real-world experience with
both the necessary technical and so-
cial skills. We agree with the ped-
agogical approaches described by
Jeff Offutt9 that for software engi-
neering we need to teach in a way
that encourages “divergent think-
ing,” i.e., that there is inherently
no single right solution and that
we should encourage collaborative
learning as these approaches are
needed by software professionals in
the industry. A recent overview of a
large number of software architec-
ture education activities is given by
Oliviera et al.10

In 2010, shortly after our learn-
ing program was started, there was
a conference panel discussion includ-
ing three company-specific software
architecture certification programs
(from Boeing, Raytheon, and Sie-
mens) and two public programs
(from IASA and the Software Engi-
neering Institute) where the various
approaches were compared and con-
trasted.11 The closest broadly avail-
able practitioner training on software
architecture we could find was the
offering of the Software Engineering
Institute.12 However, we were partic-
ularly interested in an approach that
included a broad set of topics also
outside of software architecture, for
example, including business topics, as
well as a strong focus on communica-
tion and social skills. Furthermore, it
was also important for the architects
to be able to work on their own proj-
ects. For these reasons we decided to
“grow our own” learning program
for software architects.

 NOVEMBER/DECEMBER 2023 | IEEE SOFTWARE 57

Software Architecture
Learning Program
In this section, we share the main as-
pects of our software architecture learn-
ing program at Siemens Healthineers.

The aspects that differentiate our
program from other programs de-
scribed in the literature are that our
architecture-based learning program

• is focused on professional
practitioners in a real-world
industrial setting applying
their learnings in their current
projects

• is aligned to the needs in our
context characterized by high-
quality cyberphysical systems
with a broad range of quality
attributes (performance, security,
safety, reliability…) and very long
life spans

• is embedded in a company
context (e.g., personnel depart-
ments, career paths, certifica-
tion process, and visibility in
the company)

• has a strong focus on the active
network of the company-internal
community (architects, trainers,
assessors…)

• is established as the architec-
ture training for the whole
company (all business units
and global)

• has a long (over 15 years) history
in industrial practice.

Despite these points that make our
program unique, we are confident
that many of the insights we share in
this section could apply also for other
practitioner-oriented software engi-
neering learning programs.

Role-Oriented Competence
Management
We take a very systematic approach to
learning. We invest effort into the de-
tailed role description of an architect,
and this includes which competences
they need at which level of expertise.
As shown in Figure 1, in the software
architecture learning programs for
SSWAs and SWAs, there are a num-
ber of competence areas, and for each
it is clear whether a basic (knows
about), advanced (can apply), or expert
(drives) ability is needed in each topic.
This allows us to address a broad set of
topics (at least at a basic level) but also
to drill down to hands-on activities for
some, e.g., expert-level topics.

Timeless Problem-Solving Approach
Furthermore, we focus on a level
and style of learning that transcends,

FIGURE 1. The mapping of depth to competences for SSWA and SWA.

Business Understanding

Architecture
and Development

Requirements
Engineering

Testing
and Quality

Social Skills
and Leadership

Business Model
Understanding

Ecosystems, Partnering, Suppliers

Global Development

Development Processes

Product Line Engineering

Architecture and Design

Coding and Technology

Lean and Agile

Arch. Governance and Guidance

Basic
Advanced
Expert

Knows About
Can Apply
Drives, Coaches,
Able to Improve

Leadership
Social Skills

Software Architect
Senior Software Architect

SWA
SSWA

Standards, Regulations, Legal Issues

Lifecycle Issues

Domain
Knowledge

Product and System
Requirements Engineering

SW Requirements
Engineering

Quality Requirements

Test Methods

Test Strategy

Project Management

Expert

Advanced

Basic

58 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING EDUCATION AND TRAINING

for the most part, the detailed tech-
nology aspects. The content is very
hands-on but at a level of abstrac-
tion that could apply to many dif-
ferent technologies. The learning
program hones the ability on how
to think about problems and evalu-
ate the tradeoffs appropriately and
always in the given context. For
deeper insights into various techni-
cal solutions, we recommend sepa-
rate modules or refer to external
content. To bring new content into
the programs, we correspondingly
move content that is otherwise com-
mon knowledge or can be learned in
other ways out of the program. This
approach naturally allows us to be
able to keep the “essence” more sta-
ble over the years but also gradually
evolve the content.

Hands-On on Own Real Projects
One of the main reasons we decided
to build our own program was that
the external training material we
saw typically used generic examples
to show various techniques, and the

participants often worked on those
generic examples. For us, with our
very complex, cyberphysical systems,
it was very important that the partici-
pants work hands-on with their con-
crete projects. Only individuals who
serve as the main software architect
of a real, current, and adequately
complex project are eligible to join the
program. This ensures that all partic-
ipants in the runs have a similar level
of challenges. When the participants
get “homework,” such as an essay on
how they handled tradeoffs between
performance and cybersecurity, they
do this based on their own project,
which makes it very hands-on and
real. Learning is typically more ef-
fective when one actually applies the
knowledge in a project rather than
just hearing about it in a lecture, and
this is another reason that the direct
application in the participant’s own
projects is so important.

Furthermore, this close connec-
tion to the project is very important
also for the acceptance of the signifi-
cant time the architects spend in this

learning program. If they were “only”
doing training on some abstract, ge-
neric “toy” example, they would not
have a positive business impact on
the project during the training. How-
ever, with our hands-on approach and
always connecting back to the par-
ticipants’ real work, they see immedi-
ately how they could apply what they
are learning.

Holistic Set of Topics,
Not Only Architecture
The content of the program, by de-
sign, goes well beyond learning about
software architecture. As shown in
Figure 2, architecture is one of the
four main topics; the other three
are business understanding, require-
ments engineering, and testing/qual-
ity. Across all topics and with a focus
of about 40% of the time is the topic
of “social skills.”

Especially SSWAs learn to work
not only in the system but also on a
broader organization-wide view on
the system.13 They thereby improve
processes, remove organizational
obstacles, and encourage new busi-
ness models, for example, by intro-
ducing DevOps or ecosystems.

Communication Ability Is Key
Our strong focus on the ability of
software architects to communicate
well is due to the modern understand-
ing of an architect’s role as a central
person who is not only a technical
expert but also a skilled communi-
cator. Architects are often a kind of
“living bridge”: a technical communi-
cation hub to other roles to also en-
sure a common understanding. We
often refer to the “driving triumvi-
rate” (see Figure 3), which includes
the architect (representing the inter-
ests of R&D), the product (life cycle)
manager (representing the product
requirements), and the R&D project

Social Skills

Driving, Coaching, Governing, Tracing, Monitoring

BU
RE

AD
Realize

Changes, Failures/Errors, Lessons Learned

BU: Business Understanding
RE: Requirements Engineering
AD: Architectural Design/Systematic Architecting, Architecture Tactics
T&Q: Testing and Quality

T&Q

FIGURE 2. The four plus one topic areas of the learning program.

 NOVEMBER/DECEMBER 2023 | IEEE SOFTWARE 59

manager/product owner (representing
the realization of this product). Fur-
thermore, in many cases, architects
need to lead the team even if they do
not have the authority to actually tell
other persons what to do, so their
skills in communicating and con-
vincing are particularly important.
Moreover, the “how” is as important
as the “what.” An architect could be
absolutely right in their view, but they
must be able to consider the perspec-
tive of the persons they are communi-
cating with and be able to convey the
message in a way that the other per-
son can understand and subsequently
find an agreement. In fact, the skill of
achieving appropriate compromises is
particularly valuable and is nurtured
by practice on concrete examples
throughout the learning program.

Agile Approach
Salza et al.14 share many approaches
for applying agile approaches in edu-
cation and training. We apply agility
in our product development, and so
it also comes naturally to us to apply
it also in our learning approaches. By
applying an “agile learning model,”
we prod the participant to uncover
their blind spots and close gaps and
coach them not to fall back into old
patterns and behaviors. Following
self-organized learning, the partici-
pants are responsible for their learn-
ing outcomes, and they have a high
degree of freedom regarding the for-
mat (how) and time (when) for learn-
ing. Here the agile “pull” principle
is very helpful. The student pulls
the learning resource or person that
helps most in his/her situation. At
least 30% of the content is adapted
to the current needs of the group,
e.g., by inviting additional experts
on a topic. On our way to becom-
ing a “learning organization,” every
expert shall be able to transfer his/

her knowledge. So participants also
learn to teach each other and their
organizations also in innovative for-
mats such as BarCamps.

Highly Experienced Trainers
The persons attending these trainings
are already very experienced software
architects and typically have a strong
self-esteem. If the architecture part
of the training was led by a commu-
nicator who is skilled but who lacks
practical architectural experience,
the participants would not be so re-
ceptive to the trainer’s advice. This is
one of the reasons we find it essential
to have highly experienced hands-on
architects from real projects as the
trainers: this makes the message they
convey, and the additional real stories
they can tell about their real-life ex-
perience, much more vivid and con-
vincing to the participants.

Sustainable Architect
Community and Mentoring
We actively encourage the partici-
pants of the learning program to
“give back” to the architect com-
munity, e.g., especially suitable per-
sons who have gone through the

SSWA program are often asked to
be architect trainers for the SWA
program. Within their own business
lines, these architects are explicitly
expected to mentor junior architects
to help groom them to become can-
didates for the learning program.
Furthermore, we have a number of
cross-company events focused on
architecture and a regular company-
wide meeting of software architects
at Siemens Healthineers. We ex-
plicitly invest effort in networking
activities to continue to grow and
promote the community throughout
the company. This community of is
often asked for their perspective on
important cross-company topics re-
lated to software or to conduct an
architecture assessment on an im-
portant project.

Alignment With the
Personnel Department
At our company the program is also
well aligned within the career land-
scape for software professionals. It
is a normal part of the regular ca-
reer review process to identify and
nominate potential candidates for
the learning program. In addition to

FIGURE 3. The “driving triumvirate” of the R&D project manager/product owner, the

product (life cycle) manager, and the architect.

(Chief)
Product
Owner

Architect

R&D
Project
Manager

Product
Owner

+
Scrum
Master

+
Self

Organizing
Team

Product (Lifecycle)
Manager

Business Case,
Market, Competitors, ...
Across Lifecycle and

Versions

Cost Efficient
Technical

Solution, ...
Across Lifecycle

and Versions

Budget, Timing,
People, ...

for a Single
Project

Common
Understanding,

Anti-Silo

60 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING EDUCATION AND TRAINING

the learning program itself, there is
an associated certification process
through which the architects are
evaluated in an interview setting on
theory, practice, and social skills to
be formally recognized as “certified”
architects. Furthermore, establish-
ing the certified architect as a typi-
cal case for an “expert career” helps
keep the experts in the company.

There is an explicit nomination
process for the learning programs,
with the most stringent prerequi-
sites for the SSWA program. For the
SSWA it requires, for example, a rec-
ommendation letter, typically from
the head of the relevant business
unit, and an official application in-
cluding information on the project of
which the candidate is the architect.
There is an entry interview, typically
with an experienced SSWA and a
software manager, and all of these
together set a high bar to enter the
program. This helps to ensure the
needed commitment to go through
the program, as the participation
in the program and the associated
homework can easily take 20% of
the architect’s time. A further bene-
fit of this filtering is that it helps that
all accepted participants are experi-
enced and active architects with high
qualifications. It is quite often the
case that candidates for the program

are excluded as they are not yet suf-
ficiently qualified or they are not the
responsible architect of an appropri-
ate project.

Deciding whether to have a for-
mal “certification” for this learn-
ing program was one of the most
important decisions we made when
initiating the program. As you can
imagine, it is quite challenging to

set up a certification process that is
effective and fair and can stand the
test of time. This is probably also the
most effort-intensive part of the pro-
gram for the part of the organization
that provides the certification.

It was very important to us to re-
ally be able to systematically evaluate
that the candidate has successfully
applied the knowledge gained in the
learning program. Other external
certifications on other topics are of-
ten based on multiple choice ques-
tions. We instead have a certification
process much more focused on dem-
onstrating to the assessor that the
candidate knows how to apply the
knowledge in practice on their proj-
ect. For the SSWA the participants
must pass a set of “knowledge”
gates in various topic areas during
the program itself. In the knowledge
gates they have to show how they ap-
plied their knowledge in their own
projects. Finally, close to the end of

the program, they must also pass a
“capability” gate where they have
a structured interview with a set
of assessors including an SSWA, a
software manager, and a soft skills/
psychology expert. Typically, after
passing the certification, the orga-
nization ensures that the additional
skills learned in the program are
taken full advantage of when deter-
mining future goals and responsibili-
ties. For example, it is common that
the software architecture of our im-
portant products is driven by certi-
fied SSWAs. Further information on
the certification topic for our learn-
ing program is provided by Paulisch
and Zimmerer.15

Global Reach
At Siemens Healthineers we have
about 40 certified SSWAs and 160
certified SWAs, from a pool of ca.
5,000 software engineers. Although
the certified architects represent
only a small fraction of the entire
population, their influence is very
strong throughout the company and
across the globe, not only within
their respective business lines but
also as a common voice across the
company when discussing our soft-
ware strategy.

We offer the SSWA learning pro-
gram only in one location approxi-
mately once a year (typically ca. 12
participants). The SWA program is
currently offered in India, Germany,
and the United States. The other two
programs, SyA and TeA, are offered
only in one location.

Online Only Versus Online
Virtual Versus in Person
For our global setup, there have al-
ways been discussions about how
much of the learning program con-
tent we handle through online means
and how much in person. Especially

It was very important to us to really
be able to systematically evaluate

that the candidate has successfully
applied the knowledge gained in

the learning program.

 NOVEMBER/DECEMBER 2023 | IEEE SOFTWARE 61

since COVID-19, we had no choice
but to go online, but we are now in-
creasingly back to a mix of formats.
We strive to ensure that at least
one of the typically three training
sessions is in person, and in some
cases, all of them are in person.
Certainly, online virtual instructor-
led formats are much more effective
than online only. The trainers need
to know how to teach differently
in these three kinds of formats. Es-
pecially in the online virtual setup,
one must explicitly do a number of
activities (joint virtual cooking, for
example) to get to know (and trust)
each other.

Be especially wary of your train-
ing departments telling you “on-
line only is much better.” In our
experience, one must differentiate.
For some topics, self-paced learn-
ing using online-only formats and
web-based training are very suit-
able. Furthermore, technical or pure
“knowledge” topics can often be
effectively done online. However,
if your training aims to change the
way of thinking, to change the cul-
ture of your organization, to change
the “mindset,” then this is best done
through collaborative and in-person
training. If in-person training is not
possible, then at least online vir-
tual instructor-led training is more
effective than online only. It may
seem, initially, that that in-person
approach is the most expensive ap-
proach. However, especially in a
fast-changing world, such an invest-
ment in learning pays off. This is
especially true of trainings for the
software architect roles as this role
has a huge impact on the suitability
and success of the resulting product.

Experiment With New Ideas
We regularly experiment trying out
new approaches, and if they work

out, then we add them into the pro-
gram (and face the tough decision of
what to take out instead). Often, we
suggest a run of the SSWA program
to organize a company-wide event.
As described by Backert et al.,16 this
has often recently taken the form of
a “hackathon” typically on new up-
coming technologies and trends like
applying artificial intelligence and
machine learning. This is a great way
to get broad involvement from enthu-
siastic software engineers through-
out the company and to have a little
competition further liven the discus-
sion. Such events were not only fun
but had an extremely high “learning

to time” ratio. Most recently, the run
organized a BarCamp in India, which
included about 70 software engineers
in India and about 70 further online
around the world. They addressed
a broad range of topics, and the es-
sence was captured and shared across
the company.

T he software architect learn-
ing programs have an over
15-year history, which in

the days of software is a very long
time. As such, one can learn from
how those foundations were built,
for example, applying approaches

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

FRANCES PAULISCH is the head of the Software Initia-

tive at Siemens Healthineers, 91301 Forchheim, Germany.

Her research focuses on coordinating strategic topics related

to software across the company including training and the

sharing of best practices on a broad range of topics. Paulisch

received a Ph.D. in software engineering from the University of

Karlsruhe. Contact her at frances.paulisch@siemens-health

ineers.com.

MATTHIAS BACKERT is globally responsible for the learning

programs in the area of software at Siemens Healthineers,

91058 Erlangen, Germany. He is one of the architects and

trainers of the Software Curriculum portfolio and responsible

especially for agile, requirements engineering and social skills

topics. Contact him at matthias.backert@siemens

-healthineers.com.

THOMAS BLUM is the lead software architect in the area of

magnetic resonance devices at Siemens Healthineers, 91052

Erlangen, Germany, He is a certified senior software architect

(SSWA) and the main architect trainer for the SSWA learning pro-

gram. Contact him at thomas.blum@siemens-healthineers.com.

mailto:frances.paulisch@siemens-healthineers.com
mailto:frances.paulisch@siemens-healthineers.com
mailto:matthias.backert@siemens-healthineers.com
mailto:matthias.backert@siemens-healthineers.com
mailto:thomas.blum@siemens-healthineers.com

62 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING EDUCATION AND TRAINING

that we use for our medical devices
with long life spans and also to our
training-related “products” such
as this set of learning programs.
Similar to how our products are
very diverse but also have many ele-
ments in common, our set of ca. 250
architects are also strong individuals
but, through the learning program,
now share a common language and
a more systematic way to think
about challenges.

We can only report here qualita-
tive results about the impact. In a
company-internal survey asking ar-
chitects who had completed the pro-
gram at least a year ago, 85% stated
that they had a “more” or “much
more” structured way of working.
The managers of the architects of-
ten report that the architects come
out of the program with a noticeably
different mindset and also see that
the program has added value in the
daily business. Both the architects
and their managers say that they
benefit from the established cross-
company network of architects from
different domains but with similar
problem-solving techniques.

For readers who would con-
sider to establish or further grow
their training programs in the soft-
ware area, we hope that we have
provided useful insights on our
experience that can also be help-
ful to your endeavors. The biggest
challenge is to be willing to make
the necessary investment in time
and resources to initiate and con-
tinuously evolve a learning pro-
gram. We wholeheartedly believe
that the investment in the training
of our personnel is of extreme im-
portance and especially so in these
fast-changing times.

References
1. H. W. J. Rittel and M. M. Web-

ber, “Dilemmas in a general theory

of planning,” Policy Sci., vol. 4,

no. 2, pp. 155–169, Jun. 1973, doi:

10.1007/bf01405730.

2. A. Cockburn, Agile Software Devel-

opment: The Cooperative Game, 2nd

ed. Reading, MA, USA: Addison-

Wesley, 2016.

3. K. Henney. What Do You Mean.

(2019). Kevlin Henney. [Online

Video]. Available: https://www.you-

tube.com/watch?v=ndnvOElnyUg

4. M. Backert, T. Blum, R. Kreuter, F.

Paulisch, and P. Zimmerer, “Soft-

ware curriculum @ Siemens – The

architecture of a training program

for architects,” in Proc. IEEE 32nd

Conf. Softw. Eng. Educ. Training

(CSEE&T), Nov. 2020, pp. 1–6,

doi: 10.1109/CSEET49119.2020.

9206182.

5. M. Galster and S. Angelov, “What

makes teaching software archi-

tecture difficult?” in Proc. 38th

Int. Conf. Softw. Eng. Compan-

ion, May 2016, pp. 356–359, doi:

10.1145/2889160.2889187.

6. P. Lago and H. van Vliet, “Teaching

a course on software architecture,” in

Proc. 18th Conf. Softw. Eng. Educ.

Training (CSEET), Apr. 2005, pp.

35–42, doi: 10.1109/cseet.2005.33.

7. R. C. de Boer, R. Farenhorst, and H.

van Vliet, “A community of learners

approach to software architecture ed-

ucation,” in Proc. 22nd Conf. Softw.

Eng. Educ. Training, 2009, pp. 190–

197, doi: 10.1109/cseet.2009.10.

8. A. van Deursen et al., “A collabora-

tive approach to teaching software

architecture,” Proc. ACM SIGCSE

Tech. Symp. Comput. Sci. Educ.,

Mar. 2017, pp. 591–596, doi:

10.1145/3017680.3017737.

9. J. Offutt, “Putting the engineering

into software engineering educa-

tion,” IEEE Softw., vol. 30, no. 1,

p. 96, Jan./Feb. 2013, doi: 10.1109/

MS.2013.12.

10. B. R. N. Oliviera, L. Garcés, K. T.

Lyra, D. S. Santos, S. Isotani, and

E. Y. Nakagawa, “An overview of

software architecture education,”

in Proc. Anais Do XXV Congresso

Ibero-Americano em Engenharia de

Softw. (CIbSE), Jun. 2022, pp. 76–

90, doi: 10.5753/cibse.2022.20964.

11. P. Clements, “Certified software

architects,” IEEE Softw., vol. 27, no. 6,

pp. 6–8, Nov. 2010, doi: 10.1109/

ms.2010.137.

12. “Education and outreach,” Softw.

Eng. Inst., Pittsburgh, PA, USA.

Accessed: Jun. 3, 2023. [Online].

Available: https://www.sei.cmu.edu/

education-outreach/

13. C. McGoff, The Primes: How Any

Group Can Solve Any Problem.

Hoboken, NJ, USA: Wiley, 2012.

14. P. Salza, P. Musmarra, and F. Ferrucci,

“Agile methodologies in education:

A review,” in Agile Lean Concepts

Teaching Learning, D. Parsons and K.

MacCallum, Eds. Singapore: Springer,

Oct. 2018, pp. 25–45.

15. F. Paulisch and P. Zimmerer, “A

role-based qualification and cer-

tification program for software

architects,” in Proc. 32nd ACM/

IEEE Int. Conf. Softw. Eng.,

May 2010, vol. 2, pp. 21–27, doi:

10.1145/1810295.1810300.

16. M. Backert, F. K. Jeberla, S. Kumar,

and F. Paulisch, “Software engi-

neering learning landscape: An

experience report from Siemens

Healthineers,” in Proc. 4th Int.

Workshop Softw. Eng. Educ. Next

Gener., May 2022, pp. 43–50, doi:

10.1145/3528231.3528356.

https://www.youtube.com/watch?v=ndnvOElnyUg
https://www.youtube.com/watch?v=ndnvOElnyUg

	055_40ms06-paulisch-3311267

