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HAS THE DAY we all have been wait-
ing for really arrived? Have advances 
in deep learning and machine learning 
(ML) finally reached a turning point 
and have started to produce “accurate 
enough” assistants to help us in a vari-
ety of tasks, including software devel-
opment? Are large language models 
(LLM) going to turn us all into bet-
ter writers, artists, translators, pro-
grammers, health-care workers, not to 
mention software engineers? Or are 
we at a risky turning point where we 
will not be able to separate artificial 
intelligence (AI)-generated content 
from user-created ones, drowning in 
misinformation and perfect sound-
ing yet fake and incorrect information 
and AI-generated faulty programs?

Recently released LLMs, such as  
Generative Pretrained Transformer 
(GTP) 4 used in ChatGPT by OpenAI 
and BERT used in Bard by Google, dis-
rupt the search engine model that we 
have been used to. Use of these models 
shifts the end-user computer interaction 
from “here are a list of places to look 
at to potentially find an answer to your 
question” to “here is a suggested answer 
to your questions with well-constructed 
syntax, what is your next question 
based on this?” 

Without a doubt, LLMs have use 
cases in assisting software engineering 
tasks as well, including code generation 
models trained in programming lan-
guages, such as CoPilot by GitHub. 
The reaction of the software engineer-
ing community to the accelerated ad-
vances that LLMs have been enjoying 
since 2022 has been varied, ranging 

from considering capabilities offered 
by these models as “snake oil”1 to “end 
of programming and computer science 
education as we know it.”2 In this ar-
ticle, after a brief overview of LLMs, 
I will focus on the opportunities LLMs 
open up for software development and 
implications of incorporating LLMs 
into systems as well as assisting with 
software development tasks.

What Are LMMs?
An LLM is a deep neural network model 
which has been trained on large amounts 
of data, such as books, code, articles, and 
websites, to learn the underlying patterns 
and relationships in the language that it 
was trained for. By doing so, the model 
is able to generate coherent content such 
as grammatically correct sentences and 
paragraphs that mimic human language 
or syntactically correct code snippets. 
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LLMs have applications in a variety of 
tasks, including language translation, 
summarization, and question answer-
ing and have potential in many fields as 
long as the data that the models have 
been trained on provide the appropriate 
input. While the content generated by 
LLMs are often grammatically correct, 
they may not always be semantically 
correct. The probabilistic and random-
ized selection of the “next token” in con-
structing the outputs on one hand gives 
the end user the impressions of correct-
ness and style, on the other hand may 
result in mistakes.3

While the recently released ver-
sions of LLMs, ChatGPT driving the 
pack, have made significant improve-
ments, there are several areas of cau-
tion around their generation and use:

•	 Data quality and bias concerns: 
LLMs require enormous amounts 
of training data to learn language 
patterns and their outputs are 
highly dependent on the data that 
they are trained on. Any of the 
issues that exist in the training 
data, such as biases and mistakes, 
will be amplified by LLMs, po-
tentially resulting in models that 
exhibit discriminatory behavior, 
such as making prejudiced recom-
mendations. This means that the 
quality and representativeness of 
the training data can significantly 
impact the model’s performance 
and generalizability, mistakes can 
propagate. For example, language 
models that are used to recom-
mend code patterns have been 
found to carry security flaws 
forward.4 This creates risks in not 
only generating buggy code, but 
also perpetuating immature imple-
mentation practices in developers.

•	 Privacy and content ownership 
concerns: LLMs are gener-
ated using content developed by 

others which both may contain 
private information as well as 
content creators’ unique creativity 
characteristics. Training on such 
data using patterns in recom-
mended output creates plagiarism 
concerns. Some content is boiler 
plate and the ability to generate 
output in correct and understand-
able ways creates opportuni-
ties for improved efficiency. But 
content, including code, where in-
dividual contributions matter be-
comes difficult to differentiate. In 
the long run, increasing popular-
ity of language models will likely 
create boundaries around data 
sharing and open source software 
and open science. Techniques 
to indicate ownership or even 
preventing certain data to be used 
to train such models will likely 
emerge. However, such techniques 
and attributes to complement 
LLMS are yet to come. 

•	 Environmental concerns: The 
vast amounts of computing power 
required in training deep learn-
ing models has been increasingly 
a concern related to their impact 
on carbon footprint. Research in 
different training techniques, al-
gorithmic efficiencies, and varying 
allocation of computing resources 
during training will likely increase. 
In addition, improved data col-
lection and storage techniques are 
anticipated to eventually reduce  
the impact of LLMs on the envi-
ronment, but development of  
such techniques are still in their 
early phases.5

•	 Explainability and unintended con-
sequence concerns: Explainability 
of deep learning and ML models 
is a general concern in AI, includ-
ing but not limited to LLMs. Users 
seek to understand the reason-
ing behind the recommendations, 
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especially if such models are to be 
used in safety or business critical 
settings. Dependence on the qual-
ity of the data and inability to 
trace the recommendations to the 
source increase trust concerns.6 
In addition, since the sequences 
are generated using a random-
ized probabilistic approach, 
explainability of correctness of 
the recommendations create 
added challenges. Explainability 
as well as responsible AI practices 
are critical since such models 
can easily be used to spread 
misinformation.

The application programming in-
terfaces (API) of GPT and BERT are 
now also available to other develop-
ers. This contributes to both acceler-
ating the use and improvements on 
LLMs as well as increasing the num-
ber of opportunities of their misuse. 
OpenAI researchers are open about 
their lessons learned and have no 
choice but rely on software engineer-
ing best practices. They recommend 
policy enforcement as a mechanism 
to enforce avoiding misuses.7 Applica-
tions which help detect text written by 
such models have been quick to come, 
such as GPTZero written for educa-
tors to detect such text, and ironically 
it uses ChatGPT in doing so.8 It is safe 
to say LLMs have attracted a fair 
share of confusion, criticism, and 
excitement all at the same time.

Applications in Software 
Engineering
Research agendas developed recently 
had already shined the light on the fu-
ture of software engineering to be an 
AI-augmented development lifecycle 
where both software engineering and 
AI assistants share roles from copilot 
to student, expert, and supervisor.9 
In the National Agenda for Software 

Engineering, my colleagues and I had 
suggested that developers will need to 
guide and consequently improve the 
AI assistants. AI assistants will also 
take on a supervisory role by provid-
ing real-time feedback and, in time, 
demonstrating repeated mistakes to 
developers. On a developer team, 
there will always be some developers 
who you trust more than others (per-
haps due to experience, skill sets, or 
demonstrated performance). The AI-
assisted development workflows will 
trigger the need to think of AI “part-
ners” in the same way.9

While with caution, software en-
gineers need to think about LLMs 
as partners and focus on where their 
optimal application can be. There are 
quite a number of software engineer-
ing tasks which can effectively ben-
efit from using LLMs. Indulge me for 
a moment to assume that we solved 
the trust and unethical use issues as I 
enumerate potential use cases where 
LLMs can create strides of advances 
in improved productivity of software 
engineering tasks, and where the risks 
can still be manageable.

•	 Specification generation: Quite 
a number of requirements can 
be common across applica-
tions, yet oftentimes require-
ments are also incomplete. 
LLMs can assist in generating 
more complete specifications 
significantly quicker.

•	 Just in time developer feed-
back: Applications of LLMs in 
software development has been 
received with much skepticism, 
rightly so at the time being. 
While the code generated by 
current AI assistants, such as 
Copilot, have been found to carry 
more security issues,4 in time this 
will change. AI-based and other 
approaches which give developers 
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syntactic corrections and sugges-
tions have been around a while. 
LLMs carry the promise of going 
the extra mile and recommending 
not just corrections, but next steps.

•	 Improved testing: Generating 
unit tests is one of the tasks where 
developers shortcut the most. 
Ability to generate test cases at 
ease would increase overall test 
effectiveness and coverage, and 
consequently system quality.

•	 Documentation: Ranging from 
contracting language to regu-
latory requirements, there are 
many applications of LLMs 
to software development 
documentation.

•	 Language translation: Legacy soft-
ware and brownfield development 
is the norm of system develop-
ment today, and many organiza-
tions need to go through language 
translation efforts when they need 
to modernize their systems. This 
process is often manual and error 
prone, while some tools do exist 
to support developers. While will 
not work at scale, portions of code 
can potentially be translated to 
other programming languages us-
ing LLMs. Rewriting a system in 
an other programming language is 
not just a language translation ex-
ercise, it is mostly also a re-archi-
tecting exercise; however, ability 
to rewrite selected portions at ease 
would be a welcomed capability.

LLMs will also require software 
engineers to become more savvy in 
how they incorporate them into sys-
tems as elements. Example areas in-
clude the following:

•	 LLMs as functional components: 
LLMs will definitely change some 
of the ways capabilities are bun-
dled and delivered as well, where 

pretrained models become parts of 
systems or parts of external systems. 
APIs to LLMs will drive different 
system composition scenarios and 
will be available as services.

•	 Operations informing develop-
ment: Data is the first-class citizen 
in LLM tools. Operational data 
will need to be more timely fed 
back to both the development 
process, e.g., areas where users 
make most mistakes, as well as 
functionality development, e.g., 
inform functionality that users do 
not use to be deprecated.

These examples focus on existing 
software engineering tasks that can be 
done better or faster because such mod-
els exist. There are also, however, task 
flows that will change, and new activi-
ties will likely emerge while time spent 
on others get reduced. An AI-augment 
software development lifecycle will 
likely have different task flows, efficien-
cies, and roadblocks than the current 
development lifecycles of agile and iter-
ative development workflows. For ex-
ample, rather than thinking about steps 
of development as requirements, de-
sign, implementation, test, and deploy, 
LLMs can enable bundling these tasks 
together. This would change the num-
ber of hand-offs and where they hap-
pen, shifting task dependencies within 
the software development lifecycle.

Going Forward
All the areas of cautions and risks re-
lated to LLMs are areas where we need 

new research and innovations. These 
need to be targeted at improving cor-
rectness of LLM recommendations, 
improving their generalizability, as 
well as improving the ethical implica-
tions of data use and content creation.

We are likely to see most advances 
in generalizability of models, devel-
opment of integrated development 
environments with new paradigms, 
and reliable data collection and use 
techniques in the near future. Curri-
cula development and education of the 
next generation of computer scientists 
and software engineers cannot stay 

blind to the implications of such de-
velopments in generative AI either.

Generalizability of Models 
Currently, LLMs work by pretraining 
on a large corpus of content followed 
by fine-tuning on a specific task. What 
this implies is that the architecture of 
the model is task independent; how-
ever, its application for specific tasks 
requires further fine-tuning with sig-
nificantly large numbers of examples. 
Generalizability of these models to ap-
plications where data are sparse, few-
shot settings, is already a focus area by 
researchers.10

New Development Environments
If we are convinced by the argu-
ment that some tasks can be acceler-
ated and improved in correctness by 
AI assistants including LLMs, that 
also implies that the current inte-
grated development tools will need 

Computer science and software 
engineering programs need to start  

a shift in their curricula today.
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to incorporate these assistants. When 
assistants are integrated in, then de-
velopment becomes a more interactive 
process with the tool environment. 
Software engineering bots are already 
pushing the envelope of the develop-
ment environments in the direction of 
incorporating developer assistants.11

Data as a Unit of Computation
The most critical input which drives this 
next generation of AI innovations is not 
only the algorithms, but also data. Not 
only will a significant portion of com-
puter science and software engineer-
ing talent shift to data science and data 
engineer careers, but also, we will need 
more tool-supported innovations in data 
collection, data quality assessment, and 
data ownership rights management. This 
is an area with huge gaps that requires 
skill sets that span computer science, pol-
icy, engineering, as well as deep knowl-
edge in security, privacy, and ethics.

Computer Science and Software 
Engineering Education 
The biggest implications of LLMs are 
in how we teach programming lan-
guages and system design. LLMs are 
likely to take already existing plat-
forms such as StackOverflow and Red-
dit, which have become indispensable 
resources for developers, to a new level 
of reduced barrier of entry. Computer 
science and software engineering pro-
grams need to start a shift in their cur-
ricula today. Software engineering and 
computer science education has al-
ready missed the boat by continuing to 
focus on teaching green field develop-
ment while today the reality of system 
development is brownfield. Students 
are not adequately exposed to theo-
ries and techniques to support system 
development by composition, legacy 
evolution, and using heterogeneous 
platforms and programming languages 
in concert. We teach students hello 

world development, while we should 
be teaching them how to read millions 
of lines of code, triage and fix bugs that 
they have not contributed to and un-
derstand the structure and behavior of 
the software rather than the single class 
or story card they are responsible for. 
With LLMs and their sister AI-driven 
apps assisting developers, we need to 
be teaching next-generation software 
engineers when to trust, how to cre-
ate evidence to trust, how to do trust 
assessment rapidly and correctly, and 
how to improve such assistants. We 
need to teach them how to evolve sys-
tems to incorporate such components, 
and we need to teach them to treat 
data as code. We need to make ethics 
courses mandatory every year of the 
curriculum. The list goes on.

After the two winters of AI, gener-
ally attributed to late 1970s and early 
1990s, we have entered not only a 
period of AI blossoms, but also ex-
ponential growth in funding, in use, 
and in scare from AI. Advances in 
LLMs without a doubt are huge con-
tributors to this growth. What will 
determine if the next phase includes 
innovations beyond our imagination 
or another AI winter is largely de-
pendent on not our ability to continue 
technical innovations, but on our abil-
ity to practice software engineering 
and computer science through the 
highest level of ethics and respon-
sible practices. We need to be bold in 
experimenting with the potential of 
LLMs in improving software devel-
opment, and we need to be cautious 
and not forget fundamentals of engi-
neering ethics and rigor. 
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