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TWENTY YEARS AGO, in this 
magazine, Martin Fowler published 
the influential essay “Who Needs an 
Architect?”1 Today, when I ask devel-
opers where they learned about soft-
ware architecture, they point me to 
that essay, directly or indirectly. The 
essay provides three definitions of 
software architecture, quoting Ralph 
Johnson for the definitions and com-
mentary. After weighing the options, 
Johnson is critical of all three and 
metaphorically throws up his hands:

So, this makes it hard to tell people 
how to describe their architecture. 
“Tell us what is important.” Ar-
chitecture is about the important 
stuff. Whatever that is.

Twenty years is a long time in 
computer science. When those words 
were written, some of the engineers 
I work with today were in diapers. 
With the benefit of hindsight, I will 
make a case for the third definition, 
that software architecture is a set 
of abstractions.

Johnson rejects the definition that 
architecture is “the highest level con-
cept of a system in its environment,” 

retorting that “[t]here is no highest 
level concept of a system” because each 
stakeholder sees the system differently, 
and developers are just one stake-
holder. I agree. Describing architecture 
as “high level” is a convenient crutch 
when introducing the idea, but it does 
not stand up to careful scrutiny. 

I prefer a variant of this definition 
that is in the same vein but avoids the 
“high level” trap: “The set of struc-
tures needed to reason about the 
system, which comprises software 
elements, relations among them, and 
properties of both.”2 It focuses on 
reasoning, not levels. Architecture is 
what you need to reason about a sys-
tem: software elements, relations, and 
properties. Those are abstractions 
that let you reason about software, 
both before and after you build it.

Missing Abstractions
But surely, we already have plenty 
of abstractions! Computer science is 
swimming in abstractions. So many, 
in fact, that it’s easy to overlook what’s 
missing. Let’s review how we grew to 
understand architecture. Way back in 
1975, Frank DeRemer and Hans Kron 
observed that developers have ab-
stractions for writing data structures, 
methods, and modules, but not for as-
sembling modules into systems.3

[S]tructuring a large collection 
of modules to form a “system” is 
an essentially distinct and differ-
ent intellectual activity from that 
of constructing the individual 
modules. That is, we distinguish 
programming-in-the-large from 
programming-in-the-small.

A few decades later, in 1993, Da-
vid Garlan and Mary Shaw strength-
ened and generalized the argument, 
sketching out what we now call soft-
ware architecture.4

As the size and complexity of 
software systems increases, the 
design problem goes beyond the 
algorithms and data structures 
of the computation: design-
ing and specifying the overall 
system structure emerges as a 
new kind of problem. Structural 
issues include gross organization 
and global control structure; 
protocols for communication, 
synchronization, and data access; 
assignment of functionality to 
design elements; physical distri-
bution; composition of design el-
ements; scaling and performance; 
and selection among design 
alternatives. This is the software 
architecture level of design.
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Pause to consider their point. Could 
you reason about a system using only 
algorithms and data structures? Or do 
you find yourself going beyond these 
abstractions when you talk to other de-
velopers or think through the design of 
your system?

By 2010, after two more decades of 
innovation, the set of architecture ab-
stractions had settled down. A group 
of authors collected the abstractions 
into a book titled “The Secret Abstrac-
tions of Software Architecture, Finally 
Revealed!” No, I’m pulling your leg. 
They actually titled it “Documenting 
Software Architectures” and released 
it when companies were abandoning 
heavyweight processes in favor of agile 
ones that discouraged documentation.2 
I think that’s why it’s not more famous. 

A few years ago, when I read a 
book that told a story of innovations in 
mathematics, it stitched together ideas 
that had been independent islands in 
my mind. So, instead of reciting an 
inventory of the architecture abstrac-
tions, what I’ll do here is sketch a story 
of innovation. As summarized in Fig-
ure 1, the story has several related plot-
lines: specifications, structure, views, 
and patterns. I’m surveying decades 
of work, so this is an overview, not a 
complete inventory.

Specification Abstractions
A specification is a precise description 
or clear identification of something. In 
the earliest days of computing, there 
were no specifications of software be-
cause the concepts of hardware and 
software were intertwined. People set 
out to build useful machines such as 
Babbage’s analytical engine that, in 
the mid-1800s, was designed to com-
pute tables of numbers. Ada Lovelace 
not only wrote the first algorithm 
for it, but she also recognized that 
with suitable instructions the hard-
ware could operate on any kind of 

symbol—that software could be dis-
tinct from hardware. 

By the late 1940s, software was 
in fact distinct from hardware. 
We had multiple algorithms for the 
same function, differing in their use 
of storage space or run time. Peo-
ple talked about speed–space trad-
eoffs. This is the germ of a critical 
idea in software architecture: specify-
ing features versus qualities. Quali-
ties, or more fully, quality attributes,  
go beyond just speed and space; they 
include latency, usability, modifiabil-
ity, portability, and many more “-ities.” 
As you reason about software, you 
want to know not only about its fea-
tures (what it computes) but its quali-
ties (how it computes them). You may 
have heard the term “non-functional 
requirements,” but it carries baggage: 
“non-functional” means “broken” 
and “requirements” can imply a wa-
terfall process. It is convenient to dis-
cuss qualities of designs—say that one 
has better latency—without stating a 
requirement or suggesting a develop-
ment process. 

By the 1960’s, it was commonplace 
to compile and link programs in sepa-
rate steps. That required a new abstrac-
tion: specifying a subroutine interface 
separately from its implementation. 
A program could depend on an inter-
face—say, sorting—but wait until link-
ing to choose a fast or space-efficient 
implementation. This abstraction helps 

you reason about a program from its 
interfaces, letting your mind skip past 
the implementations. As with all ab-
stractions, you lose detail that way, but 
in return you gain the ability to reason 
about larger programs.

Structure Abstractions
Software architecture depends on a 
second group of abstractions, ones 
related to the structure of the pro-
gram. In the early 1950s, David 
Wheeler identified the need for re-
usable chunks of code, introducing 
subroutines and libraries. Subrou-
tines were grouped into modules, 
and modules , l ike subroutines , 
were split between interface and 
implementation. By the 1970s, Da-
vid Parnas saw that some ways of 
modularizing are better than oth-
ers. Sometimes a change to a module 
required changes to its neighbors, 
other times not. Module interfaces 
could be designed to hide the details 
that might change, called informa-
tion hiding. A program designed 
with information hiding would work 
the same (have the same features) 
but be easier to modify (have differ-
ent quality attributes). 

By the mid-1970s, programs were 
large enough that programmers com-
plained that while they could un-
derstand any given piece, they had 
difficulty understanding the whole pro-
gram. “[C]urrent languages discourage 

FIGURE 1. Some abstractions in software architecture, shoehorned into a few categories.

Specification Abstractions 

• 1850s: Software and Hardware

• 1940s: Features and Quality Attributes

• 1960s: Interfaces and Implementations 

Structure Abstractions 

• 1950s: Modules

• 1970s: Information Hiding

• 1990s: Components and Connectors 

View Abstractions 

• 1960s: Compile-Time and Run-Time Views

• 1990s: Multiple Views

• 2000s: Viewtypes 

Pattern Abstractions 

• 1990s: Named Architecture Patterns

• 1990s: Styles Promote Qualities

• 2010s: Patterns in Every Viewtype 
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the accurate recording of the over-
all solution structure; they force us 
to write programs in which we are so 
preoccupied with the trees that we lose 
sight of the forest, as do the readers 
of our programs!”.3 This is where the 
terms programming-in-the-small and 
programming-in-the-large originated.

In object-oriented programming, 
there is a clear distinction between 
a class and an object: A class repre-
senting a person can have several in-
stances, one each for Ann, Bob, and 
Carl. A similar type-versus-instance 
distinction for modules was not made 
clear until the early 1990s. At that 
point, the terms module and compo-
nent were no longer used interchange-
ably: Modules exist at compile-time 
and components at run-time. 

With the advent of computer net-
working in the late 1960s, it was 
necessary to describe the interac-
tions as protocols. It was not until 
the early 1990s, however, that in-
teractions between components had 
a first-class abstraction: connectors. 
Connectors express protocols and 
much more. Examples of connectors 
include call–return, publish–sub-
scribe, and pipes. The implementa-
tion of a connector often requires 
a lot of code, organized into many 
modules. A procedure call is a simple 
connector that developers use to im-
plement more complex connectors, 
for example, remote procedure calls 
or event-based connectors.

View Abstractions
When designing physical structures 
like houses or bridges, it’s com-
mon to create diagrams showing the 
structure from different perspectives, 
or views. Views play a critical role 
in software architecture. In the late 
1960s, Edsger Dijkstra observed that 
mentally animating code is difficult 
and error-prone, so programs should 

be written in a structured way, so 
that it’s easier to look at the code and 
envision how it behaves. Said another 
way, developers stare at one view 
(the code), imagine another view (its 
runtime behavior), and reason about 
how changes to one affect the other. 

In the mid-1990s, Philippe Kruchten 
identified views as a useful abstraction 
for software architecture. Not just 
compile-time and run-time views, but 
also concurrency and deployment to 
hardware. Each view enables different 
kinds of reasoning, perhaps needed by 
different people on the team.

The halting problem says that we 
cannot always look at code and say 
if it will run forever. It’s the extreme 
case of Dijkstra’s point: It’s hard to 
use one view (say, the source code) to 
reason about another (say, it’s runtime 
behavior). It’s similarly hard to look at 
code and answer: Is this code running 
in production, and if so, where? Yet 
developers confronted by a bug report 
must reason not about the code in 
their repository, but the version of the 
code that users are interacting with. 
This leads to a final view abstraction: 
viewtypes. Viewtypes are a grouping 
of views, the most common of which 
are compile-time, run-time, and de-
ployment, and they cannot be easily 
reconciled with each other. 

Pattern Abstractions
All kinds of engineers give names to 
recurring patterns, like truss bridges 
or hybrid cars, and software engi-
neers have done the same. In the early 
1990s, Mary Shaw created a catalog 
of architectural patterns that had 
been in use for decades, such as cli-
ent-server, pipe-and-filter, and batch-
sequential. As she and David Garlan 
formalized these patterns (also called 
styles), two ideas emerged.

First, architectural patterns are 
inherently linked to quality attribute 

tradeoffs. For example, if the system 
needs to be low latency, then client-
server is more suitable than map-
reduce, and if your system needs 
high throughput, then the choice is 
reversed. The linkage of architec-
ture patterns to promoted/inhibited 
qualities lifts a fog covering archi-
tectural design. Qualities like la-
tency or availability emerge from the 
design choices in a system. It’s a re-
lief to be able to influence them di-
rectly instead of just “rolling up your 
sleeves” and hoping that daily vigi-
lance pays off.

Typical systems have an inconsis-
tent mish-mash of patterns. Con-
sider a house that’s been adapted 
over the years using the patterns and 
materials of the day. You’d like to 
reason about the house, for example 
“it has insulation, so I’ll be warm in 
it.”  But can you?  Perhaps one room 
has insulation, but another room 
does not. When patterns are applied 
inconsistently, you don’t get much 
reasoning power.

This leads to the second idea. 
Consistency leads to stronger rea-
soning power: The more consis-
tently a system applies a pattern, 
the easier it is to reason about. 
People tend to use the term archi-
tectural style when a pattern is ap-
plied consistently as opposed to 
piecemeal. When a system conforms 
to an architectural style, it plays by 
the style’s rules. Consider the Por-
table Operating System Interface 
(POSIX) standard in which pro-
grams communicate with signals 
such as SIGTERM and SIGKILL. 
A well-behaved program listens and 
acts appropriately; a poorly behaved 
program learns that kill -9 is the boss. 
Returning to the house analogy, if 
you consistently follow style rules 
about insulating a house, then you 
can reason about its warmth. 
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In 2010, a final architecture 
abstraction took me by surprise. I 
knew about the three main view-
types (compile-time, run-time, and 
deployment), and I knew about ar-
chitectural patterns. However, all 
of the patterns I knew about were 
run-time patterns, so I was shocked 
when I read about patterns for how 
source code is arranged, and pat-
terns about how components are 
deployed to datacenters.2 An exam-
ple of a pattern in the deployment 
viewtype is redundant deployment 
to datacenters: by deploying the 
same components to many datacen-
ters, the system can keep running 
if a datacenter goes offline. I’d like 
to say this was an easy extension of 
what I already knew but in reality, 
I had to struggle before I internal-
ized it.

Chain of Intentionality
A few years ago, my software devel-
opment team was at an offsite team 
building event where we learned 
how to cook. Because I like to cook, 
I already had some of the skills being 
taught, and I ended up coordinating 
several of the dishes that our team 
was preparing. We had some vegetar-
ians, so we cooked two pans of Brus-
sels sprouts, one with and one without 
bacon. Just before serving, however, 
someone picked up the pans and com-
bined them. Luckily, there were other 
vegetarian dishes that evening.

The well-meaning person saw 
there were two pans, of course, but 
incorrectly inferred that the intent 
was to feed more people, not to ac-
commodate different diets. This mis-
take happened because design intent 
was lost, and I’m to blame for that. 
(It’s also an example of why it’s dan-
gerous to hoard the architectural 
knowledge of a system). There was 
a design to this meal, so to speak, 

and satisfying our audience led to ar-
ranging the cooking in a certain way.

Using two pans is a small de-
tail, but it had a big impact. Was 
it architectural? As I said earlier, 
Ralph Johnson was right, “[t]here 
is no highest level concept of a sys-
tem” because each stakeholder sees 
the system differently. Architecture 
isn’t just the “high level” anything, 
even if that phrasing is a convenient 
shorthand. To our vegetarian stake-
holders, however, the two-pan de-
sign detail was indeed architectural.

Does that mean all details are 
architectural? No, our systems are 
big and complex, so we must ag-
gressively simplify if we hope to 
reason about them. Software archi-
tecture is a set of abstractions that 
lets you reason about your system, 
especially about quality attributes. 
Our field has had small abstractions 
like subroutines, algorithms, and 
data structures for a long time now. 
It has taken decades to accumulate 
larger abstractions like information 
hiding, components and connectors, 
multiple views, and architectural 
styles. When we design systems, we 
weave these abstractions together, 
preserving a chain of intentional-
ity, so that the systems we design do 
what we want.5

Twenty years ago, Martin Fowler 
asked, “Who needs an architect?” 
and, with help from Ralph Johnson, 

helped shape the way a generation of 
software developers thought about 
architecture. It’s not just twenty 
years later; our systems are twenty 
years bigger. Today, what’s more im-
portant than asking about job roles 
is: Can you reason about the soft-
ware you plan to build, or have al-
ready built? It’s time for developers 
to take another look at software ar-
chitecture and see it as a set of ab-
stractions that helps them reason 
about software.  
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