
3214 IEEE TRANSACTIONS ON SMART GRID, VOL. 13, NO. 4, JULY 2022

LoMoS: Less-Online/More-Offline Signatures
for Extremely Time-Critical Systems

Ertem Esiner , Utku Tefek , Hasan S. M. Erol, Daisuke Mashima , Binbin Chen , Member, IEEE,
Yih-Chun Hu , Zbigniew Kalbarczyk, Member, IEEE, and David M. Nicol , Fellow, IEEE

Abstract—The state-of-the-art digital signatures incur undesir-
able delays, hence are impractical for time-stringent Industrial
Control Systems (ICSs). The recent revision to IEC 62351-6
standard stepped back from digital signatures in favor of symmet-
ric key based solutions, thereby sacrificing key properties, e.g.,
scaling well for multiple destinations, easy key distribution and
management, public verifiability, and non-repudiation. Inspired
by the Online/Offline signatures, this paper presents a new digital
signature model to provide the key properties of digital signatures
within the delay requirements, hinting that this step back can be
avoided. The Online/Offline signatures concept divides the sig-
nature generation into two phases; offline (before the message is
given), online (using the outputs of the former for faster signing
after the message is given). The conventional solutions follow-
ing this concept potentially reduce the delay, yet do not meet
IEC 61850 delay requirements as they still involve expensive
operations in the online phase, and their offline phase hin-
ders throughput. This paper introduces Less-online/More-offline
Signatures (LoMoS) to enable minimal end-to-end delay and high
message throughput. LoMoS entails avoiding expensive opera-
tions entirely during the online phase. We present a construction
that converts any digital signature scheme into LoMoS, retains
its properties, and unlike existing solutions, benefits from shorter
messages.

Index Terms—Digital signatures, IEC 61850, IEC 62351, cyber-
security, message authentication, multicast, non-repudiation,
real-time communication, smart grid.

I. INTRODUCTION

IN INDUSTRIAL Control Systems (ICSs), ensuring mes-
sage integrity and authenticity is crucial to ensure reliable

and trustworthy operations. Symmetric key based solutions

Manuscript received August 4, 2021; revised November 26, 2021
and February 3, 2022; accepted February 19, 2022. Date of publica-
tion March 7, 2022; date of current version June 21, 2022. This work
was supported by the National Research Foundation, Prime Minister’s
Office, Singapore, under its Campus for Research Excellence and
Technological Enterprise (CREATE) Programme. Paper no. TSG-01238-2021.
(Corresponding author: Ertem Esiner.)

Ertem Esiner, Utku Tefek, and Daisuke Mashima are with Advanced Digital
Sciences Center, Singapore (e-mail: e.esiner@adsc-create.edu.sg).

Hasan S. M. Erol is with the Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA.

Binbin Chen is with the Singapore University of Technology and Design,
Singapore.

Yih-Chun Hu, Zbigniew Kalbarczyk, and David M. Nicol are with the
Electrical and Computer Engineering Department, University of Illinois
Urbana–Champaign, Champaign, IL 61820 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSG.2022.3156897.

Digital Object Identifier 10.1109/TSG.2022.3156897

are computationally efficient, therefore, IEC 62351-6 has sug-
gested their use in IEC 61850 in lieu of digital signatures [1].
However, these solutions lack essential features, such as scal-
ing well for multiple, possibly large number of, destinations,
the feasibility of key distribution and management, public ver-
ifiability, and non-repudiation. This is often overlooked in the
literature on secure IEC 61850 communication. Digital sig-
natures are established, widely used technologies that enable
verification of source identity and message integrity provid-
ing these features. Although digital signatures are suitable for
multicast/broadcast communication, their drawback, inherited
from underlying asymmetric cryptography, is expensive opera-
tions, such as modular exponentiation and elliptic curve scalar
multiplication. These computations introduce high latency for
signing and verification, especially on resource-constrained
devices.

To reduce the computational burden and latency of sig-
nature generation after a message is given, the concept of
performing prior computations has been studied. This con-
cept divides the signature generation into two phases: an
offline phase before the message to be signed is given, and
an online phase which utilizes the computations performed
in the offline phase for faster signing after the message is
given. For example, the first step in ECDSA (Elliptic Curve
Digital Signature Algorithm) [2], Fiat-Shamir [3], Schnorr [4],
El-Gamal [5], and DSS (Digital Signature Standard) [6] can
be computed without knowing the message to be signed.
Similarly, online/offline signatures [7], [8] convert any ordi-
nary signature scheme into one with such precomputation,
though it dramatically increases the verification overhead of
the converted scheme. In all these schemes, the throughput still
suffers from high offline computation overhead. Furthermore,
their end-to-end delay is affected by the expensive operations
during online verification.

In recent years, the demand for low-latency, high-throughput
messaging mechanisms has been increasing in many appli-
cation domains, where even offloading a part of the
computational burden to the precomputation phase with the
above-mentioned techniques is not enough. Smart grid is
one of the most latency-stringent ICSs. IEC 61850 is the
increasingly adopted standard for substation automation [9].
According to the IEEE Power and Energy Society guidelines,
automated control for protection in a field substation, e.g.,
control on circuit breakers when overcurrent occurs on a trans-
mission line, requires message delivery time, which consists
of network transmission time and all processing time en route,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-3290-2514
https://orcid.org/0000-0002-4436-9200
https://orcid.org/0000-0003-1946-1790
https://orcid.org/0000-0002-9584-0082
https://orcid.org/0000-0002-7829-3929
https://orcid.org/0000-0002-3512-6979


ESINER et al.: LoMoS: LESS-ONLINE/MORE-OFFLINE SIGNATURES 3215

including security checking, as low as 2 ms [10], [11]. Because
of the tight requirement, IEC 61850 protocols utilize link-layer
multicast for sharing such status/event information, exchanged
among hundreds of devices [12]. Another challenge is that the
measurements of power grid status are sent at a very high rate
(i.e., 4,000 messages per second in 50 Hz systems according
to the IEC 61850 standard). Forgery or manipulation of these
messages would cause undesirable outcomes such as financial
loss and massive outages.

The variable and high messaging rate and extremely low
delay requirements of multicast communication in smart grid
systems are essential but could not be achieved along with the
guarantees of public key infrastructure (PKI). This issue has
long been discussed by IEC 62351 bodies [1], [13]–[16], and
our work addresses this key gap. In order to meet the strin-
gent latency and messaging throughput requirements while
retaining the benefits of public key cryptography, we introduce
Less-online/More-offline Signatures (LoMoS) model, present a
concrete construction and its implementation on an embedded
system. LoMoS entails simple operations consuming negligi-
ble time in the online signing phase, such as memory reads and
packet assembly. LoMoS allows the verification to be divided
into online/offline phases such that online verification does not
perform any expensive operations.

II. RELATED WORK

Message authentication for time stringent systems is a
challenging problem [17], [18], especially when multiple des-
tinations are considered. There are extensive studies [19] and
comparative analysis of existing solutions [20]. In this sec-
tion, we investigate solutions in the literature focusing on IEC
61850 to position this paper.

A straightforward approach to enable authentication for
time stringent messages is symmetric key based solu-
tions. These solutions rely on message authentication codes
(MAC) such as hash-based message authentication code
(HMAC) and Advanced Encryption Standard-Galois Message
Authentication Code (AES-GMAC) [11], [21], [22]. To make
room for the appended MAC, the GOOSE (Generic Object
Oriented Substation Event) message structure is extended [14],
as per IEC 62351-6. In particular, the MAC value is appended
to the Extension field of the GOOSE frame, and its length is
specified in the Reserved1 field. These MAC-based solutions
are computationally efficient; however, they miss essential
features, such as the feasibility of key distribution and manage-
ment, public verifiability, and non-repudiation. Additionally,
when there are multiple destinations for the message, the MAC
computation is repeated per destination, increasing the com-
putational burden. Alternatively, a group key implementation
can be considered [23], yet it is vulnerable to impersonation
attacks. While this provides some baseline security (such as
membership proofs), any compromised group member can pre-
tend to be another group member because all the members
share the same key. Thus, we need a source of asymmetry
between the source and the destinations.

The conventional solution to multicast message authentica-
tion is to use digital signatures. If there had been no hardware

constraint, a candidate from the public key cryptography
domain would have been ECDSA [2], thanks to its relatively
efficient signing. In IEC standards (IEC 62351-6 [24]), the use
of RSA is suggested for IEC 61850 GOOSE authentication,
where the maximum end-to-end delay is supposed to be under
2 ms. While these schemes based on public key cryptography
are suitable for multicast scenarios and offer non-repudiation,
they rely on computationally expensive operations such as
elliptic curve scalar multiplication or modular exponentiation.
Reference [16] shows that even an FPGA implementation of
RSA signatures is not feasible within this latency constraint.
Reference [25] claims to achieve lower delay, but their solution
exploits a certain structure in command and control messages.
Another promising solution for instant message authentica-
tion is one-time signatures (OTS), such as those proposed
by Lamport [26] and Rabin [27]. Later in [28], Winternitz
OTS (WOTS) Scheme reduced the signature size of OTS by
trading off setup and verification time. In the same work,
Merkle proposed converting WOTS into a many-time signa-
ture by constructing a Merkle Hash Tree (MHT) on multiple
WOTS public keys to bind them into a single root value, which
serves as the public key for multiple WOTS instances. This
method allows signing many messages with multiple one-time
key pairs and a single public key, keeping the public key size
small compared to constructing multiple independent WOTS
instances. Constructing an MHT on Lamport OTS keys, in fact,
results in faster setup and verification times than the WOTS
variants [29], albeit with a larger communication overhead.
Using MHT in OTS/WOTS enables virtually instant signing of
multiple messages with a single public key after the message
is given. More efficient variants of OTS such as BiBa signa-
ture [30], HORS signature [31], [32] have also been proposed.
While using MHT to bind multiple public keys together is
promising, OTS-based schemes lack a straightforward, effi-
cient extension to benefit from small messages, hence do not
achieve the desirable delays and throughput achieved in our
LoMoS construction.

Some signature schemes can be partitioned into phases
where the first phase does not require the message to be given.
For instance, the first steps of El-Gamal [5], DSS, or in particu-
lar Digital Signature Algorithm (DSA) [6], and ECDSA [2] are
independent of the message to be signed. Online/offline digital
signatures, either based on one-time signature schemes [7] dis-
cussed above or based on chameleon commitments [8], [33] is
a technique to transform every signature scheme to arm them
with this feature. In [8], the authors propose a “hash” and
“sign” during the offline phase and then “switch” during the
online phase. The source first hashes a random message and
signs the digest. Later, when the message is given, the source
finds a collision (using a trapdoor function) with the said
digest, adding a new value to the message to be signed. Then,
it sends the new value together with the signature. If a digest
is used more than once, an adversary can figure the trapdoor
function out and forge signatures. Hence, the source can sign
only one message per setup. Also, as discussed in our eval-
uation, these schemes fall short in meeting stringent latency
requirements due to the expensive operations performed in the
online phases.



3216 IEEE TRANSACTIONS ON SMART GRID, VOL. 13, NO. 4, JULY 2022

Fig. 1. Substation automation and remote control.

III. MOTIVATING USE CASE

In this section, we discuss an electric substation automation
system in smart grid regarding its low latency, high message
rate, and security requirements, as well as the potential to
leverage small message size.

A. IEC 61850 Communication in Smart Grid

Modernized substations in smart grid utilize Ethernet as
a medium for connecting intelligent devices, such as pro-
grammable logic controllers (PLCs) and intelligent electronic
devices (IEDs). Nowadays, gigabit or faster networks are
becoming common for connecting hundreds of intelligent
devices in a large substation [12], a simplified overview of
which is shown in Figure 1. Modern substations use stan-
dardized technologies like IEC 60870-5-104 or DNP 3.0 for
telecontrol and IEC 61850 for substation automation [34]. For
enabling timely communication among the intelligent devices
over such a network medium, IEC 61850 GOOSE, and SV
(Sampled Value) [9] rely on link-layer multicast.

According to the guideline provided by IEEE Power and
Energy Society [10], receiving measurement data and send-
ing protection commands to switchgears (e.g., circuit breakers)
must be done within 2ms, inclusive of the transmission time
and processing time. In order to ensure reliable delivery of
critical information, IEDs send the same information repeti-
tively. While in a normal, stable state, the transmission rate is
once in every 1-5 seconds, when any disturbance event occurs,
the rate could become as high as once in every 1-2 ms [35].
On the other hand, SV messages, which are used for sharing
real-time power grid measurements, are transmitted at a con-
stant but very high rate (e.g., 4,000 messages per second in a
power system with a frequency of 50 Hz [36]).

B. Security for IEC 61850 GOOSE and SV Protocols

We consider typical remote attackers for false
data/command injection and manipulation attacks, which
aim at disabling or misleading automation functionali-
ties [37]. Such remote attackers don’t have physical access
to substation facility but have a footprint in the system,
e.g., via compromised VPN interface [38], or RTU (remote
terminal unit) shown in Figure 1 and malware [39] planted

on general-purpose/engineering workstations in the control
system infrastructure. Such remote attackers could inject
arbitrary packets and observe network traffic. For instance, as
discussed in [40], an attacker may inject a GOOSE message
with a maliciously crafted sequence number and/or status
number so that the subsequent legitimate messages are dis-
carded by the destination device, allowing the attacker to send
further malicious messages by impersonating the legitimate
sender [41], [42]. However, we assume it is not feasible for
the remote attackers to manipulate the configuration of ICS
devices (e.g., installation of malicious software/firmware)
since the configuration of ICS devices is typically done
through local, serial connections. Against such a threat
model, ensuring the integrity and authenticity of messages
is imperative. In addition, substation implementations lack
network monitoring and log audit; therefore, the source of
the malicious messages cannot be traced [22]. Hence, the
non-repudiation property is crucial to prevent devices from
disputing the source of their messages.

In order to provide cryptographic protection for smart
grid communication, IEC 62351 standard has been
proposed [1], [15]. While the use of digital signatures
for IEC 61850 GOOSE and SV is specified, given the
resource constraints on smart grid control devices and very
stringent latency requirements, practical implementation of it
remains a challenge. The recent revisions of the IEC 62351
standard stepped back from public key solutions in favor of
symmetric key based ones, sacrificing some key features to
achieve the required time stringency. This work leverages
ICS characteristics and achieves the required time stringency
without sacrificing the PKI properties.

While the typical size of GOOSE and SV messages is
140-190 Bytes, including Ethernet headers and trailers based
on our observation in the smart grid testbed [43], in prac-
tice, the whole message does not have to be protected to
ensure correct operation. To begin with, for a given mes-
sage stream, a separate digital signature scheme can be set
up, and the static data fields in the stream (e.g., the MAC/IP
addresses of the source and destination) can be pre-agreed
by the parties. With such a per-stream setup, we can focus
on integrity protection for those non-static data fields. For
instance, sequence and status numbers are represented with
multiple bytes. But in practice, we only need to check the
integrity of the least-significant byte (or even just a few bits),
because these numbers do not show a gap more than a few
under a normal situation. A manipulation beyond this can
be detected by either the destination device or network-based
intrusion detection systems.

The integrity of the conveyed dataset is equally important.
The size of the dataset largely varies depending on the system
configuration, but the dataset used for latency-stringent protec-
tion control consists of a couple of boolean flags, for instance,
circuit breaker status (open or close), and relay status (normal
or fault). Altogether, the data to be integrity-protected is less
than 4 Bytes (32 bits) in practice.

We could additionally consider including a timestamp (8-
byte long “t” field [44]). According to the protocol speci-
fication, this timestamp indicates the time of the last event



ESINER et al.: LoMoS: LESS-ONLINE/MORE-OFFLINE SIGNATURES 3217

(e.g., status update), and the same value is included in the
successive messages until the next event. Thus, the integrity
of this timestamp is relevant only when an event happens.

Depending on the type of messages, the number of data
items included may differ and may contain a “bit-string” field
to indicate, for example, measurements and quality of data.
While these can be represented with multiple bytes, the values
in each field are similar (or identical) over time (i.e., small
entropy) and fluctuate around the nominal values (e.g., 50.0 Hz
for frequency measurements). Therefore, instead of the raw
measurements, we can focus on integrity for the difference
from the nominal values, and hence the size of data to be
protected can be effectively reduced.

To sum up, based on our study on message types utilized in
the smart grid testbed, the size of essential data to be protected
is less than 16 Bytes (128 bits).

LoMoS is a low-latency digital signature mechanism, and
thus it is most effective in time-critical, multicast machine-
to-machine communication. Besides IEC 61850 GOOSE and
SV, the proposed technique, for instance, is applicable and
also effective to protect R-GOOSE (Routable GOOSE) and
R-SV (Routable SV) defined in IEC 61850-90-5 that are
used for inter-substation communication. LoMoS is theoret-
ically applicable to unicast communication like IEC 61850
MMS (Manufacturing Message Specification), but it is less
latency stringent [45], and thus protection using Transport
Layer Security measures would be sufficient in such settings.

IV. LOMOS MODEL

Less-online/More-offline Signatures (LoMoS) offers a
framework to support the stringent delay and message through-
put requirements while providing security assurance equivalent
to that of the converted digital signature scheme. In addition,
LoMoS exhibits offline verification, whereas the conventional
online/offline model does not.

LoMoS adheres to the same principle as online/offline sig-
natures discussed earlier, but with the following additional
properties, 1) the source only performs cheap operations con-
suming negligible time after the message is given, 2) a single
setup supports the signing of multiple messages of variable
size, without requiring padding to conform to a constant size,
3) online verification does not perform any expensive operation
after the message is received.

Fig. 2 depicts the LoMoS model, where KeyGen, Setup and
VerifySetup procedures constitute the offline phase. Prove and
Verify are the signing and verification procedures, respectively.
They together constitute the online phase. Hereon, we use the
term “prove” instead of “sign” to reflect the fact that no signing
in the conventional sense is performed in the Prove procedure.

A. Definition and Properties of LoMoS

Definition 1: In LoMoS model, there are two parties. The
source (prover) wants to prove its identity and the authentic-
ity of its messages to the destination (verifier). Neither the
source nor the destination have prior information on the con-
tent of the future messages. The source does not perform
any operations after the message is given, except for simple

Fig. 2. LoMoS model.

operations consuming negligible time such as memory reads
and packet assembly. Additionally, LoMoS allows the source
to authenticate multiple messages (ideally variable size) per
Setup procedure. The destination does not perform any expen-
sive operations, such as modular exponentiation and elliptic
curve scalar multiplication for online verification, keeping the
end-to-end delay minimal.

KeyGen(1n) −→ {privk, pubk} is a probabilistic procedure
run by the source. It takes a security parameter as input and
outputs private and public keys. The source stores the private
key and sends the public key to the destination.

Setup(privk, length) −→ {mdpriv, mdpub, s} is a procedure
run by the source. This procedure does not require the message
to be given. It generates two types of meta-data for future mes-
sages – the private meta-data mdpriv to be kept at the source,
the public meta-data mdpub

1 to be published to the destina-
tions – and the signature s for the public meta-data. The length
determines the total size of the messages that can be verified
at the destination per generated meta-data.

VerifySetup(mdpub, s) −→ {accept/reject} is a procedure
run by the destination. The destination verifies and stores the
public meta-data mdpub.

Prove(message, mdpriv, state) −→ {proof} is a procedure
run by the source after the message is given, to generate the
proof of message authenticity and source identity. As input,
it takes the given message, the private meta-data that has
been kept at the source and the state of the private meta-
data, since the same meta-data can be used for multiple future
messages. As per Definition 1 above, this procedure does not
perform any computation except memory reads and packet
assembly.

Verify(message, proof, mdpub) −→ {accept/reject} is
the procedure run by the destination upon receipt of
the message and its proof. It takes the public meta-data
mdpub, proof, and message sent by the source. The out-
put of accept ideally means the source is legitimate and
the message is not tampered with. Again, according to
Definition 1, this procedure does not perform any expensive
operation.

1We reserve the term pubk for the public key of the converted signature
scheme, and mdpub refers to the continuously refreshed rendition of public
key in the other works.



3218 IEEE TRANSACTIONS ON SMART GRID, VOL. 13, NO. 4, JULY 2022

V. USING AUTHENTICATED DATA

STRUCTURES FOR LOMOS

In this section we discuss possible building blocks to
instantiate the LoMoS model. We explore authenticated data
structures to provide constructions for LoMoS. Authenticated
data structures [46] are commonly used in a computation
model (i.e., Provable Data Possession [47]–[49]) where, on
behalf of a trusted source, an untrusted respondent responds to
queries on a data structure and gives evidence for the validity
of the response.

The main difference in LoMoS model is that the source is
both the trusted source and the untrusted respondent in turns.
The source uses its private key for any signature scheme during
the offline phase, rendering it the trusted source. In the offline
phase, the source generates an authenticated data structure,
extracts the meta-data, then signs and sends the meta-data to be
verified and stored. In the online phase, the source cannot use
its private key (to avoid delay); hence it acts as the untrusted
respondent and uses the authenticated data structure proofs to
create the evidence for the integrity of the messages.

A. Straw-Man LoMoS Constructions

1) Using an Authenticated Hash List: This is a naive
approach in altering Lamport OTS [26] to satisfy Definition 1.
The source generates a pair of nonces (called “neighbors”) per
future message bit, where nonce n1 corresponds to “1” and
nonce n0 to “0”. The source then generates a list of digests,
calculated using neighbors’ digests, hash(hash(n1), hash(n0)).
The source then signs the list and sends the whole list to the
destination together with the signature. Later, when a mes-
sage is given, the source sends the nonce and its neighbor’s
digest per bit of the message. The destination then performs
two hash calculations to verify each bit of the message: First,
it calculates the hash of the plain nonce (h1 = hash(n1), if
the bit is set to “1”) and second, a hash using the nonce hash
of its neighbor (h0) and this new digest (h′ = hash(h1, h0)).
Then it checks if the newly calculated digest (h′) is equal to
the previously signed digest in the list. This approach is use-
ful in terms of Prove and Verify procedures’ time/complexity.
However, the source sends a list containing l digests in every
Prove and Setup, where l is the number of bits supported per
Setup procedure. This large list is sent in every Setup cycle,
even when no messages are sent. In addition, this construction
also has flaws (see Section V-B).

2) A Tree’d OTS for Short Messages: A major problem
with Lamport OTS is, as the name suggests, the one-timeness
of the key pairs. Using an MHT, an OTS (such as Lamport or
Winternitz OTS) can be converted into a many-time signature
to sign a number of messages with a single public key [28].
In this technique known as Merkle Signature Scheme (MSS),
after generating the key pairs for an OTS, the source builds
a tree on the hash of the OTS public keys and obtains a root
value. This root is called the public key of MSS and is shared
with the destination. MSS allows the use of this public key
as many times as the number of leaves in the tree. However,
in the original MSS, the OTS public keys are used to authen-
ticate arbitrary size messages, by reducing each message to

Fig. 3. MHT with two nonces per leaf. ti = H(ni).

a digest (256-bit for SHA-256). In this straw-man technique,
we modify tree’d OTS to benefit from messages smaller than
256 bits, by using a short message directly, without the first
step of calculating its digest. This allows MSS to achieve faster
setup and verification times as well as a lower communication
overhead. If the message size is variable, this tweak requires
the source to choose the OTS key size for the largest mes-
sage to be signed. Note that the OTS key size directly affects
the computations in all steps. Therefore, while MSS benefits
from small message size thanks to this tweak, it still does not
support variable message size as targeted in our approach.

B. Tri-Leaf Tree for LoMoS

“A tree’d OTS for short messages” results in virtually instant
online signing and fast setup/verification times. However, com-
putation overhead for any message is as much as that of
the largest possible message. In order to support variable
size messages with proportionally smaller computation and
communication overhead for small messages, consider the fol-
lowing technique. We choose Merkle Hash Tree [50] over
others, such as balanced trees or skip lists, since the data
structure we use is not required to be mutable.

The tree’s root is again signed at the Setup procedure and
shared with the destinations, where it is verified (VerifySetup).
However, the difference is that, instead of generating large
OTS key pairs for multiple messages and building the tree
on top of them, the source directly builds the tree on pairs
of nonces, each representing “0” and “1” bits of future mes-
sages. Hence, the tree keeps two nonce values per leaf node.
To generate proofs for messages [1, 0] and [0, 1] consecu-
tively, we show an example over Fig. 3. A proof generated
from an authenticated data structure such as an MHT con-
sists of the values required to calculate the root digest. For
instance, the proof for [1, 0] is {n1, n2, t0, t3, h5} and the
proof for the next message ([0, 1]) is {n4, n7, t5, t6, h4}.
A probabilistic polynomial-time (PPT) adversary cannot flip
any bits of the messages unless the unused nonce values are
compromised. Otherwise, we can break the collision resis-
tance or pre-image resistance of the hash function. However,
this method has fundamental flaws, i.e., vulnerability against
concatenation/truncation attacks.

An adversary, having access to the proofs, can crop mes-
sages, append bits to the messages, or merge two messages,
and forge proofs for them. Here is an example where the adver-
sary appends a bit to the first message and forges the proof. It
modifies the message [1, 0] to [1, 0, 0]. The proof for [1, 0, 0]



ESINER et al.: LoMoS: LESS-ONLINE/MORE-OFFLINE SIGNATURES 3219

Fig. 4. A Tri-leaf Tree example. ti = H(ni).

TABLE I
NOTATIONS

is {n1, n2, n4, t0, t3, t5, h3}, which are the values required to
calculate the root digest and all are present in the genuine
proofs for [1, 0] and [0, 1] above, except for h3 which can be
readily calculated as h3 = H(t6, H(n7)).

To prevent all such attacks, we encapsulate the messages by
starting and ending every message with a “BREAK” (B). As
shown in Fig. 4, instead of having 2, we store 3 nonce values
per leaf node. “B” is used as a separator between messages.
Subsequent messages share the same intersecting leaf node
“B” in their proofs as in the figure. Only one nonce per leaf
shall be included in a proof; otherwise, an adversary can forge
proofs.

C. Tri-Leaf Tree Definition

This modification brings us to the authenticated data struc-
ture for our construction, named Tri-leaf Tree. A Tri-leaf Tree
(Fig. 4) is a static tree where the size is preset based on the
expected message size and the desired message authentica-
tion rate. The tree is built and then consumed to generate
proofs. After either the tree expires or its leaves are consumed,
the tree is discarded. The build complexity is O(n), where n
is the number of bits the data structure supports for future
messages. In the following sections, we present Tri-leaf Tree
algorithms adopting the notations shown in Table I. We design
the algorithms with bit operators, given their performance
friendliness.

Before proceeding to our construction based on Tri-leaf tree,
we first present its build algorithm (Algorithm 1). Lines 2-7
generate the nonce values and calculate their digests. Line 8
calculates the collective digest for every leaf node. Lines 10-13
iteratively create the parent nodes using the digests of their
children.

VI. TRI-LEAF TREE BASED LOMOS CONSTRUCTION

In the following, we present the proof-of-concept construc-
tion of the LoMoS model and the corresponding algorithms.

Algorithm 1: Tri-Leaf Tree Build Algorithm
input : Tri-leaf Tree height H
output: A Tri-leaf Tree T

1 levelSize ← 1� H
2 for i = 1 to levelSize do
3 concat ← [ ]
4 for j = 0 to 3 do
5 T[0][i].items[j] ← random()
6 T[0][i].hashedItems[j] ← hash(T[0][i].items[j])
7 concat ← concat ‖ T[0][i].hashedItems[j]
8 T[1][i].digest ← hash(concat);

9

10 levelSize ← levelSize� 1
11 for i = 1 to H − 1 do
12 for j = 1 to levelSize− 1 do
13 T[i+ 1][j� 1].digest ← hash(T[i][j].digest ‖

T[i][j+1].digest)

KeyGen(1n) −→ (privk, pubk): This procedure corresponds
to key generation procedure of the employed signature scheme.
We use any signature scheme only to sign the root periodically.
Having the security parameter as input, this procedure returns
a private key and its corresponding public key (privk, pubk)
for the chosen signature scheme. The source stores the private
key, and publishes the public key.

Setup(privk, length) −→ {mdpriv, mdpub, s}: Inputs are the
source’s private key and length, which determines the number
of bits to be supported in future messages. This procedure
calls Algorithm 1 to build the Tri-leaf Tree of size length.
Then it signs the tree’s root (and the static shared fields of
the future messages it covers) with the employed signature
scheme, using privk. Outputs are the Tri-leaf Tree as the private
meta-data mdpriv, its root as the public meta-data mdpub, and
the signature s (which includes the timestamp).

VerifySetup(pubk, mdpub, s) −→ {accept/reject}: The des-
tination uses the public key to verify the public meta-data
with the employed signature scheme’s verification algorithm.
If accepted, the public meta-data mdpub is stored.

Prove(message, mdpriv, state) −→ {proof}: This procedure
takes the tree for mdpriv, the state indicating the location
of the last used leaf node, and the message as inputs. It
collects necessary values corresponding to message to allow
the destination to calculate the root digest value. This corre-
sponds to calling Algorithm 2 with the Tri-leaf Tree, its state,
and message. Finally, Algorithm 2 outputs the proof vector.



3220 IEEE TRANSACTIONS ON SMART GRID, VOL. 13, NO. 4, JULY 2022

Algorithm 2: Proof Generation Algorithm
input : A Tri-leaf Tree T , state s, message M
output: The proof P

1 T.offset← s.index
2 P← [T.offset]
3 pointerLeft← T.offset
4 pointerRight← T.offset+M.length - 1

5

6 for i← 0 to M.length do
7 P.append(extractNonce(M[i],T[0][T.offset + i]))

8

9 for level← 0 to T.height do
10 if pointerLeft ∧ 1 then
11 P.append(T[level][pointerLeft⊕ 1])
12 if ¬pointerRight ∧ 1 then
13 P.append(T[level][pointerRight⊕ 1])
14 pointerLeft← pointerLeft� 1
15 pointerRight← pointerRight� 1
16 level← level+ 1
17 return P

Algorithm 3: Verification Algorithm
input : proof P, message M, root R
output: accept, reject

1 offset ← P[0]
2 p ← 1
3 levelSize ← M.length

4

5 for i← 0 to levelSize do
6 val0 ← (M[i] == ‘0’ ) ? hash(P[p]) : P[p]
7 val1 ← (M[i] == ‘1’ ) ? hash(P[p + 1]) : P[p + 1]
8 val2 ← (M[i] == ‘B’ ) ? hash(P[p + 2]) : P[p + 2]
9 buffer.append(val0‖val1‖val2)

10 p← p+ 3

11

12 while levelSize > 1 do
13 ind ← 0
14 if (ind+ offset) ∧ 1 then
15 buffer[0] ← hash(P[p] ‖ buffer[0])
16 p ← p + 1
17 levelSize ← levelSize + 1
18 ind ← 1
19 while ind < levelSize do
20 buffer[ind � 1] ← hash(buffer[ind] ‖ buffer[ind + 1])
21 ind← ind+ 2
22 if ind equals level then
23 buffer [ind � 1 ] ← hash(buffer[ind] ‖ P[p])
24 p ← p + 1
25 levelSize ← levelSize + 1
26 offset ← offset� 1
27 levelSize ← levelSize � 1

28

29 (R equals buffer[0]) ? accept : reject

The runtime has O(m + log length) memory read operations,
where m is the message size and length is the number of bits
supported by the Setup.

Verify(message, proof, mdpub) −→ {accept/reject}: This
procedure calls Algorithm 3 with the proof, the message,
and the public meta-data as inputs. It verifies the message
if Algorithm 3 returns accept. The space complexity is
O(m), and the runtime complexity is O(m + log length)
consisting of hash calculations, where m is the message
size and length is the number of bits supported by the
Setup.

A. Online Proof Generation and Verification

In this section, we provide the algorithms for Prove and
Verify procedures. The Setup/VerifySetup procedures dis-
cussed above run periodically and provide the authenticated
root digest to the destination(s). Thus in this section, we
assume the root value is known to the destination(s) and is
fresh. In our context, the proofs are generated for multiple
consecutive leaf level nodes.

Batch proving: Other than one nonce and two nonce digests
for each leaf node, the proof contains the union of the siblings
to the left of the leftmost node, and the siblings to the right
of the rightmost node, at each level on the path to the root.
The other nodes in between are not included because they
can be readily calculated from the values in the proof. In the
following, we present the proof generation for message 2 cor-
responding to the set S = {h3, h4, h5, h6} in Fig. 4. The proof
for the leftmost leaf node h3 is {h2, h8, h13}, while the proof
for the rightmost leaf node h6 is {h7, h10, h12}. The left (right)
siblings are the nodes that have smaller (larger) bit addresses2

than their siblings’ bit addresses. Therefore, the proof for the
leftmost leaf node h3 contains those nodes only to the left,
i.e., {h2, h8}, while the proof for the rightmost leaf node h6,
contains those only to the right, i.e., {h7}. Therefore, the proof
for the node set S is {h2, h7, h8}.

In Algorithm 2, we present the proof generation algorithm.
Given a node with the bit address A, its parent and siblings
have addresses A � 1, A⊕ 1, respectively. A node has a left
sibling if and only if the least significant bit of its bit address
is 1, otherwise it has a right sibling, with the root node being
the exception. This algorithm generates the proof for the left-
most and the rightmost nodes via tracking them back to the
root with pointers pointerLeft, pointerRight, initialized in
Lines 2 and 3. In Lines 6-7, extractNonce routine extracts
the values needed for the proof, which are then collocated for
the proof. Lines 10-13 check whether pointerLeft and point-
erRight have a left or right sibling and whether the sibling is
to be included in the proof. Lines 14-15 update the leftmost
and rightmost nodes for the processing of the next level.

Batch verification: In the verification process, the desti-
nation follows the received proof to calculate a value and
compares it with the stored public meta-data. A pointer p
points to the index to be processed starting from 1. In
Algorithm 3, Lines 5-10 calculate the leaf digest using the
three values (generated by the extractNonce routine) corre-
sponding to each leaf in the proof. Once this process is done,
the next step is to calculate the remaining leaves whose offset
are also known. Taking these values as base, the subsequent
levels are reconstructed. Note that we use a memory size pro-
portional to the message length and reuse the same memory
to overwrite the lower level node values, which are to be used
only once. Hence, the space complexity remains O(m), where
m is the message size. Lines 12-27 calculate the remaining
nodes of the tree from the proof, to obtain the root value.

2Naturally, every node on a binary tree can be identified with a bit address.
Starting from the root node, these addresses indicate which child of a node
should be followed in order to reach a particular node. For instance, the bit
addresses of h9, h3 in Fig. 4 are ‘01’, ‘011’, respectively.



ESINER et al.: LoMoS: LESS-ONLINE/MORE-OFFLINE SIGNATURES 3221

Fig. 5. GOOSE packet capture of LoMoS construction.

Line 29 compares the calculated root value with the stored,
and returns accept if they are equal.

Figure 5 shows a captured GOOSE packet secured with
Tri-leaf tree based LoMoS construction. The relevant fields
are labeled. The overhead of LoMoS construction is added to
the “Extension” field (after “all_data”) of the GOOSE PDU.
The size of the “Extension” field is stated in the “Reserved 1”
field, and the CRC for the “Extension” field is put into the
“Reserved 2” field, same as the approach done in IEC 62351.
The public metadata mdpub, and its timestamped signature
are the output of the Setup procedure above. They are sent
for the destination(s) to authenticate the public metadata to be
used after the current one expires. The “state” field contains a
helper value for the proof (as discussed above). The “proof”
field is for the message which contains the non-static values
of the “all_data” field. Given the similarity in payload format
between GOOSE and SV protocols, SV packets can also be
structured in the same way.

B. Sketch of the Proof of Security

There are two steps to consider in the proof. First is the
secure transmission of public meta-data to the destination,
which is as secure as the employed signature scheme. For
the second, we show that our scheme is secure if the under-
lying hash function is collision and pre-image resistant. If a
PPT adversary A wins the security game of our scheme with
non-negligible probability, we use it to construct other PPT
algorithms B or B’ who break with non-negligible proba-
bility, the collision resistance or the pre-image resistance of
the hash function, respectively. B acts as the adversary in the
security game with the hash function challenger HC. In par-
allel, B plays the role of the challenger in our game with A.
Consider the following existential forgery game under adaptive
chosen-message attack:

Setup: HC picks a secure hash function (hash) from a hash
function family – we use SHA-256 in our implementation –
and passes the parameters to B. B generates a list of nonce

values – 256 bits in our implementation – and builds a large
enough Tri-leaf Tree on top of them to answer all the following
queries below. B then calculates the hash values using hash for
every node of the authenticated data structure and passes the
hash value of the root (rh) to A. Since in the Query step, A
can ask the proofs of polynomially many (p) messages of size
m, B performs O(p×m) to create the tree, given that creating
the tree is linear in the number of leaf nodes (see Algorithm 1).
Since the message size is bounded, B’s load is polynomial.

Query: A adaptively picks messages mi, ∀i ∈ {1, . . . , p},
and passes them to B one by one. B calls Algorithm 2 to
collect the nonce values corresponding to each message mi it
receives, and the neighboring values required to calculate the
root value, and passes them to A. Note the following two:
1) the messages are separated with “BREAK” symbols and 2)
with each proof generated, the pointer in the tree shifts forward
accordingly (Algorithm 2).

Challenge: A prepares and sends another message m’,
where m’ �= mi, ∀i ∈ {1, . . . , p} and a set of values (proof’)
that are required to calculate the hash value of the root.

If B verifies the proof’ and m’ with rh using Algorithm 3,
then A wins. For this, A needs to find a nonce value that has
not been revealed to it or needs to come up with a new set
of values, which, when chained together with the given hash
function hash, yields the hash value of the root. For the first
case, the probability that A can find a nonce that has not been
revealed to it is negligible, since otherwise, we can define
a B’ that breaks the pre-image resistance of hash. For the
second, B uses the new set of values to break the security of
the given hash function (by finding a collision in hash) using
the collision on the chain from a leaf node corresponding to
a different bit of m’ from any mi, to the root.

VII. EVALUATION

We have implemented the prototype on an embedded plat-
form, BeagleBoard-X15 (TI AM5728 2 x 1.5-GHz ARM
Cortex-A15 Processor with 2GB DDR3 RAM, running Debian
9.4) [51]. We have chosen this particular board for its interface
options for ease of integration to ICSs, and its common,
low-cost hardware.3 We collected measurements from the
Electric Power and Intelligent Control (EPIC) testbed [43],
a comprehensive IEC 61850-compliant smart grid testbed. We
connected the BeagleBoard running our solution into EPIC’s
generation segment in a bump-in-the-wire (BITW) manner
without changing existing IEDs in the testbed. An alterna-
tive implementation would consider running our solution as a
part of the firmware of ICS devices, if the firmware update is
an option. We also demonstrated compatibility with the IEDs
and PLCs as well as the network in this testbed.

We used C/C++ and employed the OpenSSL library
to implement our LoMoS construction, RSA converted via
improved online/offline signatures (IOOS-RSA), DSA, and
ECDSA for comparison. We compiled the figures based on

3The use of generic hash functions in certain constructions (such as ours),
benefits more from specialized hardware, now integrated into many proces-
sors, e.g., AES instruction set [52], Intel SHA extensions [53]. However, we
evaluated our construction without relying on optimizations, instead did the
comparisons on a common ground for fairness.



3222 IEEE TRANSACTIONS ON SMART GRID, VOL. 13, NO. 4, JULY 2022

Fig. 6. Setup time comparison between our LoMoS construction, DSA,
IOOS-RSA, and ECDSA.

the measurement results from the signature schemes that sup-
port offline computation, hence did not include conventional
RSA. Instead, we used RSA, converted to an online/offline sig-
nature [8], hence named IOOS-RSA. Since IOOS only speeds
up the online signing, RSA is selected for being verification-
efficient. We implemented IOOS-RSA using the third and
recommended trapdoor hash function in [8].

All measurements are taken with a single active core on
the BeagleBoard, except for the Setup of LoMoS in which
ECDSA’s offline phase and the build algorithm of Tri-leaf
tree are run in parallel. Tri-leaf tree for our LoMoS construc-
tion is kept in RAM during the operations. All results are
the average of 500 runs. For all implementations, we aimed
128-bit security in choosing parameters (e.g., SHA-256 as the
digest function and 256-bit nonces, 3072-bit modulus in DSA,
IOOS-RSA, curve P-256 in ECDSA).

In addition to the evaluations, we have also provided ana-
lytical comparisons between our LoMoS construction and our
straw-man LoMoS construction based on tree’d Lamport OTS.

Due to modular exponentiation in IOOS-RSA, the online
phase is slower than DSA and ECDSA by a large margin and
not drawn in the plots other than the Setup time and message
authentication rate comparisons.

Message authentication rate: We call the number of mes-
sages supported by a signature scheme in unit time – be the
bottleneck offline or online phase – the message authenti-
cation rate. The message authentication rate determines the
throughput to be supported. Including our LoMoS construc-
tion, the message authentication rates of all the evaluated
schemes are restricted by the offline phase. Each scheme’s
Setup time is presented in Fig. 6. There are a limited number
of messages supported after each Setup. For the LoMoS con-
struction, the tree size determines the number of messages
supported per Setup. For IOOS-RSA, DSA, and ECDSA,
only one message is supported per Setup. Although the Setup
time of the LoMoS construction is comparable with that of
ECDSA, its message authentication rate is higher because each
Setup supports multiple messages. Fig. 7 shows the message
authentication rates of the evaluated signature schemes and the
shaded region represents the 4,000 messages/sec required by
IEC 61850-SV. IOOS-RSA is not shown on this figure given its
low performance. The LoMoS construction outperforms others
with a larger margin as the message size gets smaller, down
from 256 bits. LoMoS can support 4,000 messages/sec (in a
50 Hz system) up to around 25-bit message size on average.

Fig. 7. Message authentication rates bound by Setup.

Fig. 8. Online signing time.

If we protect the least significant byte, SV messages convey-
ing 2-3 measurements (e.g., 3-phase measurements) can be
supported.

Message authentication rate is not bottlenecked by the ver-
ification time for any of the evaluated schemes, be it online
or offline. For reference, the offline verification time of the
LoMoS construction is 2.5 ms as we converted ECDSA.

Supporting adaptive message authentication rate: Above,
we discussed the rate of message authentication to be sup-
ported by the Setup. However, in our LoMoS construction,
after a Setup is performed, the source can sign messages at
a rate bounded only by the online signing (Prove) rate. We
refer to this feature as adaptive message authentication rate.
It is effective to support, for instance, IEC 61850 GOOSE
messaging discussed in Section III, whose transmission rate
dramatically increases intermittently upon events.

In our LoMoS construction, online verification time limits
the rate at which the received proofs are processed at the des-
tination. The verification times given in Fig. 9 are larger than
those of proving, as shown in Fig. 8. Therefore, online verifi-
cation time is the limiting factor for the throughput, provided
that the total size of the messages does not exceeds the num-
ber of bits supported by the Setup. When a source publishes
multiple messages which the destinations selectively receive



ESINER et al.: LoMoS: LESS-ONLINE/MORE-OFFLINE SIGNATURES 3223

Fig. 9. Online verification time.

and authenticate, a faster proving time than the verification
time is beneficial. In the LoMoS construction, unless the total
size of the messages exceeds the size supported by the Setup,
a source can release signed messages with 2-10 µs intervals
(see Fig. 8).

End-to-end delay: The end-to-end delay constraints for
many time stringent settings such as power grid control are
at 1-2 ms level, of which not much is left for authentica-
tion. The times spent in online signing and verification are
shown in Figures 8 and 9, respectively. The total of the val-
ues in these figures gives the end-to-end processing overhead
for message authentication. As shown, the LoMoS construc-
tion widely outperforms all alternative constructions for small
messages (down from 256 bits) since it only reads values from
memory at the source, and computes a series of efficient hash
functions at the destination.

The online verification of our LoMoS construction con-
sists of a series of inexpensive hash calculations to verify the
received message, therefore outperforms others for messages
up to 256 bits. Beyond 256 bits, the LoMoS construc-
tion hashes the message to obtain a 256-bit digest to sign.
Therefore, the computation time remains around the same
beyond 256-bit messages, as shown in Figures 8 and 9. In
both figures, from 28 to 29 bits, the execution time increases
around 20 ms, which is the time to compute SHA-256.

In comparison, the symmetric key based HMAC takes
40N µs for MAC generation (online signing time as in
Figure 8), where N is the number of destinations for the
multicast message, and another 40 µs for MAC verification
(online verification time as in Figure 9), in total, introducing
40(N+ 1) µs to end-to-end delay. This latency is added as a
part of the communication delay that is bounded with 2 ms.

Supporting variable message size: One distinguishing prop-
erty of our LoMoS construction is its support of variable-size
messages. It does so at the expense of a reasonable over-
head over the straw-man “tree’d OTS for short messages”
in Section V-A2. Note that the amount of computation done
in SHA-256 (as a Merkle–Damgård construction) scales lin-
early with the input size, neglecting the time spent to initialize
and finalize the hash functions. Therefore, we report the

complexity of computations throughout the Setup and Verify
procedures in terms of the number of hashing of 256-bit
inputs. Note that nonces are of 256 bits, and the hash function
(SHA-256) output is also 256 bits for both schemes.

To support x number of m-bit messages, the straw-man
design performs computation amounting to the equivalent of
2mx for OTS public key generation, 2mx to compute the leaves
of the MHT, and 2(x−1) to compute the root of MHT, hence
totaling 4x(m+1/2)−2 in the setup. To support the same num-
ber of messages of average length m, the LoMoS construction
needs to construct a tree of size l = x(m+1) (including “B”s).
In comparison, the LoMoS construction performs 3l to hash
the nonce triplets, 3l to generate the leaves, and 2(l − 1) to
obtain the root, totaling 8l− 2 or 8x(m+ 1)− 2.

For online verification of an m-bit message, the straw-man
incurs m to calculate the OTS public key and 2m + 2log(x)
verify the OTS public key, totaling 3m+2log(x). The LoMoS
construction incurs m+2 to hash the nonces, 3(m+2)+2log(l)
to compute the root, totaling 4m+ 2log(x)+ 2log(m+ 1)+ 8.

Communication overhead: The construction proposed in
this paper achieves all said properties at the expense of
communication overhead. The communication overhead from
sending a proof is one nonce and two nonce digests per
bit of the message, plus the digests corresponding to cer-
tain sibling nodes on the path to the root. This amounts
to 3m + log(l) − log(m) and 3m + log(l) + log(m) times
the digest/nonce length in the best and worst cases, respec-
tively. Accounting for the fact that each message begins
and ends with “B” leaves, the total overhead is between
3(m+2)+log(l)−log(m+2) and 3(m+2)+log(l)+log(m+2)

times the digest/nonce length. On a communication link of rate
R, the minimum/maximum transmission delay DT incurred
by the communication overhead, given 256-bit digest/nonce
length would be,

DT = 256× 3(m+ 2)+ log(l)∓ log(m+ 2)

R

For example, for a 32-bit message, this corresponds to around
27 µs on a 1 Gbps link and is multiplied if there are multiple
hops between the source and destination. In comparison,
ECDSA incurs 0.5 µs transmission delay. The time spent for
proving a 32-bit message in the LoMoS construction is around
4 µs, compared to ECDSA’s 25 µs. The corresponding veri-
fication time is 250 µs compared to ECDSA’s 2500 µs. This
brings the total delay for prove-transmit-verify routine of the
LoMoS construction to 281 µs against 2525 µs of ECDSA
for 32-bit messages. At 256 bits, which is the digest length
for messages longer than 256 bits, the prove-transmit-verify
delays of the LoMoS construction are 25-200-1900 µs, against
ECDSA’s 28-0.5-2500 µs.

The communication overhead in the Setup procedure of the
LoMoS construction is the 256-bit public meta-data and its
signature, which depends on the employed signature scheme
(512 bits for ECDSA). However, Setup procedure is run dur-
ing the offline phase, hence it does not contribute to the
transmission delay after the message is given.

Effect of tree size in LoMoS construction: The tree size
affects the time and storage required at various steps. As the



3224 IEEE TRANSACTIONS ON SMART GRID, VOL. 13, NO. 4, JULY 2022

tree grows, the verification gets slower, since one more hash
calculation is performed at the destination per level of the tree.
With the growth in tree size, the source storage requirement is
also increased, since the tree is stored as the private meta-data.
The timestamp is refreshed less frequently with the growth in
tree size. On the other hand, with a smaller tree, the source
is less flexible in benefiting from the adaptive message rate.
Moreover, when the tree generation time is shorter than the
offline signing time of the employed signature scheme, the
Setup procedure takes about the same amount of time regard-
less of the tree size (see Fig. 6). That is because, the offline
signing of the employed signature scheme is run in parallel
with the tree’s build algorithm. A rough conclusion is that the
tree should be larger than the average message size multiplied
by the number of messages to be supported by a single Setup,
and the time spent to generate the tree should be slightly larger
than the maximum of the employed signature scheme’s offline
signing time.

Engineering considerations: The verifiers need short-term
storage for the public meta-data, loss of which may cause
the later messages in the same round to be unverifiable until
meta-data is refreshed. As discussed in “Effect of tree size in
LoMoS construction” above, the meta-data refresh interval can
be as low as the converted digital signature scheme’s offline
signing time (see Fig. 6). Our construction is not suscepti-
ble to packet loss for the authentication of future messages.
Any verified message also proves how many bits are miss-
ing between the previous verified message and the latest.
However, the loss of packets carrying the public meta-data
may have a similar effect as a short-term memory loss. For tol-
erance against packet loss and memory loss, the source should
send the public meta-data with a certain degree of redun-
dancy. Legacy compliance is of paramount importance too.
Some devices may not support public key computations or be
suited for such software updates. Bump-in-the-wire deploy-
ment can be considered in such cases. Also, note that the
efficiency gains from the data structure implementation are
reflected in the performance results. We have presented the
algorithms above with bit operators, given their performance
friendliness.

If implemented in large substations or other large-
scale systems, and if there is a sudden surge of vol-
ume in the number of packets, the substantial increase
in the frame size might cause longer queuing delays in
the network. Against this possibility, the sufficiency of
network infrastructure and network equipment should be
ensured.

VIII. CONCLUSION

Modernized power grid implementations, including the
emerging ones involving diversified entities responsible for
energy generation (e.g., distributed energy resources), trans-
mission, and distribution pose security challenges including
insecure communication protocols and networks, and multiple
management domains leading to challenging key manage-
ment issues. The public key based solutions address the

security gaps in this domain. These solutions including digi-
tal signatures inherently provide the required functions (e.g.,
non-repudiation, public verifiability, feasibility of key man-
agement), which symmetric key based solutions struggle and
end up with complicated and less secure implementations.
On the other hand, even the state-of-the-art digital signatures
are known to be computationally expensive, particularly for
embedded industrial control system devices. To mitigate the
delay for message authentication, performing prior computa-
tions has been proposed. However, even the precomputation-
based schemes such as online/offline signatures do not support
extremely time stringent and high throughput communication
settings such as IEC 61850 GOOSE and SV communica-
tion in smart grids. Hence, we have proposed the Less-
online/More-offline Signatures (LoMoS) model. LoMoS, in
essence, entails the migration of more online computations
to offline. Following the model, we have proposed a LoMoS
construction, which only performs memory reads and assem-
bly to sign after the message is given, and conventional
cryptographic hash computations to verify. Our LoMoS con-
struction achieves promising results (with proportionally better
performance for smaller messages) on low-cost devices, hence
supporting time stringent communication protocols such as
IEC 61850 GOOSE and SV. LoMoS construction achieves
all said properties at the expense of communication overhead.
Today’s gigabit networks can easily handle the communica-
tion overhead incurred by LoMoS and the like. We invite
researchers to design alternative constructions for the LoMoS
model.

REFERENCES

[1] Power Systems Management and Associated Information Exchange-Data
and Communications Security—Part 6: Security for IEC 61850, IEC
Standard 62351-6:2020, 2020.

[2] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digi-
tal signature algorithm (ECDSA),” Int. J. Inf. Security, vol. 1, no. 1,
pp. 36–63, 2001.

[3] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in Proc. Conf. Theory Appl.
Cryptogr. Techn., 1986, pp. 186–194.

[4] C.-P. Schnorr, “Efficient identification and signatures for smart cards,”
in Proc. Conf. Theory Appl. Cryptol., 1989, pp. 239–252.

[5] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4,
pp. 469–472, Jul. 1985.

[6] P. Gallagher, Digital Signature Standard (DSS), FIPS Standards 186–3,
2013.

[7] S. Even, O. Goldreich, and S. Micali, “On-line/off-line digital signa-
tures,” in Proc. Conf. Theory Appl. Cryptol., 1989, pp. 263–275.

[8] A. Shamir and Y. Tauman, “Improved online/offline signature schemes,”
in Proc. Annu. Int. Cryptol. Conf., 2001, pp. 355–367.

[9] R. E. Mackiewicz, “Overview of IEC 61850 and benefits,” in Proc. IEEE
Power Eng. Soc. Gen. Meeting, 2006, p. 8.

[10] IEEE Standard Communication Delivery Time Performance
Requirements for Electric Power Substation Automation, IEEE
Standard 1646–2004, 2004.

[11] E. Esiner, D. Mashima, B. Chen, Z. Kalbarczyk, and D. Nicol, “F-Pro:
A fast and flexible provenance-aware message authentication scheme for
smart grid,” in Proc. SmartGridComm, 2019, pp. 1–7.

[12] “IEC 61850 Client Interface SCADA Configuration Guide.” 2020.
[Online]. Available: https://www.honeywellprocess.com/library/support/
Public/Documents/IEC-61850-Client-Interface-SCADA-Configuration-
Guide-EPDOC-X376-en-516A.pdf (accessed Oct 22, 2021).

[13] S. M. Farooq, S. S. Hussain, and T. S. Ustun, “Performance evaluation
and analysis of IEC 62351-6 probabilistic signature scheme for securing
goose messages,” IEEE Access, vol. 7, pp. 32343–32351, 2019.



ESINER et al.: LoMoS: LESS-ONLINE/MORE-OFFLINE SIGNATURES 3225

[14] S. S. Hussain, S. M. Farooq, and T. S. Ustun, “Analysis and imple-
mentation of message authentication code (MAC) algorithms for goose
message security,” IEEE Access, vol. 7, pp. 80980–80984, 2019.

[15] F. Cleveland, “IEC 62351 security standards for the power
system information infrastructure,” Int. Electrotech. Comm., Geneva,
Switzerland, Rep. IEC TC57 WG15, 2012.

[16] F. Hohlbaum, M. Braendle, and F. Alvarez, “Cyber security practical
considerations for implementing IEC 62351,” in Proc. PAC World Conf.,
2010, pp. 1–8.

[17] M. Luk, A. Perrig, and B. Whillock, “Seven cardinal properties of sensor
network broadcast authentication,” in Proc. ACM Workshop Security Ad
Hoc Sens. Netw., 2006, pp. 147–156.

[18] D. Boneh, G. Durfee, and M. Franklin, “Lower bounds for multicast
message authentication,” in Proc. Int. Conf. Theory Appl. Cryptogr.
Techn., 2001, pp. 437–452.

[19] Y. Challal, H. Bettahar, and A. Bouabdallah, “A taxonomy of multicast
data origin authentication: Issues and solutions,” IEEE Commun. Surveys
Tuts., vol. 6, no. 3, pp. 34–57, 3rd Quart., 2004.

[20] T. T. Tesfay and J.-Y. Le Boudec, “Experimental comparison of multicast
authentication for wide area monitoring systems,” IEEE Trans. Smart
Grid, vol. 9, no. 5, pp. 4394–4404, Sep. 2018.

[21] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Boca
Raton, FL, USA: CRC Press, 2014.

[22] J. Zhang, J. Li, X. Chen, M. Ni, T. Wang, and J. Luo, “A security
scheme for intelligent substation communications considering real-
time performance,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 4,
pp. 948–961, 2019.

[23] J. Zhang and C. A. Gunter, “Application-aware secure multicast for
power grid communications,” in Proc. 1st IEEE Int. Conf. Smart Grid
Commun., 2010, pp. 339–344.

[24] F. Cleveland, “IEC TC57 security standards for the power system’s
information infrastructure—Beyond simple encryption,” in Proc.
IEEE/PES Transm. Distrib. Conf. Exhibition, May 2006, pp. 1079–1087.

[25] A. A. Yavuz, “An efficient real-time broadcast authentication scheme for
command and control messages,” IEEE Trans. Inf. Forensics Security,
vol. 9, pp. 1733–1742, 2014.

[26] L. Lamport, “Constructing digital signatures from a one-way function,”
SRI Int., Menlo Park, CA, USA, Rep. CSL-98, 1979.

[27] M. O. Rabin, “Digitalized signatures and public-key functions as
intractable as factorization,” Massachusetts Inst. Technol., Cambridge
Lab. Comput. Sci., Cambridge, MA, USA, Rep. MIT/LCS/TR-212,
1979.

[28] R. C. Merkle, “A certified digital signature,” in Proc. Conf. Theory Appl.
Cryptol., 1989, pp. 218–238.

[29] A. Hülsing, D. Butin, S. Gazdag, J. Rijneveld, and A. Mohaisen,
“XMSS: Extended merkle signature scheme,” Internet Res. Task Force,
RFC 8391, 2018.

[30] A. Perrig, “The biba one-time signature and broadcast authentication
protocol,” in Proc. 8th ACM Conf. Comput. Commun. Security, 2001,
pp. 28–37.

[31] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signa-
tures with fast signing and verifying,” in Proc. Aust. Conf. Inf. Security
Privacy, 2002, pp. 144–153.

[32] Q. Li and G. Cao, “Multicast authentication in the smart grid with one-
time signature,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 686–696,
Dec. 2011.

[33] H. M. Krawczyk and T. D. Rabin, “Chameleon hashing and signatures,”
U.S. Patent 6 108 783, Aug. 22, 2000.

[34] IEC TC57: Communication Networks and Systems for Power Utility
Automation—Part 90-2: Using IEC 61850 for the Communication
Between Substations and Control Centres, IETC Standard IEC 61850-
90-2, 2015.

[35] J. Li, Q. Huang, F.-K. Hu, and S. Jing, “Performance testing on GOOSE
and MSV transmission in one network,” Energy Procedia, vol. 12,
pp. 185–191, Sep. 2011.

[36] P. Schaub and A. Kenwrick, “An IEC 61850 process bus solution for
powerlink’s iPASS substation refurbishment project,” PAC World Mag.,
vol. 9, no. 2009, pp. 38–44, 2009.

[37] M. M. Roomi, P. P. Biswas, D. Mashima, Y. Fan, and E.-C. Chang,
“False data injection cyber range of modernized substation system,” in
Proc. IEEE Int. Conf. Commun. Control Comput. Technol. Smart Grids
(SmartGridComm), 2020, pp. 1–7.

[38] “Analysis of the cyber attack on the Ukrainian power grid,” E-ISAC,
Washington, DC, USA, Rep. 388, 2016, pp. 1–29.

[39] “Crashoverride Malware.” [Online]. Available: https://www.us-
cert.gov/ncas/alerts/TA17-163A (accessed Aug. 18, 2017).

[40] J. Hoyos, M. Dehus, and T. X. Brown, “Exploiting the goose protocol:
A practical attack on cyber-infrastructure,” in Proc. IEEE Globecom
Workshops, 2012, pp. 1508–1513.

[41] P. P. Biswas, H. C. Tan, Q. Zhu, Y. Li, D. Mashima, and B. Chen, “A
synthesized dataset for cybersecurity study of IEC 61850 based sub-
station,” in Proc. IEEE Int. Conf. Commun. Control Comput. Technol.
Smart Grids (SmartGridComm), 2019, pp. 1–7.

[42] M. M. Fouda, Z. M. Fadlullah, N. Kato, R. Lu, and X. S. Shen,
“A lightweight message authentication scheme for smart grid com-
munications,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 675–685,
Dec. 2011.

[43] “Electric Power and Intelligent Control (EPIC) Testbed.” 2018. Online].
Available: https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_epic/
(accessed Jul. 12, 2021).

[44] C. Kriger, S. Behardien, and J.-C. Retonda-Modiya, “A detailed analysis
of the goose message structure in an IEC 61850 standard-based substa-
tion automation system,” Int. J. Comput. Commun. Control, vol. 8, no. 5,
pp. 708–721, 2013.

[45] D. Mashima, P. Gunathilaka, and B. Chen, “Artificial command delaying
for secure substation remote control: Design and implementation,” IEEE
Trans. Smart Grid, vol. 10, no. 1, pp. 471–482, Jan. 2019.

[46] R. Tamassia, “Authenticated data structures,” in Proc. Eur. Symp.
Algorithms, 2003, pp. 2–5.

[47] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” ACM Trans. Inf. Syst. Security, vol. 17, no. 4,
p. 15, 2015.

[48] E. Esiner, A. Kachkeev, S. Braunfeld, A. Küpçü, and Ö. Özkasap,
“FlexDPDP: Flexlist-based optimized dynamic provable data posses-
sion,” ACM Trans. Storage, vol. 12, no. 4, p. 23, 2016.

[49] E. Esiner and A. Datta, “Auditable versioned data storage outsourc-
ing,” Future Gener. Comput. Syst., vol. 55, pp. 17–28, Feb. 2016.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X15002538

[50] R. C. Merkle, “Protocols for public key cryptosystems,” in Proc. IEEE
Symp. Security Privacy, 1980, p. 122.

[51] “Beagleboard-X15,” Texas Instruments. 2018. [Online]. Available:
https://beagleboard.org/x15 (accessed Jan. 10, 2020).

[52] J. W. Bos, O. Özen, and M. Stam, “Efficient hashing using the aes
instruction set,” in Proc. Int. Workshop Cryptogr. Hardw. Embedded
Syst., 2011, pp. 507–522.

[53] “Intel architecture instruction set extensions programming reference,”
Intel Corp., Mountain View, CA, USA, Rep. 319433-014, 2016.

Ertem Esiner received the French baccalaureate
degree from Galatasaray Lycee in 2007, the B.Sc.
and M.Sc. degrees in computer science and engineer-
ing from Koç University, Turkey, in 2011 and 2013,
respectively, and the Ph.D. degree from Nanyang
Technological University, Singapore, in 2017. He
currently serves as a Research Scientist and the
Coordinator for Research Collaboration and Industry
Relations with Advanced Digital Sciences Center,
Singapore, where he is leading multiple research
projects in smart grid security area. His research

interests are cryptography, security, and privacy.

Utku Tefek received the B.Sc. degree in electrical
and electronics engineering from Bilkent University,
Turkey, in 2013, and the Ph.D. degree from the
National University of Singapore in 2017. He cur-
rently serves as a Research Scientist with Advanced
Digital Sciences Center, affiliate of the University
of Illinois. His research interests include communi-
cation systems and networks, cyberphysical system
security, and applied cryptography.



3226 IEEE TRANSACTIONS ON SMART GRID, VOL. 13, NO. 4, JULY 2022

Hasan S. M. Erol received the B.Sc. degree in
electrical and electronics engineering from Bilkent
University, Turkey, in 2020. He is currently pursu-
ing the Ph.D. degree in electrical engineering and
computer science with the Massachusetts Institute
of Technology. His research interests are information
theory and machine learning.

Daisuke Mashima received the Ph.D. degree in
computer science from the Georgia Institute of
Technology in 2012. He is currently a Principal
Research Scientist with Advanced Digital Sciences
Center (ADSC), Singapore, where he is leading
multiple research projects in smart grid security area.
Before joining ADSC, he worked as a member of
Research Staff with the Smart Energy Group, Fujitsu
Laboratories of America, Inc. His research interest
covers cybersecurity and privacy in cyber–physical
systems in general.

Binbin Chen (Member, IEEE) received the B.Sc.
degree in computer science from Peking University
and the Ph.D. degree in computer science from
the National University of Singapore. Since July
2019, he has been an Associate Professor with the
Information Systems Technology and Design Pillar,
Singapore University of Technology and Design.
He currently also holds a joint appointment as a
Principal Research Scientist with Advanced Digital
Sciences Center, which is a University of Illinois
research center located in Singapore. His current

research interests include wireless networks, cyber–physical systems, and
cyber security for critical infrastructures.

Yih-Chun Hu received the Ph.D. degree from the
Computer Science Department, Carnegie Mellon
University in 2003. He is an Associate Professor
with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana–
Champaign, affiliate faculty of Computer Science,
and faculty of the Advanced Digital Sciences Center.
His current research interests are in network security
and wireless networks. His general research interests
are in security and systems, with an emphasis on the
areas of secure systems and mobile communications.

Zbigniew Kalbarczyk (Member, IEEE) is a
Research Professor of Electrical and Computer
Engineering and the Coordinated Science
Laboratory, University of Illinois Urbana-
Champaign. He currently leads research projects
that are exploring and developing high-availability
and secure infrastructure capable of managing
redundant resources across interconnected nodes to
detect errors in user applications and infrastructure
components, to foil security threats, and to recover
quickly from failures when they occur. His work

also involves developing automated techniques and tools (including ML-
based experimental methods) for validation and benchmarking of computing
systems in a broad range of application domains, e.g., medical devices
(such as surgical robots) and critical infrastructures (e.g., the power grid). In
addition, he has led several projects sponsored by government agencies (e.g.,
DARPA, DOE, NSA, and DHS) to develop techniques and tools for design
and validation (including the use of high-fidelity simulation and experimental
methods) of highly critical systems. His research encompasses design and
validation of resilient, safe, and secure computing systems and applications.
He is a member of the IEEE Computer Society.

David M. Nicol (Fellow, IEEE) is the
Herman M. Dieckamp Endowed Chair of
Engineering with the University of Illinois Urbana
Champaign, where he also serves as the Director of
the Information Trust Institute. He is the Director
also of the Advanced Digital Sciences Centre in
Singapore. He is a Fellow of the ACM.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


