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Abstract—Long-term individual household forecasting is use-
ful in various applications, e.g., to determine customers’ advance
payments. However, the literature on this type of forecasting is
limited; existing methods either focus on short-term predictions
for individual households, or long-term prediction at an aggre-
gated level (e.g., neighborhood). To fill this gap, we present a
method that predicts the monthly consumption of individual
households over the next year, given only a few months of con-
sumption data during the current year. Utility companies can
exploit this method to predict the consumption of any customer
for the next year even with incomplete data. The method consists
of three steps: clustering the data using k-means, prediction using
an ensemble of forecasts based on the historical median distri-
bution among similar households, and smoothing the predictions
to remove weather-dependent patterns. The method is highly
accurate as it finished third in the IEEE-CIS competition (and
ranks first when leveraging insights from another team), focused
on forecasting long-term household consumption with incomplete
data. It is also very scalable thanks to its low computational com-
plexity and weak data requirements: the method only requires
a few months of historical data and no household-specific or
weather information.

Index Terms—Long-term load forecasting, clustering, smart
meter, household consumption.

I. INTRODUCTION

LECTRICITY forecasting has been studied for many
Eyears and remains an important task. The roll-out of
domestic smart meters enables the collection of consump-
tion data of individual households. Electricity forecasting is
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one way in which these data can be used to create value.
Accurate electricity consumption prediction is useful for a
plethora of applications including, but not limited to, determin-
ing customers’ advance payments, supporting day-to-day grid
operations and strategic planning of energy grid extensions [1].
Different applications require different types of forecasts: day-
to-day grid operations might require an hourly forecast for
the next day while strategic planning might require a monthly
forecast for the next ten years [2]. In this paper, we propose
a novel algorithm to forecast the monthly electricity con-
sumption of individual households for the next year, given
the monthly consumption during the available months of the
current year.

The algorithm is one of the winning approaches at the IEEE-
CIS competition [3]. The goal was to forecast the monthly
consumption of multiple British households in 2018 using
smart meter data (electrical consumption), weather data from
2017, and additional household-specific information such as
the number of occupants, the number of bedrooms, etc. In
the original competition, our approach ranked third out of 71
participating teams, reaching state-of-the-art accuracy, and we
show that our method outperforms the approaches ranked first
and second when disregarding smart meters without battery
or when applying the same post-processing trick that the first
approach applied to those faulty smart meters.

A key asset of the algorithm is that it can make predictions
for a full year ahead even with incomplete data, e.g., even
for households with one month of historical data. In addition,
the proposed approach has the benefit of requiring low com-
putational power, which grants the ability to scale up across
millions of households. Finally, together with the other com-
petition submissions, this model is one of the first to solve the
challenge of long-term electricity forecasting at the individual
household level in the literature.

A. Related Work

The method proposed in this paper forecasts the monthly
electricity consumption of individual households one year
ahead, requiring only historical data of the previous year, at
least the data from one month.

Electricity consumption forecasting is a wide subject of
research. It has two dimensions: horizon and spatial granu-
larity. The horizon is the forecast length in the future. It can
be from few hours to multiple years. The spatial granularity
is a geographical specification, i.e., consumption of an appli-
ance or of an entire a country. Another relevant parameter is
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the sampling rate, which can vary from one second to one
year. It is strongly linked with the horizon, e.g., if the elec-
trical consumption of a city had to be predicted ten years
ahead, an hourly forecast would not be accurate and thus not
be considered.

Most of the efforts in the literature have been focused
on long-term forecasting of coarse granularity, e.g., cities,
geographical zones [4], regions [5], [6] or countries [7]-[9].
In long-term forecasting, due to the randomness and high
volatility of the individual household electricity consumption,
existing methods rely on averaging and aggregating these
consumption patterns to a coarser spatial granularity.

Methods for individual household, i.e., fine granularity, con-
sumption have been proposed [10]-[13]. However, they are
limited to short horizons. Typically they forecast a few hours
up to several days ahead and only for a small number of
households. The latter is either due to the complexity of
the algorithm used, leading to high computational require-
ments [10], or the lack of available input data. For example, in
the Convolutional Neural Network - Long Short Term Memory
(CNN-LSTM) model in [11], the authors used a configuration
(i.e., three smart meters in specific household locations) that
is nearly impossible to replicate in thousands of households.
Another example of data scarcity is given in [12], where the
case study is based on an unoccupied house and all activi-
ties are of an academic nature, which reduces stochasticity
and simplifies the forecasting problem. The model proposed
in [13] suffers the same drawback. It relies on typical daily
load profiles depending on three parameters: the number of
occupants, the time at which the first person gets up in the
morning and the last person goes to sleep and the part of the
day during which the house is unoccupied. The influence of
the individual appliances is also considered (electric oven, TV,
water heating, etc.). As with the previous works, this method
can hardly generalize to multiple households due to the type of
data required (e.g., disclosing the time of waking up or going
to bed might conflict with privacy laws in several countries).

Short-term individual load forecasting might require differ-
ent evaluation metrics [14] than long-term forecasting, e.g., to
take into account the double penalty effect generated by the
consumption peaks. Classical error metrics, such as RMSE,
penalize twice for a peak that is correctly predicted by the
algorithm in terms of amplitude and duration, but displaced
in time: once when the peak actually happens and is not pre-
dicted and once again when the peak is predicted but it does
not actually happen. Long-term forecasting, based on monthly
aggregated data for example, are less prone to peaks, thanks to
the averaging and are thus not subject to this double penalty
effect.

Research on long-term and fine granularity forecasting
mostly focuses on large energy consumption units, e.g., super-
markets [15] or public buildings [16], [17], where the patterns
are less stochastic than households. Others investigate long-
term residential consumption forecasting, per customer type,
depending on average income and other demographics [18]. In
the latter case, individual household consumption is not pre-
dicted and the proposed method requires 30 years of historical
consumption data in the training phase.
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The lack of research on long-term household forecasting
can further be seen in the extensive review of Zhao [19],
where out of the 92 extensively reviewed papers, only eight
tackle residential load forecasting and just two consider fine
granularity residential monthly forecasting. The first proposed
method [20] tackles individual residential forecasting by disag-
gregating the household load into sixteen appliance categories,
using detailed information such as the historical consumption,
energy prices, weather information and demographics obtained
through a questionnaire. Although potentially accurate, this
method is not scalable due to required questionnaire data. The
second one [21] proposes an approach in three steps in order
to predict monthly consumption of six family houses based
on only one month of historical data of the heating demand
and the domestic energy demand as well as the indoor-outdoor
temperature difference. The first step is to generate the con-
sumption of a reference building using a simulation tool based
on blueprint data of a similar house, the second is to generate
additional data by scaling the measured data, the third is to
train a neural network on the extended data and finally make
predictions based on the actual indoor-outdoor temperature
and the reference building. Several limitations are to be noted.
Firstly, detailed blueprint data of a similar house is necessary,
secondly the total household consumption has to be disaggre-
gated into the energy used for space heating and the energy
used for the electric appliances and hot water and finally, the
data augmentation using scaling only makes sense because of
the location of the households under investigation. Indeed, the
houses are in Umed, Sweden, where the temperature varies
between —30°C and 30 °C.

B. Motivation and Contributions

This paper aims to fill a gap in the literature regarding
long-term individual household forecasting, proposing a highly
accurate and scalable method based on relative consumption
patterns and ensemble learning. The proposed method is the
first of its kind, as it

« can forecast long-term consumption of individual house-

holds,

« can operate on households with incomplete data,

« can handle missing time samples,

« does not have complex and exogenous data requirements

such as weather data or household-specific attributes.

The method is highly accurate (as demonstrated by the award
in the IEEE-CIS competition [3]), has low computational
complexity and can be scaled to any number of households.
As motivated by the competition, this type of forecasting is
beneficial for customers, for accurate bill estimations. It is
also interesting for producers, to schedule the right amounts
of electricity production and procurement; for suppliers, to
detect potential discrepancies between self-declared and real
consumption; and for network operator in the grid manage-
ment and strategic planning. Additionally, long-term individual
household forecasting is one of the main research recommen-
dation topics in the context of the energy transition [9].

The proposed method has to overcome a series of challenges
that existing methods, due to the nature of the consumption
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granularity, do not have to overcome. For instance, household
consumption patterns are more stochastic than aggregated data
(on the city or national level) and also more stochastic than the
consumption patterns for larger buildings such as supermarkets
or offices. The algorithms that work for a supermarket, offices
or a large building might not work for a household. Moreover,
households change distributors every year in order to obtain
the best rates. A commercial supplier might not have a full year
of historical data to predict the next year. It is thus crucial to
have a method which is reliable, works for households and
can predict longer horizons than the available historical data.

C. Organization of the Paper

The paper is organized as follows. Section II presents the
key attributes considered to build the model, based on a set
of realistic assumptions. The different steps of the method
are detailed in Section III, as well as the model parameters.
Appendix A analyzes the impact of each step on the final
performance metric. The case study proposed by the IEEE
Data Port platform is explained extensively in Section IV,
including information on the dataset, the benchmark models,
the performance metrics and the results. Finally the outcome
and perspectives are discussed in Section V.

II. KEY ATTRIBUTES OF THE MODEL

Before explaining the details of the model (see Section III),
it is important to outline the key attributes of the model and
the assumptions made to derive these attributes. The proposed
model forecasts monthly electrical consumption of individual
households for a full calendar year using incomplete house-
hold data from the previous calendar year, where at least one
month of measurements must be available. The model does not
require household-specific information nor weather data. The
methodology presented consists of four key attributes, which
are based on assumptions, detailed in this section.

As the granularity of the predictions is monthly, most of the
hourly and daily stochastic behavior of individual households
averages out. In a monthly resolution, a lot of the stochastic
behavior of individual households, e.g., what time one goes
to sleep, plays little role. Instead, the factors that drive the
consumption at that level are more deterministic, e.g., how
large the household is. Since these deterministic factors are
likely to be shared across many households, simple methods
that use the mean or median consumption of households with
similar consumption patterns, should be able to make highly
accurate predictions. The first and second key attributes of the
model stem from this assumption. The first attribute is that
the proposed model disregards hourly and daily patterns,
and directly works with monthly data. Therefore, even if
hourly data from smart meters is available, we aggregate the
data to the monthly level and disregards the stochastic pat-
terns of lower resolutions. As a second key attribute, we make
predictions based on the median consumption of similar
households.

Although the absolute consumption of households differs
significantly, relative monthly consumption patterns have less
variance and are more similar. Therefore, the perceptual

consumption of each month with respect to the yearly con-
sumption, is shared among many households. This can be
explained by the fact that, independently of the household type
or size, similar human behavior is shared across the house-
holds. Based on this observation, a third key attribute of the
model is to work with relative consumption patterns instead
of absolute ones. In other words, we normalize electricity
consumption data.

The model assumes that, since relative consumption patterns
are considered, additional household-specific information such
as household size and weather data play little to no role. In
particular, households with different types of appliances and
a different number of occupants might have the same relative
consumption profile, while households with the exact same
number of occupants and/or appliances might have different
relative profiles. Similarly, weather data are only available for
the current year. Using this weather data to predict the next
year can lead to over-fitting the model to the current year. As
an example, let us consider a household where November in
the current year is colder than December: that household will
likely have a larger consumption in November than December
due to the weather. Yet, that specific situation will likely
not generalize to the next year as December is, in general,
expected to be colder. Moreover, weather forecasts are usually
not available one year in advance and can thus not be used
for this horizon. For these reasons, the fourth model attribute
is to disregard exogenous features.

III. METHODOLOGY: RATIO APPROACH

In order to forecast the household monthly consumption,
different steps are applied sequentially. These can be divided
in three main parts. Firstly, the training pipeline, Fig. la, con-
sists of the preprocessing, data augmentation, normalization
and clustering. Secondly, the inference framework, Fig. 1b,
consists of the prediction step. Finally, the ensemble and post
processing steps are illustrated in Fig. lc. All the modules
are detailed in Sections III-A to IV-E. In these sections, we
provide a clear example for interpretability, while a general
notation is used in the figures.

e Preprocessing A real life dataset usually contains miss-
ing data, due to defaults in the smart metering device
for example. For each household/smart meter, full miss-
ing days are imputed using linear interpolation on a
daily level. Subsequently, the data are aggregated to the
monthly level using summation.

o Data Augmentation & Normalization As discussed in
Section II, it is better to consider relative as opposed
to absolute consumption. This conversion happens in
the normalization step. However, a consumption profile
depends heavily on the month in which the customer signs
up with a supplier and this is reflected in the normaliza-
tion. Therefore, our proposed method explicitly considers
the sign-up month. This is explained in more detail in
Section III-A.

o Clustering The relative consumption profiles are clus-
tered together in order to group similar profiles. Different
clusterings are executed per sign-up month. Profiles that
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Fig. 1. Flowchart of the method proposed in this paper. The input and output data are in the rectangles and the steps executed are in the chevron arrows. (a) The
training pipeline is applied to all the profiles and aims to build the clusters based on the relative profiles. The data augmentation step is highlighted using the
indices of the profiles. There are njy,, profiles which start in January, npep in February, and so on. The total number of profiles is n = njan +ngep + - « - +npec-
(b) General framework for inferring the consumption of a month p for a profile with sign-up month s. (c) Ensemble and post processing pipeline: the individual
predictions from the inference cases, are combined using the median and smoothed in the post-processing step.

signed up later are retroactively added to clusterings for
earlier sign-up months. This is explained in more detail
in Section III-B.

o Prediction Each cluster can be used to make a prediction
for a certain household. This operation is explained
in Section III-C. Since multiple clusterings exist per



BOTMAN et al.: SCALABLE ENSEMBLE APPROACH TO FORECAST THE ELECTRICITY CONSUMPTION 761

household, several predictions can be made. Section III-D
explains which clusters to consider and how to combine
their predictions in an ensemble approach.

o Postprocessing As a final step, the predictions are
smoothed using a standard moving average technique in
order to reduce the effect of weather patterns in the cur-
rent year, as explained in Section II. By using a moving
average, the effects of weather are mitigated as the final
prediction is the average between nearby months. This
step has a parameter w describing the window length for
the moving average.

The entire process makes use of very few hyperparameters.
Only three parameters require tuning (the minimum cluster
S1Z€ Nmin,cluster, the number of nearest neighbors ngimiar, and
the window length w for smoothing), which are explained in
Sections III-B, III-C, and III-E respectively. As detailed in
Section IV-H and Appendix B, their value, although impor-
tant, is not very critical as the method is rather robust to the
selection of these three hyperparameters.

A. Data Augmentation & Normalization: Relative
Consumption Profiles

The proposed method is based on using relative consump-
tion profiles, where a relative profile is the absolute profile
divided by the yearly consumption. For instance, the relative
consumption of a given household in April is the consumption
of April divided by the annual consumption.

The vector of monthly consumption of a household x; in a
year is defined as

L =r....

where the subscripts of the vector’s elements denote the month,
e.g., [Tj is the monthly consumption value for January. For a
household x; that signed up in month s, the first s— 1 elements
of the monthly consumption vector L% are missing:

1] e R 0

LY = [ NaN,...,NaN,Z/,.... [}, | e R'%. )
—

(s=1)

Therefore, we introduce the monthly consumption vector
o . . B
L) = [lif/, o l)ICJZ:I c R12—s+l 3)

of household x; starting from month s. This notation will also
be used to discard the first few months of a profile even though
consumption data of the discarded months might be available.

To make the consumption profiles between households that
signed up in the same month comparable, the consumption
profiles Ly are normalized into relative consumption profiles

X

Ry as
Xi Xj Xi —
R{ = [rsj,...,rljz] e RIZ—s+1,

- ZTi[x[ff;z] “

After this transformation the total relative consumption of
each household sums up to one.

0.19 Cluster Labels
3

5%, 95%, mean

Months

Fig. 2. Example of clusters of relative consumption profiles starting in
January for the IEEE-CIS competition data. The number of clusters obtained
is four, determined using the elbow method. The centroid (mean) of the cluster
is plotted together with a 90% confidence interval.

The relative consumption of households that signed up in
different months are still not directly comparable. For exam-
ple, a household x; that signed up in November has a relative
consumption in November that is around 50%, but if the same
household has signed up in January the relative consumption
during November would be closer to 8% (=~ 1/12).

To solve this issue, two steps are taken. In the clustering
step, to find similar consumption patterns, a different cluster-
ing is made for each sign-up month. In the prediction step,
only ratios between two months are considered as these ratios
are independent of the sign-up month (see Section III-C for
details).

Furthermore, a data augmentation technique is applied to
maximally exploit the available data. When making a cluster-
ing for relative profiles that signed up in month s, we consider
not only the data of households that signed up in month s,
but also the data of the households that signed up earlier by
discarding any consumption before month s. For example, a
profile with sign-up month March, is also considered as if it
signed up in April, i.e., by disregarding March. Similarly, it is
also appended to the profiles signed up in May, i.e., by disre-
garding March and April; and so on. The relative profiles of
the households that signed up earlier are re-normalized such
that each relative profile sums up to one. In the prediction
step, a similar procedure is applied, which is explained in
Section III-C.

B. Clustering: Grouping Similar Profiles

As households from different sign-up months have differ-
ent relative values, clusters are built for each possible sign-up
month. As an example, Fig. 2 illustrates the four clusters
obtained when considering the households that signed up in
January, using the k-means algorithm with Euclidean distance
metric. Similarly, Fig. 3 illustrates the five clusters obtained
when considering the households that signed up in June,
including those that signed up before and from which the mea-
surements of the months before June have been ignored. In
both figures, for each cluster, the centroid (mean) of the clus-
ter is plotted together with a 90% confidence interval. The
k-means clustering is guaranteed to converge to an optimum,
although this might be a local optimum [22].
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Fig. 3. Example of clusters of relative consumption profiles starting in June
for the IEEE-CIS competition data. The number of clusters obtained is five,
determined using the elbow method. The centroid (mean) of the cluster is
plotted together with a 90% confidence interval. It is clear, when comparing
Fig. 2 and Fig. 3 that the relative values are different depending on the sign-up
month.

In order to introduce the notation for the prediction step
(Section III-C), let xi,xp,...,xy be the N households that
signed up in month s or earlier. The set of these households is
denoted by X;. For each of these households, independently
of the data available, the clustering algorithm first defines a
relative profile Ry € R!Z-5+! starting in s, as in (4). Let
S; be the set of the N relative profiles starting in s (one per
household that signed up in month s or earlier):

S;={R},....R"}. 5)

The clustering step uses the K-mean clustering algo-
rithm [23] with Euclidean distance to cluster the relative
consumption profiles S; into a set of m; clusters with centroids

Qzﬁguﬁﬂ, (6)

where the centroid of the k’th cluster C¥ is the mean of all
profiles in that cluster.

Ch= e dn]. (7)

The double subscripts v, w in ¢, ,, represent the sign-up month
of the centroid and the given month within the centroid respec-
tively. For example c3 ¢ represents the month June within the
centroid C3, which has sign-up month March.

As k-means requires the number of clusters as an input,
the elbow method [24] is employed to estimate the number of
clusters. Moreover, to avoid unrepresentative clusters that do
not generalize, we discard clusters with fewer than nmin,cluster
profiles, as they are likely to contain outliers and may not be
representative enough.

C. Prediction: The Power of the Median via Ensemble
Learning

The proposed model forecasts monthly electrical consump-
tion of individual households for a full calendar year using
(incomplete) household data from the previous calendar year.
Here, “predicted month” refers to the monthly consumption
value that we aim to predict in the next year, while “sign-up
month” refers to the month in which the household signed up
with the provider, meaning in the previous year.
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Once we have clustered the relative profiles, we build the
predictions. To do so, for each household to be predicted,
we generate multiple predictions based on the clustered pro-
files and compute the final prediction as the median of these
predictions. We combine predictions to exploit ensemble learn-
ing [25], i.e., combining predictions (or models) to reduce the
bias or variance errors of the individual predictions (or mod-
els). In this context, we use the median instead of the mean to
combine the predictions because it is less sensitive to outliers.

The proposed method considers a slightly different ensem-
ble learning step depending on whether the prediction is made
for an earlier or later month than the month in which the house-
hold signed up. In particular, the method distinguishes three
cases, as illustrated in Fig. 1b: (1) predicting an earlier month
than the sign-up month, i.e., a month for which there is no
monthly data of the previous year available, (2) predicting a
later (or equal) month to the sign-up month, i.e., a month for
which there is monthly data of the previous year available,
and (3) predicting the consumption for households that signed
up in December.

To explain the prediction step, it is easier to consider an
example. Let us consider again a household x; that signed up
in June. As explained in the previous sections, for household
xj, the relative profile is from June onward:

Ry =[rg...oxh]. (8)

1) Predicting an Earlier Month Than the Sign-Up Month:
The prediction process for this case is represented in Fig. 1b,
case 1. Let us assume that the month of March needs to be
predicted for household x;. For that, consider the centroids

C3 = {C}, ..., C}®} obtained from the clustering with March
as a sign-up month and denote the centroid elements as:

Ch= s ] e R, )

Second, based on thes~e m3 cqntroids, a set of re-scaled
centroids are generated {C%, ey Cg”} which match the scal-
ing and size of the relative profile R)g of household x; (with
sign-up month June):

~k __ |~k ~k 7
G = [c3’6, R c3’12] eR
1
k k
= Tkl:c:;’é’ ey C3’12:|.
>iZe C3i

The part of the centroid before the sign-up month is disre-
garded and the centroid is re-scaled so that the new centroids
sum up to one. Third, we determine which centroid C]3‘ lies

closest to the relative profile R/, using Euclidean distance.
We thus have the optimal centroid

(10)

2
~x ~k Xj
¢ = & - Ry

(1)

arg min
Cielc....c)

Then, the original full centroid C5 € R!0 associated with
the optimal rescaled centroid (~:’3’ € R7 is used to predict
March’s consumption for household x;. Seven predictions
are computed, based on the seven relative centroid values

3 3,--.,C3 1, of C; and the seven absolute measurements



BOTMAN et al.: SCALABLE ENSEMBLE APPROACH TO FORECAST THE ELECTRICITY CONSUMPTION 763

lgj 5, [)]C’2 of household x;. The predicted consumption
of month March [;j is calculated as the median of these
individual predictions:

ch ck
o . 3,3 % 3,3 o
l)g_medlan *—lg,..., = l)lc2 .
312

C36

(12)

In other words, to predict the consumption of March for
household x;, seven predictions are built: one for each avail-
able monthly consumption. In particular, for each available
monthly consumption I, a prediction is built by multiplying
the ratio between the representative relative consumption in
March and the representative relative consumption in month
q, i.e., 23
the final f)rediction is built as the median of the individual
predictions.

2) Predicting a Later Month Than the Sign-Up Month:
This prediction process is represented in Fig. 1b, case 2.
When predicting a later (or equal) month than the sign-up
month the same principle applies. However, instead of work-
ing with the clusters starting in the month that we want to
predict p, the clusters associated with the sign-up month s are
used.

As an example, let us consider again a household
x; that signed up in June. However, let us consider
the case of predicting July rather than March. Now,
instead of using the m7 centroids {Cl,...,Cg”} associ-
ated with the predicted month (July), the mg centroids
{ck ..., Cg’ﬁ} associated with the sign-up month (June) are
used.

The reasons for considering the centroids of the sign-up
month instead of the predicted month are twofold. First, as
the scale and length of each centroid C]é € R7 is the same as
the relative profile jo e R’, it is not necessary to re-scale
the centroids. Second, by working with the clusters associated
with the sign-up month, the number of predictions used to
compute the median is maximized. For example, while for
June as a sign-up month there are seven predictions, whereas
for July there are only six. Similarly to the previous case,
the closest centroid (in terms of Euclidean distance) to the
relative profile R)g is determined and denoted by C7, as in (11).
Similar to (12) in the previous case, the prediction ?;j is built by
computing the medians of the ratios between the representative
relative consumption of July and the representative relative
monthly consumption of the available months multiplied by
the absolute monthly consumption:

cr cr cr

o : 6,7 7% 6,7 7% 6,7 7

[; = median = lg, " [;,...,c* [1(2 . (13)
6,6 6,12

, by the monthly absolute consumption [2’ . Then,

,7

3) Predicting Households That Signed Up in December:
As the relative consumption for the households that signed up
in December is always 1, the described method cannot be used
to predict these households. Therefore, for these households,
a different approach is considered, represented on Fig. 1b,
case 3.

First, for each household x; and predicted month p, the
Hsimilar Most similar households are computed in terms of

absolute consumption in December that have data avail-
able for month p. That is, to predict March we consider
all meters with data for March and December, in other
words, the set of households that signed up in month p or
earlier.

Then, the ngjmijlar Meters that are most similar to household
x; are found. Second, defining this set of similar households by
SPd = (87, .. A ), the prediction 1 is built for house-
hold x; and month p as the median of the historical values of
the similar households:

. J o
l]“;./ — Inedian(l;a7 s ey lp Slmllar>. (14)

To find the ngjmilar most similar households, the k-nearest
neighbors algorithm [26] is applied. In this context, although
the parameter ngjmil,r should be optimized, empirical observa-
tion shows that it makes no difference for values ngimilar > 10.
We have tested values ranging from 10 to 100 during the IEEE-
CIS competition and empirically observed that it does not have
a significant impact. The value used in the final submission of
the method is ngjmilar = 50.

D. Ensemble Learning

As explained in the previous sections, the consumption of
each (household, month) pair is predicted by building multiple
predictions for each pair and then computing the median. The
reason for doing so is ensemble learning [25], i.e., combining
predictions (or models) to reduce the bias or variance errors
of the individual predictions (or models).

In general, when combining multiple predictions, the
larger the ensemble, the lower the variance or bias
error and the better the prediction becomes. To that
end, as an additional step during the prediction phase,
a data augmentation technique is performed to increase
the number of predictions for each (household, month)
pair.

As before, let us explain this step with an example. Let
us consider the household x; that signs up in June and the
process of predicting July. As explained in Section III-C2,
this prediction is done by computing the median of seven
individual predictions (cfr. (13)).

To improve this prediction, additional individual predictions
are generated by assuming that the household did not sign up
in June but signed up in July. To do so, the exact same pro-
cedure described in Section III-C2, is repeated but assuming
that the household has no data for June. This leads to a set of
new six new predictions, similarly to (13).

The same procedure is repeated by simulating the cases
that the household signed up in August, September, ..., up
to November. The predicted month is now earlier than the
sign-up month, as in Section III-C1 (cfr. (12)).

Furthermore, a prediction for July can also be computed
by considering that the household signed up in December, by
applying the procedure described in Section III-C3, similarly
to (14).
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So, in total, 74+ 6 +5+ 44+ 3 +2 + 1 = 28 individual
predictions are generated to compute the prediction

o
(O %
2

*
N 61 15
= R
o O Tcgp 12 5=6
* *
a1 . [Xj €17 .["j
= e,
G, T TG, 12 s=7
* *
€17 [Xj €11 ["j
- ) = A v
1)76 = median ’ (15)
g ["j G ["j
Gu WGy, 12|
7 7
: le x”ijimilar
median| ;" ,...,[;"
s=12

Each row in the parentheses considers a different sign-up
month from June (s = 6) up to December (s = 12). This
is also illustrated in Fig. lc.

In general, for a household x; that signed up in month s,
this data augmentation step creates extra predictions so that
we have a total of Z}il_vt individual predictions that are used

to compute the median.

E. Post-Processing: Smoothing the Predictions

As a final step, the predictions are smoothed using a stan-
dard moving average technique. The motivation behind doing
so is to reduce the effect of weather patterns in the year of the
given measurements (see Section II for details). By using a
moving average the weather effects are mitigated as the final
prediction is the average between nearby months. This step has
a parameter w describing the window length for the moving
average. We tested three values as part of the IEEE-CIS com-
petition and observed that, although the window size plays
little role, five months is marginally better.

IV. CASE STUDY
A. Problem Statement IEEE-CIS Competition

The problem tackled in this paper is the monthly electri-
cal consumption forecasting of thousands of households one
year ahead using the historical consumption of the previous
year. The proposed method was one of the award-winning
methods in the IEEE-CIS competition [3]. For the sake of
open-access and reproducibility, we use in this paper the same
case study as it allows any other researcher to verify the results
and re-use the data. In the competition, the goal was to fore-
cast the monthly consumption of 3248 households in 2018
using (i) half hourly smart meter data from 2017 for the same
households, with a different data availability for each house-
hold, ranging from one to twelve months representing different
customer sign-up months, (ii) the weather data from 2017 for
the households location at a daily resolution and (iii) addi-
tional household-specific information such as the number of
occupants, the number of bedrooms, etc.

B. Dataset

The dataset is provided by E.ON U.K. plc., in the context
of the IEEE-CIS competition on energy prediction from smart
meter data [3]. It consists of half hourly sampled time series
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Fig. 4. Heat map of the monthly electrical consumption per smart household
(in kWh). The y-axis represents the individual profiles and the x-axis the
month. The color gives an indication of the monthly values. In the colder
months (November & December) the consumption is higher. The faint white
lines are missing data. It is clear from the staircase structure that only the
first 270 profiles have twelve months of data available. The next 270 profiles
have eleven months of data available, and so on up to the last 270 profiles
which have only the month December.

describing the electrical consumption of 3248 households dur-
ing the year 2017. It is a real world dataset containing all the
challenges of a real application.

First, the profiles have a different range of available his-
torical data, acknowledging that customers might have joined
the measurement campaign at different times during the year,
as is illustrated in Fig. 4. It is a two-dimensional representa-
tion of the electrical consumption recorded by the 3248 smart
meters. It can be seen that the first 270 profiles (about a 127
of the profiles) have twelve months of historical data avail-
able (from January until December), the next 270 profiles
have eleven months of historical data (from February until
December) and so on until the last part of the profiles which
have only one month of historical data available (December).

Secondly, there are missing days within the available
months, which are the faint white lines in Fig. 4.

Thirdly, additional household-specific information were col-
lected through surveys, such as the type of building, the
number of rooms, the number of occupants, and so on.
However these data are very sparse, for example there are
48% of missing data in the type of building, 42% in the num-
ber of bedrooms, and always more than 97% for all the other
additional information.

Finally, the competition also provides time series weather
data, e.g., average, maximum and minimum daily tempera-
ture, associated with each household, in 2017. However, the
weather data of 2018 is not made available, as well as the
household consumption data of 2018. There is thus no val-
idation dataset. It is subsequently not possible to assess the
performance between the years. The performance could be
checked on a leaderboard via the organizers. Further details
about the data are provided on the competition Website [3].

The objective of the competition was to predict the monthly
consumption (in kWh) of the 3248 households for the year
2018 as well as the aggregated yearly consumption for the
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same year. As explained by the organizers, the yearly total
consumption, computed as the sum of the monthly forecasts,
is of interest for billing purposes while the monthly values are
used by the energy trading teams to buy the right amount of
electricity on the energy market. As the data are real and pub-
licly available, we use it here for our case study. As explained
in the next section, we also consider the metrics proposed by
the organizers of the competition.

C. Performance Metrics

We use the metrics from the competition to measure the
performance of our method [3]. It is the weighted average
error of the yearly prediction error and the monthly prediction
error. In particular, the yearly relative absolute error (year,zg)
is measured as

1% — [

1 n
0 Q=1

T E ] 1o

yearag =

where n is the total number of houscholds, 1% = Z}iﬂf’
is the predicted total yearly consumption of household x;,
I is the true total yearly consumption of household x; and

1= % j’»’zl |F9|. Then the relative monthly error (monthag)
is considered
1«12 [5% j
N | |l = an
monthyAg = —
112 |4 9x
T Y|l =1
where n is the total number of households, 5= [?lcj e ?1("2]

is the predicted monthly consumption of household x; , LYV =
[[){j e [)1("2] is the true monthly consumption of household x;
and 19 = 15 3.2, 1.

Finally, both metrics are considered equally important and
aggregated as

1 1
total,Ag = EmonthrAE + —year,g. (18)

2

D. Benchmark Models

As part of the competition, we tested several different
prediction models. In this paper, we compare our model, with
a baseline model that we designed and two well-known models
that were submitted to the competition by another contestant: a
linear regression (LR) model and an Autoregressive Integrated
Moving Average (ARIMA) model [27]. These have been sub-
mitted by Bandara et al. [28], [29]. In addition, we outline the
performance of the top three approaches (one of which is the
one proposed in this paper).

The naive benchmark we proposed, computes the monthly
average over the available months of 2017 for each individual
household and uses this monthly average as a prediction for
each of the months of the year 2018.

Wenlong Wu (first place) [3], [30] proposed a Machine
Learning pipeline consisting of data preprocessing, feature
engineering, algorithm modeling, post-processing, and ensem-
ble fusion. Fuzzy C-Means is applied, extracting twelve
clusters of profiles. The model is based on a Light Gradient
Boosting Machine (Light GBM) which makes use of bagging

and boosting techniques. First, this model is applied on all
the households individually, it learns the overall trend and
makes day-level energy prediction. Secondly, one model is
trained per cluster. Thirdly, a prediction is computed using
the mean of November and December values. These three
predictions are fused using a weighted average. Additionally,
Wenlong Wu found 32 profiles with zero consumption val-
ues for November and December, which might be due to
drained batteries during the acquisition of training data.
Assuming that this problem is present in the collection of
the ground-truth (i.e., test) data as well, he manually set their
predictions to zero. We do not find this “battery trick” opera-
tion fair in terms of evaluation, because it exploits a specific
problem in data collection. Finally a scaling step is applied,
down-scaling the summer months and up-scaling the winter
months as he noticed this improved the performance. The
weather data and additional household-specific information
were not used. The six features used by Wenlong Wu are
categorical household ID, mean meter reading of the house-
hold, and time-related features like day of week, day of
month and month encoded cyclically using sine and cosine
functions, such that January and December are defined as
similar.

Steffen Limmer’s approach (second place) [3] is based on
k nearest neighbors, the following sequence of steps is con-
sidered: data preprocessing, outlier removal (by computing
the base distributions and filtering out abnormal distributions
using isolation forest), an ensemble strategy to predict the
monthly consumption and finally scaling. In the prediction
step, the distribution of a meter is predicted as the aver-
age over the distributions of k nearest base meters (without
the outliers) and then the monthly consumption is com-
puted based on the distribution prediction and the December
consumption.

E. The proposed Approach With the Battery Trick

In addition to our proposed scalable ensemble approach that
ranked third in the competition, we also consider its modified
version that uses the battery trick, which is applied in the
method that ranked first and explained in Section IV-D. This
modification would enable our proposed approach to outper-
form the first ranked method in the competition, as shown in
Section IV-G.

F. Run Times

The proposed method takes around 45 minutes to run
on a machine with 9th Generation “Coffee Lake” 2.6 GHz
6-Core Intel Core i7 mobile processor (I7-9750H), MacOS
operating system, Python version 3.8.3: 20 seconds to gener-
ate the clusters, 19 minutes to determine the closest cluster
for all inference cases of all profiles, 25 minutes to build
the predictions and 40 seconds for ensemble and smoothing.
Besides the training and ensemble/post-processing pipelines,
the method is parallelised on 4 threads. It could easily be
parallelised with more threads to speed up the process even
more.
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TABLE I
A COMPARISON OF THREE BENCHMARK METHODS (NAIVE BASELINE,
LINEAR REGRESSION AND ARIMA) AND THE TOP THREE METHODS IN
THE IEEE-CIS CONTEST [3]. THE METHODS PROPOSED IN THIS PAPER,
ARE HIGHLIGHTED. TOTAL RAE STANDS FOR RELATIVE ABSOLUTE
ERROR, WHICH IS THE WEIGHTED AVERAGE ERROR OF THE YEARLY
PREDICTION ERROR AND THE MONTHLY PREDICTION ERROR
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TABLE 11
A COMPARISON OF THE TOP THREE METHODS’ ORIGINAL SUBMISSIONS
IN THE IEEE-CIS CONTEST WHEN REMOVING THE FAULTY SMART
METER OUT OF THE EVALUATION [3]. THE METHOD PROPOSED IN THIS
PAPER, IS HIGHLIGHTED. TOTAL RAE STANDS FOR RELATIVE ABSOLUTE
ERROR, WHICH IS THE WEIGHTED AVERAGE ERROR OF THE YEARLY
PREDICTION ERROR AND THE MONTHLY PREDICTION ERROR

Method Mf{:ﬂ:’ly Yearly rAE | Total rAE Method M;’;‘%ﬂy Yearly rAE | Total rAE
Our proposed approach Our proposed approach 0.9757 0.2885 0.6321
é&fﬁﬂ;ﬁgﬁtﬁe 0.9802 0.2861 0.6332 Light GBM 1.0165 0.2816 0.6491
battery trick) KNN-Isolation forest 1.0654 0.2887 0.6771
1% place: Light GBM ensemble
(Original submission 1.0078 0.2864 0.6471
includes the battery trick)
KNN-Isolation forest Table II presents a comparison of the top three meth-
ensemble (Original 1.06905 0.28633 0.67769 ods’ performance metrics, when the faulty smart meters are
submission modified to K
include the battery trick) removed from the evaluation. The removed faulty smart meters
9 place: KNN-Isolation are the same 32 smart meters treated by the “battery trick”
forest ensemble (Original 10728 02875 0.6801 detailed in Section IV-E. The method proposed in this paper
S“b"}?SSi?i“ includes ’ ' ' outperforms the two other approaches.
t tect
dou fer detection) A t-test [31] was performed on the two sets of monthly
¢ . . . .
‘ aplz;‘(’;c}?'g(r)ﬁr‘;ﬁglsed errors to assess the statistical difference between the
Sugfnissmn’ dofs ot 1.0828 0.2892 0.6360 performance of Light GBM model (which ranked first in the
include the battery trick) competition) and the proposed scalable ensemble approach
ARIMA 1.3852 0.3844 0.8848 with the battery trick (which outperforms Light GBM). The
Linear Regression 14461 03333 0.8897 null hypothesis is that. there is no statistical difference between
Naive baseline the performance metrics of both methods. The p value obtained
(30" place) 1.4947 04345 0.9646 is 0.00958. The null hypothesis is thus rejected and we can

The Light GBM model, by Wenlong Wu, takes 1h45 to run
on the same machine.! It should also be noted that this method
requires one light GBM model per smart meter individually,
which reduces its applicability and scalability.

The run time of the KNN-Isolation forest ensemble method,
by Steffen Limmer, could not be measured as the code was
not made available.

G. Results & Discussion

The results are presented in Table I. The ratio based
approach described in this paper is compared with several stan-
dard time series techniques presented in Section IV-D. These
techniques have been considered as they are often used and
recognized as accurate methods in forecasting problems. From
Table I, three main conclusions can be drawn. First, it is clear
that for each method the monthly performance is worse than
the yearly performance. This makes sense as the stochasticity
due to human behavior and the influence of external factors
such as the weather, averages over the course of one year, the
error is thus reduced. Secondly, the performances of the LR
and ARIMA models are lower than the more complex and
advanced top three methods. Finally, it can be noticed that the
proposed method with the additional battery trick ranks first,
with a higher scalability than the light GBM model.

1We have executed the code that was provided by the authors on the same
machine.

conclude that there is a statistical difference in performance
metrics between both methods with p < 0.005. The same
t-test was performed on the two sets of monthly errors after
removing the faulty smart meters. The p value obtained is
0.01233, the null hypothesis is thus again rejected and we can
conclude that there is a statistical difference in performance
metrics between both methods with p < 0.005.

H. Hyperparameter Sensitivity Study of the Proposed Method

The method makes use of only three hyperparame-
ters through the different steps: the minimum cluster size
Amin,cluster, the number of nearest neighbors ngimilar, and the
window length w for smoothing. For the following parameter
values, we have observed insignificant difference in the total
absolute error: w = 2,3,...,7; Asimilar = 10, 20, ..., 100;
Amin,cluster = 9, 0, ..., 20. The best performance was obtained
with the minimum cluster size nmin, cluster = 10, the number
of nearest neighbors ngimilar = 50, and the window length
w = 5. See Appendix B for additional results. The method is
robust to the values of the hyperparameters, as independently
of the chosen hyperparemeters, the total relative absolute error
remains in the interval [0.6860, 0.7243].

V. CONCLUSION

In this paper a method has been proposed to predict
the monthly and yearly electrical consumption of individual
households one year ahead based solely on historical data of
the previous year. The approach consists of different steps
applied sequentially: pre-processing, data augmentation and
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normalization, clustering, prediction based on ratios and finally
ensemble learning and post processing. This novel method
fills a gap in the literature by combining a forecast horizon
(one year ahead) and forecast granularity (individual house-
hold) which has not been tackled yet. The model offers three
main advantages. (i) Low data requirement: the method works
even for households with only one month of historical data and
it does not require additional household-specific information
nor weather data. (ii) Scalability: the method has low compu-
tational requirements and does not involve household-specific
information collection through questionnaires. (iii) Accuracy:
the use case is based on data from the IEEE-CIS competi-
tion and the third position in the competition demonstrates
the high performance of the model. The battery trick places
the method in the first position, without altering the scalabil-
ity. However, we think it is not a fair modification because
it aims to estimate problems in the ground-truth data to
improve the metrics, which wouldn’t provide any benefit in
practice.

In future work, the method could be improved by detect-
ing outlier household profiles and defaults (i.e., measurement
errors) in the historical data and treating these with a cus-
tomized model. The model presented in this paper could also
be applied on new datasets in order to assess the generalization
of the method. As suggested in the literature [9], the approach
could also be applied in the context of higher granularity fore-
casting by aggregating household predictions to the national
level.

APPENDIX A
DETAILS ON THE RESULTS

To better understand the approach proposed in this paper, it
can be divided into several subcomponents and the impact
of each one of them on the final performance metric can
be analyzed. We start from the naive baseline detailed in
Section IV-D, with a total,oag of 0.96. Then a prediction was
built based on the sign-up month. That lead to a more accurate
prediction, reducing the totalag to 0.86.

The second step considered was ensemble learning and data
augmentation. The same average relative consumption across
all meters was used but assuming that a meter could have
signed up in different months. This improved the accuracy of
the prediction down to a totalag of 0.80.

Third, the clustering based on k-means was introduced for
meters that signed up in November or earlier, which improved
the prediction to 0.75 total ag.

Fourth, k-nearest neighbors was considered for meters that
signed up in December, which improved it to 0.72 total sE.

Fifth, post-processing and smoothing were added, which
improved the prediction to a totalag of 0.69.

Finally, 32 profiles with zero values for November and
December were detected and their prediction was set to zero.
This improved the prediction to a total,ag of 0.63.

In short, each of the individual components of the method
has a similar effect as each yields a reduction between 0.03-
0.05 in the totalsg.

TABLE III
COMPARISON OF THE PERFORMANCE METRICS OF THE METHOD WHEN
VARYING THE VALUES OF THE THREE HYPERPARAMETERS.
THE CHOSEN HYPERPARAMETERS ARE HIGHLIGHTED

c;\l:[;?er rigré):t Wir_ldow Monthly Yearly Total rAE
size neighb. size rAE rAE
10 50 2 1.1039 0.2860 0.6950
10 50 3 1.0993 0.2857 0.6925
10 50 4 1.1039 0.2860 0.6950
10 50 5 1.0728 0.2875 0.6801
10 50 6 1.1039 0.2860 0.6950
10 50 7 1.0987 0.2913 0.6950
10 10 5 1.0918 0.2879 0.6898
10 20 5 1.0908 0.2876 0.6892
10 30 5 1.0908 0.2873 0.6890
10 40 5 1.0909 0.2871 0.6890
10 60 5 1.0909 0.2869 0.6889
10 70 5 1.0912 0.2868 0.6890
10 80 5 1.0917 0.2868 0.6892
10 90 5 1.0919 0.2868 0.6893
10 100 5 1.0922 0.2867 0.6895
10 50 5 1.1208 0.2922 0.7065
5 50 5 1.1269 0.3146 0.7208
6 50 5 1.1459 0.3026 0.7243
7 50 5 1.1358 0.2994 0.7176
8 50 5 1.1328 0.2987 0.7157
9 50 5 1.1012 0.2898 0.6955
10 50 5 1.1193 0.2905 0.7049
11 50 5 1.1141 0.2901 0.7021
12 50 5 1.1254 0.2896 0.7075
13 50 5 1.1210 0.2903 0.7056
14 50 5 1.1257 0.2920 0.7088
15 50 5 1.1212 0.2911 0.7061
16 50 5 1.1175 0.2904 0.7040
17 50 5 1.0973 0.2875 0.6924
18 50 5 1.0972 0.2879 0.6926
19 50 5 1.1181 0.2890 0.7035
20 50 5 1.1074 0.2886 0.6980
APPENDIX B

DETAILS ON THE HYPERPARAMETER SENSITIVITY STUDY

Independently of the chosen hyperparemeters, the total rela-
tive absolute error remains in the interval [0.6801, 0.7243], as
is shown in Table III. The mean and standard deviation of the
total relative absolute error are respectively equal to 0, 6991
and 0, 01034.
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