
0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E JULY/AUGUST 2023 | IEEE SOFTWARE 25

Editor: Ciera Jaspan
Google
ciera@google.com

Editor: Collin Green
Google
colling@google.com

THIS WEEK, WE’RE going to tackle
what was once the most common
complaint among developers at
Google: “My build is too slow.” At
first glance, this does not seem like
a human-centric topic. After all,
build latency itself is a purely tech-
nical problem: we can solve it by
making faster compilers, reducing
dependencies, and using incremen-
tal compilation. We can measure
the reduced latency directly, but is
it safe to assume that reduced la-
tency translates directly to saved
time or increased productivity?
Probably not without some cave-
ats: Improvements that reduce build
latency translate to overall time
savings or increased developer pro-
ductivity inasmuch as they affect
the developer as a human. The de-
veloper may or may not notice the

reduced latency and update their
expectations about builds accord-
ingly. The developer may or may
not make different choices about
how to structure their work based
on those expectations about how
fast they can get information from
their build system. Reducing build
latency is a technical problem, but
fully understanding the benefits of
doing so involves understanding de-
velopers as humans.

Everyone’s Favorite
Complaint: Build Latency
In this article, we’ll do a deep dive
into build latency. How fast do
builds need to be for developers to
stay productive? Are there changes
we can make to build systems be-
sides just “make builds faster” to im-
prove productivity? And how much
of a productivity improvement can
we reasonably expect by improving
build latency, anyway?

Looking for the Magic Number
When we first proposed to work on
build latency, our leadership had a
very simple question for us: “How
fast do builds need to be for devel-
opers to stay on task and be produc-
tive? Where’s the ‘knee’ in the graph
of build latency by productivity”?

This question presupposes a par-
ticular state of the world. It assumes
that as build latency increases, there
is some threshold at which devel-
opers are more likely to go off task
or otherwise be unproductive. In
theory, the relationship looks some-
thing like Figure 1.

Our first task therefore was to
try to find the magic productivity
threshold. To do this, we looked at
our developer logs to understand
the following:

1. During the course of the build,
how long does it take before
developers go “off task” to work

Developer Productivity
for Humans, Part 4:
Build Latency,
Predictability, and
Developer Productivity
Ciera Jaspan and Collin Green

Digital Object Identifier 10.1109/MS.2023.3275268
Date of current version: 14 July 2023

Editor: Collin Green
Google
colling@google.com

Editor: Ciera Jaspan
Google
ciera@google.comDEVELOPER PRODUCTIVITY

FOR HUMANS

https://orcid.org/0000-0003-4500-1392
https://orcid.org/0000-0003-1307-3869
mailto:colling@google.com

DEVELOPER PRODUCTIVITY FOR HUMANS

26 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

on another project, check email,
or just stop working on the cur-
rent task?

2. When a build completes, how fast
do developers return to their task
and resume making progress?

We could do this because we were
able to track developer actions across
their tools, as described.1 These ac-
tions were also associated with arti-
facts such as the change the developer
is working on, the file being edited,
the documentation being viewed, etc.
As the build was also associated with
a change, we were able to determine
when the developer had switched to a

different task and when they had re-
turned to their original task.

The expectation was that there
would be a clear pattern where, if
the build takes less than x seconds,
it would mean developers are more
likely to stay on task and more likely
to return quickly to their task. Real-
ity has a nasty habit of dashing our
expectations, though. We found our-
selves looking for the “knee” in real
data that looked more like Figure 2.

There is no knee, no magic number.
Every improvement to build latency
will help developers stay on task, and
get back on task, faster. While it’s dis-
appointing to not have an ideal target

number, it’s also an opportunity. Every
change to build latency can increase
the likelihood of developers staying on
task, although if there are longer build
latencies, one would need a propor-
tionally larger change to see an impact.

This isn’t the whole story, of course.
As builds get faster, incremental im-
provements are harder to achieve.
From a resource investment perspec-
tive, there’s a point at which it be-
comes impractical to further reduce
build latency. However, looking only
at the relationship between latency
and task switching, faster builds are
always beneficial.

Humans Aren’t Great at Time
Estimation
Why isn’t there a magic productiv-
ity threshold? Why don’t developers
stay on task for short builds and task
switch for long builds in a system-
atic manner? We investigated these
questions and found that developers
often don’t know how long a build
will take, and so they cannot opti-
mize for build latency. Based on our
research, we hypothesize that build
systems can provide developers with
better latency estimates to help them
determine when to context switch.

To understand how developers
think about tasks, workflow, and
their builds, we ran an experience
sampling study over the course of
two weeks. During the study, every
time a developer started a build, we
sent them a chat message with a very
short survey. We asked the develop-
ers the following:

1. How long they expected
their build to take. We pro-
vided time buckets: “under
10 seconds,” “under 1 minute,”
“1–2 minutes,” “2–5 min-
utes,” “5–10 minutes,” “10–20
minutes,” “20–30 minutes,”

FIGURE 1. The hypothesized relationship between build latency and the likelihood of

developers staying on task.

Magic Productivity Threshold

Build Latency

%
 o

f I
ns

ta
nc

es
D

ev
el

op
er

s
S

ta
y

on
 T

as
k

FIGURE 2. The actual shape of the relationship between build latency and the

likelihood of developers staying on task.

Build Latency

%
 o

f I
ns

ta
nc

es
D

ev
el

op
er

s
S

ta
y

on
 T

as
k

DEVELOPER PRODUCTIVITY FOR HUMANS

 JULY/AUGUST 2023 | IEEE SOFTWARE 27

“30–60 minutes,” and “over
60 minutes.”

2. What they had been doing since
starting the build. We provided
a list of common activities, in-
cluding “working on this task,”
“working on another task,”
“checking email,” and “non-
work activity,” and we included
a write-in option as well.

We learned from this that devel-
opers choose what to work on based
on how much time they think they
will have, not how much time they
actually have. This seems obvious
in retrospect. If a developer thinks
the build will take over 60 min, they
might go get lunch. If they think it
will take a few minutes, they might
go do a short code review. If the de-
veloper thinks the build will take un-
der 10 s, they inspect their code and
stay focused on their task.

The problem is that developers
were quite inaccurate at estimating
build latency for individual builds.
In our study, developers selected
the wrong bucket 65% of the time.
And regardless of whether the devel-
oper overestimates or underestimates,
they’re going to be negatively af-
fected by their build latency.

• Consider a developer who over-
estimates build time: The devel-
oper thinks that the build will
take 5 min, but it actually takes
30 s. Because the developer
thinks the build will take 5 min,
they walk off to go get a cup of
coffee. They come back, and the
build is complete. The devel-
oper’s flow was broken: they
not only delayed the progress of
their task, but they’ll likely pay
a small penalty associated with
the cognitive overhead of task
resumption.

• Consider a developer who un-
derestimates build time: They
think the build should take about
30 s, so they wait for it to finish.
However, it takes 5 min. The
developer is now annoyed and
perhaps could have responded
to an email or updated a bug
instead of waiting.

Either way, we have a developer
who is going to feel that build la-
tency is disrupting their workflow
and harming their productivity. And
they are right: it is! However, the
harm comes not necessarily from
the build latency itself but from its
unpredictability and the resulting
inability to task switch (or not) ef-
fectively. If build latencies were con-
sistent or if the build system could
usefully inform the developer of ex-
pected latency, the developer could
make a better decision about what
to do next. Reducing build latency
is not our only lever to improve pro-
ductivity here; we can also improve
developers’ ability to make decisions
around build latency as it is.

We also explored how consistency
of build latency relates to developers’
satisfaction with build latency. Us-
ing our quarterly survey, we asked
developers about their satisfaction

with build latency and plotted the
results of each developer’s standard
deviation of the builds they had run
in that quarter (Figure 3). We found
that the developers who were the
most dissatisfied with build latency
were also the ones that had the larg-
est standard deviations. Interestingly,
the effect was substantially smaller
when we plotted developers’ aver-
age build latencies, which again in-
dicates that predictability is possibly
even more important than actual
speed. A predictable event allows the
developer to better plan their work
to increase their own efficiency.

Of course, to act on this insight, one
needs to separately consider whether
build systems can reliably predict build
latency with adequate performance to
inform the developer in the moment of
decision making about what to do next.
We haven’t taken this step at Google,
but we think that the idea holds prom-
ise for improving developer productiv-
ity and satisfaction.

Even Modest Build Latency
Improvements are Helpful
To recap, we see evidence that faster
builds are better, both because they
require less time and because de-
velopers will task switch less often
when builds are quick. Importantly, we

FIGURE 3. Box plots of the standard deviation of build latency for each engineer, sliced

by developer satisfaction with build latency. The boxes show the interquartile range.

E
xt

re
m

el
y

D
is

sa
tis

fie
d

M
od

er
at

el
y

D
is

sa
tis

fie
d

S
lig

ht
ly

D
is

sa
tis

fie
d

N
ei

th
er

S
lig

ht
ly

S
at

is
fie

d

M
od

er
at

el
y

S
at

is
fie

d

E
xt

re
m

el
y

S
at

is
fie

d

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 B

ui
ld

 L
at

en
cy

DEVELOPER PRODUCTIVITY FOR HUMANS

28 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

see evidence that developers will be
much better at optimizing their task
switching when builds are predictable
(or predicted for them), regardless of
their speed. What is the real-world
benefit of build latency reduction?

The question of whether to pur-
sue infrastructure improvements that
will speed up builds is ultimately a
consideration of costs and benefits.
The costs of such upgrades are often
straightforward to calculate, but the
benefits can be harder to quantify, in
part because of uncertainty in how
developers will respond to incre-
mentally faster builds (as above, will
they notice and—if so—will they
change their behavior in a produc-
tive manner?).

A few years ago, the team respon-
sible for our build machines ran into
exactly this problem. They had a new
system, which was more expensive to
run, but it would deliver faster build
latencies. The problem was that the
expected improvement was very
modest: their pilot showed a 15%
improvement in build latencies over-
all. If it was a 50% improvement,
it would have been a more obvious
win: taking a 1-min build to 30 s, or
a 20-s build to 10 s, would almost
certainly have a productivity impact.
However, 15% is less clearly going to
help: if your 1-min build is now 51 s…
does it even matter? Do you notice?
The team asked us for assistance in
evaluating whether the more expen-
sive system was worthwhile.

To evaluate this, we performed a
blind experiment: 15% of developers
were selected to have their builds sup-
ported by upgraded machines (this is
the experiment group), while 85% of
developers had their builds supported
by existing (not upgraded) machines
(the control group). Those develop-
ers assigned to the experiment group
experienced faster builds from the

upgraded machines but not drastically
so. During the study, the median de-
veloper in the experiment group saw
builds improve by just a few seconds
on average (a 13% reduction in me-
dian build time per developer).

We organized data collection to
evaluate several outcome measures:

• Self-reported productivity, self-
reported velocity, and satisfaction
with build latency as measured
through our quarterly surveys.
The developers were not aware
that we were running an experi-
ment; this was part of our regular
survey cadence.

• The number of times develop-
ers ran a build each week and
the number of lines of code
they submitted, measured
through logs.

• The median wall-clock coding
time and median active cod-
ing time on the change lists the
developer submitted. The wall-
clock time is the time from the
first edit to the change list being
submitted, while the active time
is the “fingers on keyboard” time,
including time spent in the inte-
grated development environment
and also time spent looking up in-
formation. (See Jaspan et al.1 for
information on how we extract
these metrics from log data.)

We then ran the experiment for
three months. Due to an unexpected
change in the third month (see be-
low), we extended it for an addi-
tional two months. We analyzed the
data using a difference in differences
method with an individual fixed-ef-
fect model to control confounding
factors specific to the developer.

Despite not knowing they were part
of the study, our experiment group
showed slightly higher self-reported

productivity (a four-percentage-point
increase to the percentage of developers
reporting they were at least moderately
productive) and slightly higher self-
reported velocity (a five-percentage-
point increase in those who reported
being satisfied with their velocity). We
also found that satisfaction with build
latency increased by five percentage
points in the experiment group. All in-
creases were statistically significant in-
creases over the control group. While
these are modest improvements, they
are surprisingly large given the rela-
tively small change to build latency.

The most surprising result of the
study was from the behavioral met-
rics: the number of builds they did
a week, the active coding time and
wall-clock coding time it took de-
velopers to create each change list,
and the number of lines of code they
produced. For the first two months
of the study, we saw no changes to
the experiment group or the control
group in these metrics. In the third
month, though, we saw a slight im-
provement in these metrics in the
experiment group: that group, on
average, ran one more build a week
and submitted 24 more lines of code
per week. Additionally, the devel-
opers in the experiment group were
faster to complete small- to medium-
length change lists (11% faster ac-
tive time and 14% faster wall-clock
time). This delayed change in behav-
ior was a surprise, so we extended
the experiment for two additional
months. The behavior was sustained.

What happened here? Our best
hypothesis is that despite the very
modest change to build latency, the
developers in the experiment group
adapted to the faster build laten-
cies. They were able to fit in one
more build a week, which meant
just a few more lines of code submit-
ted each week. Their slightly faster

DEVELOPER PRODUCTIVITY FOR HUMANS

 JULY/AUGUST 2023 | IEEE SOFTWARE 29

iteration time resulted in overall
velocity improvements for smaller
changes, as well.

In summary, an incremental change
in build latency has several effects
on developers’ behavior and percep-
tion (albeit at a delay) that can and
should be considered benefits of
faster builds. Admittedly, these be-
havioral benefits are hard to estimate
and are unlikely to change in a linear
or monotonic manner with build la-
tency increases.

B uild latency reductions are
important for developer
productivity, but these im-

provements are filtered through a
lens of human perception and judg-
ment. As builds get longer, developers
are more likely to task switch (which
itself has productivity consequences),
but there’s not a magic number that
will ensure developers stay on task.
Additionally, it’s not just absolute
build latency that’s important: the
developer needs to be able to accu-
rately predict build latency to get the
best productivity gains and optimize
their day. Coffee breaks have to go in
somewhere; it’s best if they can over-
lap with a longer build.2

Through experimentation, we’ve
confirmed that even moderate im-
provements to build latency result in
changes to developer behavior that
indicate greater productivity: more
builds, more lines of code written, and
faster completion times for small/me-
dium changes. However, again, there
is human judgment in the loop here:
the developer has to (explicitly or im-
plicitly) notice the change, integrate
it into their expectations, and adapt
their day to their new working model.
In practice, we observed that it took
two months for developers to adapt
for a moderate change to latency.

Even if you can’t actually improve
build latency, though, you can im-
prove the predictability of build la-
tency, either by making builds take
similar lengths of time or by inform-
ing developers of how long (approxi-
mately) they are expected to take.
None of this should actually surprise
us. Developers are human, and we’ve
previously discussed that this is an
important factor in understanding
developer productivity.3 One cur-
rent view in psychology is that hu-
man behavior is best understood as
rational behavior (i.e., optimization)
within the constraints of the envi-
ronment, current goals and tasks,
and human cognitive, perceptual,
and motor constraints.4 Develop-
ers are working in an uncertain en-
vironment. They’re doing complex
tasks that are hierarchical and inter-
related. They’re doing these tasks (of
course) within the bounds of their
own human performance. Build la-
tency is one narrow example, but a
general approach to improving pro-
ductivity falls out of this discussion:

if you can’t make a process faster or
easier, at least make it more predict-
able so that developers can optimize
around it.

References
1. C. Jaspan et al., “Enabling the study

of software development behav-

ior with cross-tool logs,” IEEE

Softw., vol. 37, no. 6, pp. 44–51,

Nov./Dec. 2020, doi: 10.1109/

MS.2020.3014573.

2. R. Munroe. “Compiling.” xkcd.

Accessed: May 23, 2023. [Online].

Available: https://xkcd.com/303/

3. C. Jaspan and C. Green, “A

human-centered approach to

developer productivity,” IEEE

Softw., vol. 40, no. 1, pp. 23–28,

Jan./Feb. 2023, doi: 10.1109/

MS.2022.3212165.

4. F. Lieder and T. Griffiths, “Re-

source-rational analysis: Understand-

ing human cognition as the optimal

use of limited computational re-

sources,” Behavioral Brain Sci., vol.

43, p. e1, Mar. 2020, doi: 10.1017/

S0140525X1900061X.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CIERA JASPAN is the software engineering lead for the Engineer-

ing Productivity Research team at Google, Mountain View, CA

94043 USA. Contact her at https://research.google/people/

CieraJaspan/ or ciera@google.com.

COLLIN GREEN is the user experience research lead for the En-

gineering Productivity Research team at Google, Mountain View, CA

94043 USA. Contact him at https://research.google/people/107023/

or colling@google.com.

http://dx.doi.org/10.1109/MS.2020.3014573
http://dx.doi.org/10.1109/MS.2020.3014573
https://xkcd.com/303/
https://research.google/people/CieraJaspan/
https://research.google/people/CieraJaspan/
https://research.google/people/107023/
mailto:colling@google.com

	025_40ms04-developerprod-3275268

