
110 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

TWENTY YEARS AGO, in this
magazine, Martin Fowler published
the influential essay “Who Needs an
Architect?”1 Today, when I ask devel-
opers where they learned about soft-
ware architecture, they point me to
that essay, directly or indirectly. The
essay provides three definitions of
software architecture, quoting Ralph
Johnson for the definitions and com-
mentary. After weighing the options,
Johnson is critical of all three and
metaphorically throws up his hands:

So, this makes it hard to tell people
how to describe their architecture.
“Tell us what is important.” Ar-
chitecture is about the important
stuff. Whatever that is.

Twenty years is a long time in
computer science. When those words
were written, some of the engineers
I work with today were in diapers.
With the benefit of hindsight, I will
make a case for the third definition,
that software architecture is a set
of abstractions.

Johnson rejects the definition that
architecture is “the highest level con-
cept of a system in its environment,”

retorting that “[t]here is no highest
level concept of a system” because each
stakeholder sees the system differently,
and developers are just one stake-
holder. I agree. Describing architecture
as “high level” is a convenient crutch
when introducing the idea, but it does
not stand up to careful scrutiny.

I prefer a variant of this definition
that is in the same vein but avoids the
“high level” trap: “The set of struc-
tures needed to reason about the
system, which comprises software
elements, relations among them, and
properties of both.”2 It focuses on
reasoning, not levels. Architecture is
what you need to reason about a sys-
tem: software elements, relations, and
properties. Those are abstractions
that let you reason about software,
both before and after you build it.

Missing Abstractions
But surely, we already have plenty
of abstractions! Computer science is
swimming in abstractions. So many,
in fact, that it’s easy to overlook what’s
missing. Let’s review how we grew to
understand architecture. Way back in
1975, Frank DeRemer and Hans Kron
observed that developers have ab-
stractions for writing data structures,
methods, and modules, but not for as-
sembling modules into systems.3

[S]tructuring a large collection
of modules to form a “system” is
an essentially distinct and differ-
ent intellectual activity from that
of constructing the individual
modules. That is, we distinguish
programming-in-the-large from
programming-in-the-small.

A few decades later, in 1993, Da-
vid Garlan and Mary Shaw strength-
ened and generalized the argument,
sketching out what we now call soft-
ware architecture.4

As the size and complexity of
software systems increases, the
design problem goes beyond the
algorithms and data structures
of the computation: design-
ing and specifying the overall
system structure emerges as a
new kind of problem. Structural
issues include gross organization
and global control structure;
protocols for communication,
synchronization, and data access;
assignment of functionality to
design elements; physical distri-
bution; composition of design el-
ements; scaling and performance;
and selection among design
alternatives. This is the software
architecture level of design.

Software Architecture
is a Set of Abstractions
George Fairbanks

Digital Object Identifier 10.1109/MS.2023.3269675
Date of current version: 14 July 2023

https://orcid.org/0000-0003-2595-2801

THE PRAGMATIC DESIGNER

 JULY/AUGUST 2023 | IEEE SOFTWARE 111

Pause to consider their point. Could
you reason about a system using only
algorithms and data structures? Or do
you find yourself going beyond these
abstractions when you talk to other de-
velopers or think through the design of
your system?

By 2010, after two more decades of
innovation, the set of architecture ab-
stractions had settled down. A group
of authors collected the abstractions
into a book titled “The Secret Abstrac-
tions of Software Architecture, Finally
Revealed!” No, I’m pulling your leg.
They actually titled it “Documenting
Software Architectures” and released
it when companies were abandoning
heavyweight processes in favor of agile
ones that discouraged documentation.2
I think that’s why it’s not more famous.

A few years ago, when I read a
book that told a story of innovations in
mathematics, it stitched together ideas
that had been independent islands in
my mind. So, instead of reciting an
inventory of the architecture abstrac-
tions, what I’ll do here is sketch a story
of innovation. As summarized in Fig-
ure 1, the story has several related plot-
lines: specifications, structure, views,
and patterns. I’m surveying decades
of work, so this is an overview, not a
complete inventory.

Specification Abstractions
A specification is a precise description
or clear identification of something. In
the earliest days of computing, there
were no specifications of software be-
cause the concepts of hardware and
software were intertwined. People set
out to build useful machines such as
Babbage’s analytical engine that, in
the mid-1800s, was designed to com-
pute tables of numbers. Ada Lovelace
not only wrote the first algorithm
for it, but she also recognized that
with suitable instructions the hard-
ware could operate on any kind of

symbol—that software could be dis-
tinct from hardware.

By the late 1940s, software was
in fact distinct from hardware.
We had multiple algorithms for the
same function, differing in their use
of storage space or run time. Peo-
ple talked about speed–space trad-
eoffs. This is the germ of a critical
idea in software architecture: specify-
ing features versus qualities. Quali-
ties, or more fully, quality attributes,
go beyond just speed and space; they
include latency, usability, modifiabil-
ity, portability, and many more “-ities.”
As you reason about software, you
want to know not only about its fea-
tures (what it computes) but its quali-
ties (how it computes them). You may
have heard the term “non-functional
requirements,” but it carries baggage:
“non-functional” means “broken”
and “requirements” can imply a wa-
terfall process. It is convenient to dis-
cuss qualities of designs—say that one
has better latency—without stating a
requirement or suggesting a develop-
ment process.

By the 1960’s, it was commonplace
to compile and link programs in sepa-
rate steps. That required a new abstrac-
tion: specifying a subroutine interface
separately from its implementation.
A program could depend on an inter-
face—say, sorting—but wait until link-
ing to choose a fast or space-efficient
implementation. This abstraction helps

you reason about a program from its
interfaces, letting your mind skip past
the implementations. As with all ab-
stractions, you lose detail that way, but
in return you gain the ability to reason
about larger programs.

Structure Abstractions
Software architecture depends on a
second group of abstractions, ones
related to the structure of the pro-
gram. In the early 1950s, David
Wheeler identified the need for re-
usable chunks of code, introducing
subroutines and libraries. Subrou-
tines were grouped into modules,
and modules , l ike subroutines ,
were split between interface and
implementation. By the 1970s, Da-
vid Parnas saw that some ways of
modularizing are better than oth-
ers. Sometimes a change to a module
required changes to its neighbors,
other times not. Module interfaces
could be designed to hide the details
that might change, called informa-
tion hiding. A program designed
with information hiding would work
the same (have the same features)
but be easier to modify (have differ-
ent quality attributes).

By the mid-1970s, programs were
large enough that programmers com-
plained that while they could un-
derstand any given piece, they had
difficulty understanding the whole pro-
gram. “[C]urrent languages discourage

FIGURE 1. Some abstractions in software architecture, shoehorned into a few categories.

Specification Abstractions

• 1850s: Software and Hardware

• 1940s: Features and Quality Attributes

• 1960s: Interfaces and Implementations

Structure Abstractions

• 1950s: Modules

• 1970s: Information Hiding

• 1990s: Components and Connectors

View Abstractions

• 1960s: Compile-Time and Run-Time Views

• 1990s: Multiple Views

• 2000s: Viewtypes

Pattern Abstractions

• 1990s: Named Architecture Patterns

• 1990s: Styles Promote Qualities

• 2010s: Patterns in Every Viewtype

THE PRAGMATIC DESIGNER

112 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

the accurate recording of the over-
all solution structure; they force us
to write programs in which we are so
preoccupied with the trees that we lose
sight of the forest, as do the readers
of our programs!”.3 This is where the
terms programming-in-the-small and
programming-in-the-large originated.

In object-oriented programming,
there is a clear distinction between
a class and an object: A class repre-
senting a person can have several in-
stances, one each for Ann, Bob, and
Carl. A similar type-versus-instance
distinction for modules was not made
clear until the early 1990s. At that
point, the terms module and compo-
nent were no longer used interchange-
ably: Modules exist at compile-time
and components at run-time.

With the advent of computer net-
working in the late 1960s, it was
necessary to describe the interac-
tions as protocols. It was not until
the early 1990s, however, that in-
teractions between components had
a first-class abstraction: connectors.
Connectors express protocols and
much more. Examples of connectors
include call–return, publish–sub-
scribe, and pipes. The implementa-
tion of a connector often requires
a lot of code, organized into many
modules. A procedure call is a simple
connector that developers use to im-
plement more complex connectors,
for example, remote procedure calls
or event-based connectors.

View Abstractions
When designing physical structures
like houses or bridges, it’s com-
mon to create diagrams showing the
structure from different perspectives,
or views. Views play a critical role
in software architecture. In the late
1960s, Edsger Dijkstra observed that
mentally animating code is difficult
and error-prone, so programs should

be written in a structured way, so
that it’s easier to look at the code and
envision how it behaves. Said another
way, developers stare at one view
(the code), imagine another view (its
runtime behavior), and reason about
how changes to one affect the other.

In the mid-1990s, Philippe Kruchten
identified views as a useful abstraction
for software architecture. Not just
compile-time and run-time views, but
also concurrency and deployment to
hardware. Each view enables different
kinds of reasoning, perhaps needed by
different people on the team.

The halting problem says that we
cannot always look at code and say
if it will run forever. It’s the extreme
case of Dijkstra’s point: It’s hard to
use one view (say, the source code) to
reason about another (say, it’s runtime
behavior). It’s similarly hard to look at
code and answer: Is this code running
in production, and if so, where? Yet
developers confronted by a bug report
must reason not about the code in
their repository, but the version of the
code that users are interacting with.
This leads to a final view abstraction:
viewtypes. Viewtypes are a grouping
of views, the most common of which
are compile-time, run-time, and de-
ployment, and they cannot be easily
reconciled with each other.

Pattern Abstractions
All kinds of engineers give names to
recurring patterns, like truss bridges
or hybrid cars, and software engi-
neers have done the same. In the early
1990s, Mary Shaw created a catalog
of architectural patterns that had
been in use for decades, such as cli-
ent-server, pipe-and-filter, and batch-
sequential. As she and David Garlan
formalized these patterns (also called
styles), two ideas emerged.

First, architectural patterns are
inherently linked to quality attribute

tradeoffs. For example, if the system
needs to be low latency, then client-
server is more suitable than map-
reduce, and if your system needs
high throughput, then the choice is
reversed. The linkage of architec-
ture patterns to promoted/inhibited
qualities lifts a fog covering archi-
tectural design. Qualities like la-
tency or availability emerge from the
design choices in a system. It’s a re-
lief to be able to influence them di-
rectly instead of just “rolling up your
sleeves” and hoping that daily vigi-
lance pays off.

Typical systems have an inconsis-
tent mish-mash of patterns. Con-
sider a house that’s been adapted
over the years using the patterns and
materials of the day. You’d like to
reason about the house, for example
“it has insulation, so I’ll be warm in
it.” But can you? Perhaps one room
has insulation, but another room
does not. When patterns are applied
inconsistently, you don’t get much
reasoning power.

This leads to the second idea.
Consistency leads to stronger rea-
soning power: The more consis-
tently a system applies a pattern,
the easier it is to reason about.
People tend to use the term archi-
tectural style when a pattern is ap-
plied consistently as opposed to
piecemeal. When a system conforms
to an architectural style, it plays by
the style’s rules. Consider the Por-
table Operating System Interface
(POSIX) standard in which pro-
grams communicate with signals
such as SIGTERM and SIGKILL.
A well-behaved program listens and
acts appropriately; a poorly behaved
program learns that kill -9 is the boss.
Returning to the house analogy, if
you consistently follow style rules
about insulating a house, then you
can reason about its warmth.

THE PRAGMATIC DESIGNER

 JULY/AUGUST 2023 | IEEE SOFTWARE 113

In 2010, a final architecture
abstraction took me by surprise. I
knew about the three main view-
types (compile-time, run-time, and
deployment), and I knew about ar-
chitectural patterns. However, all
of the patterns I knew about were
run-time patterns, so I was shocked
when I read about patterns for how
source code is arranged, and pat-
terns about how components are
deployed to datacenters.2 An exam-
ple of a pattern in the deployment
viewtype is redundant deployment
to datacenters: by deploying the
same components to many datacen-
ters, the system can keep running
if a datacenter goes offline. I’d like
to say this was an easy extension of
what I already knew but in reality,
I had to struggle before I internal-
ized it.

Chain of Intentionality
A few years ago, my software devel-
opment team was at an offsite team
building event where we learned
how to cook. Because I like to cook,
I already had some of the skills being
taught, and I ended up coordinating
several of the dishes that our team
was preparing. We had some vegetar-
ians, so we cooked two pans of Brus-
sels sprouts, one with and one without
bacon. Just before serving, however,
someone picked up the pans and com-
bined them. Luckily, there were other
vegetarian dishes that evening.

The well-meaning person saw
there were two pans, of course, but
incorrectly inferred that the intent
was to feed more people, not to ac-
commodate different diets. This mis-
take happened because design intent
was lost, and I’m to blame for that.
(It’s also an example of why it’s dan-
gerous to hoard the architectural
knowledge of a system). There was
a design to this meal, so to speak,

and satisfying our audience led to ar-
ranging the cooking in a certain way.

Using two pans is a small de-
tail, but it had a big impact. Was
it architectural? As I said earlier,
Ralph Johnson was right, “[t]here
is no highest level concept of a sys-
tem” because each stakeholder sees
the system differently. Architecture
isn’t just the “high level” anything,
even if that phrasing is a convenient
shorthand. To our vegetarian stake-
holders, however, the two-pan de-
sign detail was indeed architectural.

Does that mean all details are
architectural? No, our systems are
big and complex, so we must ag-
gressively simplify if we hope to
reason about them. Software archi-
tecture is a set of abstractions that
lets you reason about your system,
especially about quality attributes.
Our field has had small abstractions
like subroutines, algorithms, and
data structures for a long time now.
It has taken decades to accumulate
larger abstractions like information
hiding, components and connectors,
multiple views, and architectural
styles. When we design systems, we
weave these abstractions together,
preserving a chain of intentional-
ity, so that the systems we design do
what we want.5

Twenty years ago, Martin Fowler
asked, “Who needs an architect?”
and, with help from Ralph Johnson,

helped shape the way a generation of
software developers thought about
architecture. It’s not just twenty
years later; our systems are twenty
years bigger. Today, what’s more im-
portant than asking about job roles
is: Can you reason about the soft-
ware you plan to build, or have al-
ready built? It’s time for developers
to take another look at software ar-
chitecture and see it as a set of ab-
stractions that helps them reason
about software.

References
1. M. Fowler, “Design - Who needs an

architect?” IEEE Softw., vol. 20, no.

5, pp. 11–13, Sep./Oct. 2003, doi:

10.1109/MS.2003.1231144.

2. P. Clements et al., Documenting Soft-

ware Architectures. Upper Saddle River,

NJ, USA: Addison-Wesley, 2010.

3. F. DeRemer and H. Kron,

“Programming-in-the large versus

programming-in-the-small,” in

Proc. Int. Conf. Reliable Softw.,

Apr. 1975, pp. 114–121, doi:

10.1145/800027.808431.

4. D. Garlan and M. Shaw, “An introduc-

tion to software architecture,” in Proc.

Adv. Softw. Eng. Knowl. Eng., Ser.

Softw. Eng. Knowl. Eng., V. Ambriola

and G. Tortora, Eds. Singapore: World

Scientific, 1993, vol. 2, pp. 1–39.

5. G. Fairbanks, Just Enough Software

Architecture. Boulder, CO, USA:

Marshall & Brainerd, 2010.

ABOUT THE AUTHOR

GEORGE FAIRBANKS is a software engineer at Google, New York, NY

10019 USA. Contact him at gf@georgefairbanks.com.

http://dx.doi.org/10.1109/MS.2003.1231144
http://dx.doi.org/10.1145/800027.808431

	110_40ms04-pragdesign-3269675

