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Conditional Multivariate Elliptical Copulas to Model
Residential Load Profiles From Smart Meter Data
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Abstract—The development of thorough probability models for
highly volatile load profiles based on smart meter data is crucial
to obtain accurate results when developing grid planning and
operational frameworks. This paper proposes a new top-down
modeling approach for residential load profiles (RLPs) based on
multivariate elliptical copulas that can capture the complex cor-
relation between time steps. This model can be used to generate
individual and aggregated daily RLPs to simulate the operation
of medium and low voltage distribution networks in flexible time
horizons. Additionally, the proposed model can simulate RLPs
conditioned to an annual energy consumption and daily weather
profiles such as solar irradiance and temperature. The simu-
lated daily profiles accurately capture the seasonal, weekends,
and weekdays power consumption trends. Five databases with
actual smart meter measurements at different time resolutions
have been used for the model’s validation. Results show that the
proposed model can successfully replicate statistical properties
such as autocorrelation of the time series, and load consumption
probability densities for different seasons. The proposed model
outperforms other multivariate state-of-the-art methods, such as
Gaussian Mixture Models, by one order of magnitude in two
different distance metrics for probability distributions.

Index Terms—Multivariate copulas, load modeling, stochastic
modeling, Gaussian mixture model.
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I. INTRODUCTION

THE ENERGY transition comes with increasing penetra-
tion of low carbon technologies in the electrical distribu-

tion grid such as photovoltaic (PV) and wind generation [1].
This transition has also created environmental awareness on
household energy consumption, prompting changes in home
appliances, like the swap from gas to electricity for cooking
and residential heating, and the use of electric vehicles as a
mobility solution. This transformation creates high volatility
and uncertainties in the residential load consumption profiles
(RLPs), which introduces more challenges to the distribution
network operation.

Modeling RLPs in low voltage (LV) distribution networks
has been an active field of research. Proper stochastic modeling
of load consumption is required in different types of stud-
ies such as modern grid planning [2], quantification of the
impact of low carbon technologies [3], [4], finding secure
levels of penetration of PV generation [5], [6] and LV state
estimation [7]. The accuracy that these studies can provide
relies heavily on the quality of the stochastic models that can
capture the variability of the consumption patterns, making
the residential load modeling an essential task for making
well-founded decisions.

In Europe, the smart meter data is protected due to pri-
vacy concerns [8]. Stochastic models have the benefit that the
original data’s statistical behavior is kept, reflecting it in the
simulated profiles, without including any individual measured
data. The future distribution grids will have millions of smart
meters installed. The capability to describe the consumption
patterns with a few parameters in a probabilistic representation
is desired to compress large volumes of data in compact mod-
els. A stochastic model can also generate training databases
of arbitrarily larger size, useful for machine learning tasks [9],
and Monte Carlo methods [10], [11].

A. Literature Review and Contributions

The research on RLPs modeling can be grouped into two
main approaches:

Bottom-up approach implements a Markov chain model that
simulates the dwellers’ behavior inside the households and
their interaction with home appliances [12]. Usually, these
methods are based on social demographic data [13], or appli-
ances characteristics and consumption duration [14]–[17].
Bottom-up approaches have good results and usually are used
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for testing demand-side management applications. However,
their main drawback is that they require the number of
dwellers in the households and very detailed information about
the use of the appliances. Such modeling is infeasible for the
distribution network operators (DNOs) for network analysis
to scale up to tens or hundreds of households because of its
modeling intensity and privacy concerns.

Top-down approach are more interesting for grid operators
since these models can be built based on existing smart meter
measurements. The main purpose of the top-down approaches
is to capture the statistical properties of the actual measure-
ment data set. There are two main modeling methods used for
this approach: Markov chain models, and probabilistic models
that use parametric families of probability distribution func-
tions (PDFs). In the Markov chain models, a transition matrix
is developed over discretized bins of power consumption for
each time step, and then the model is sampled using a random
walk to create the RLPs [18], [19]. The work in [20] presents
a Markov chain model that also considers power consumption
changes due to seasonality. In [21], load profiles from a smart
meter dataset are clustered, and for each group, a Markov
model is created, improving the quality of the generated pro-
files. Nevertheless, the main disadvantage of these models is
that the range of power consumption is not accurately modeled
due to the required discretization at the consumption levels,
creating blind gaps on the edges of the discretized bins. This
can be a critical issue as the model might not capture the whole
range of consumption values adequately, causing high power
consumption underestimation, as shown in [21] and [22].

In the probabilistic models, each time step of the RLP is
considered as a random variable, and the load profile is mod-
eled as a joint multivariate probability distribution. Different
families of PDFs have been tested to approximate load con-
sumption, e.g., Log-normal, Weibull, Generalized Extreme
Value [23], [24]. However, [25] shows that load consump-
tions do not follow specific PDFs, and it suggested using more
flexible techniques to represent different types of load distri-
butions appropriately. One multivariate probabilistic technique
is the Gaussian Mixture Models (GMMs) [26], extensively
used in the literature due to its flexibility to adapt to unknown
multi-modal and multivariate distributions. The work in [27]
uses a GMM to capture temporal correlations between time
steps of the aggregated RLPs for medium voltage (MV) to
LV distribution transformer loading. However, no analysis
was presented to model RLPs at the LV level. In general,
GMMs are very flexible, but they are limited by the assump-
tion that any multivariate joint distribution can be constructed
with elliptically symmetric Gaussian probability densities. As
shown later, GMMs can not properly model the complex cor-
relation between time steps of RLPs at the LV level.

A different multivariate probabilistic technique is the use of
copulas, which have been introduced in the context of energy
systems for clustering [28], wind power and solar irradiance
generation modeling [29]. Most of the load modeling that
employs copulas is for applications on planning and secure
operation on transmission grids [30]–[32], which only use
aggregated residential load profiles and not for individual
households, making the application for distribution systems

relatively new. Moreover, the above-mentioned application
approaches deal exclusively with few variables, e.g., wind,
PV, and load-generation for few buses on the grid. In this
sense, in the technical literature, there has been little effort
to model high-dimensional dependent stochastic variables for
time step correlations from smart meter data, e.g., a problem
with 96 stochastic variables representing a daily profile of 15
minutes resolution. The advantage of copulas is that it does
not model the joint distributions assuming elliptical distri-
butions; instead, it focuses on the correlations between the
marginal distributions that are modeled independently. As a
result, multivariate copula models can be more flexible than
GMMs for modelling complex correlations between variables.
Additionally, the copula modeling of RLP considers each time
step as a continuous random variable of active power consump-
tion, overcoming the problem of power discretization required
by the Markov models. The use of copulas to capture temporal
correlation on RLPs has been tested before in [33], focused on
the modeling of marginal distributions for each time step using
GMMs before applying the copula correlation. Unlike this, the
model shown in this paper does not use any parametric fam-
ily distribution over the marginals, giving more flexibility for
the copula model to capture complex correlation between time
steps. A more advanced technique involving copulas applied to
RLPs is the use of vines copulas [28], [34]. The disadvantage
is that the model’s complexity increases exponentially with
the number of variables [35]. Model selection is problematic
due to the vines’ hierarchical nature, and sampling techniques
over one or more dependent variables (conditioned proba-
bility model) are not simple [36]. In contrast, our proposed
approach keeps using the simplicity of multivariate elliptical
copulas (i.e., multivariate Gaussian (MVG) and multivariate t-
distribution (MVT) copulas), which is practical to sample and
the conditional probability has an analytical solution.

In most power systems applications, the Gaussian copula
became the default approach for calculating stochastic vari-
ables correlation and scenario generation [29], [31], [37], [38]
without any further consideration on the type of data to
be modeled. Nevertheless, the MVT copula can benefit the
individual RLPs modeling due to its ability to capture high
values variations [39]; this property has not been explored
for the highly volatile RLPs. In this paper, the modeling
approach jointly evaluates the multivariate elliptical copulas
for modeling high dimensional temporal correlations, which
can be applied for both; individual and aggregated RLPs due
to its general mathematical formulation.

Most importantly, no particular attention has been given in
the technical literature to take advantage of conditioning the
joint probability distribution that the copula models, e.g., to
simulate processes when one or more variables are known.
In this paper, we have particularly focused on the simulation
of load profiles conditioned to an annual energy consumption.
Nevertheless, the developed multivariate elliptical copula mod-
els can also be use to simulate RLPs conditioned to weather
data e.g., temperature, solar irradiation. In this sense, our
modeling approach gives and an extra tool for DNOs to evalu-
ate such possible scenarios for LV networks. In summary, the
main contributions of this paper are as follows.
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• A proposal for a new top-down modeling approach
for RLPs based on multivariate elliptical copulas that
(i) can capture the high-dimensional temporal correlation
between time steps and annual energy consumption; and
(ii) can reproduce the high volatility of residential demand
accurately. The proposed approach unifies the consump-
tion modeling for MV and LV levels, simulating active
power consumption scenarios at 15, 30, and 60 minutes
resolution for a whole year.

• A new multivariate elliptical copula-based probability dis-
tribution model that simulates RLPs conditioned accord-
ing to an annual energy consumption and daily weather
profiles such as solar irradiance and temperature.

The remaining paper is organized as follows: Section II
describes the statistical modeling problem for RLPs and
the mathematical formulation of the proposed algorithms.
Section III presents a case study where the model’s effective-
ness is tested in a comprehensive case study for modeling
individual and aggregated levels. For this, four different
smart meter datasets at different time resolutions were used.
Section IV summarizes and concludes the main results.

II. STATISTICAL MODELING OF RESIDENTIAL

LOAD PROFILES

A. Preliminary Analysis of RLP Characteristics

The Fig. 1 shows an example of the difference in the statis-
tical properties of RLPs between houses with high and low
energy consumption. The left column of Fig. 1 shows the
probability density of the active power consumption of one
time step of the day for ten houses with high and low energy
consumption. As can be seen, the density distributions have a
different shape between the low and high energy consumption
houses, mostly positively skewed, with longer tail in the high
energy consumption case. This difference can also be seen in
the central column of Fig. 1, which shows the complete pro-
files of the houses, in which the 5%, 50%, and 95% percentiles
of the distribution densities are highlighted. Additionally, The
right column of Fig. 1 shows a scatter plot of active power
consumption between two consecutive time steps, i.e., 18:00
and 18:15. Two important observations can be drawn: First,
that there is a dependency structure between consecutive time
steps; and second, that the dependency structure between time
steps in the RLPs also depends on the annual energy consump-
tion. For the same time of the day, high energy consumption
households have a higher concentration of power values in
the lower-left corner of the plot, and a heteroskedastic dis-
persion in the upper right corner. Furthermore, low energy
consumption households have active power values more con-
centrated and less dispersed in the lower-left corner. Therefore,
the annual energy consumption also influences the dependency
structure between the time steps, and it should be considered
as an extra variable in the statistical modeling.

B. Statistical Modeling

In general, a daily RLP of a household with annual energy
consumption W can be discretized into T time steps. Each
time step has an active power consumption value, considered

Fig. 1. Example of active power consumption for weekdays in June, for
ten households with high annual energy consumption (first row), and ten
households with low annual energy consumption (second row).

a continuous random variable Xi ∀ i = 1, . . . , T . In this paper,
the use of capital letters is for random variables and small
letters for observed values, i.e., we let X = (X1, . . . , XT)

denote the random variable and x = (x1, . . . , xT) its observed
realization for active power consumption. Similarly, w as an
annual energy realization of the random annual energy con-
sumption variable W. The goal of the proposed model is to
find a probability distribution function

F(x1, . . . , xT , w), (1)

that captures the dependencies between all the random vari-
ables that defines the residential load profile, i.e., Xi and W,
knowing that each random variable has a different marginal
distributions function, i.e., {F(x1) �= · · · �= F(xT) �= F(w)}.
The expression in (1) can be seen as a generative model
that can be sampled to simulate plausible load profiles for
a household with a random annual energy consumption.

The probabilistic model in (1) can be conditioned to a
specific value of annual energy consumption ŵ as

F
(
x1, . . . , xT |W = ŵ

)
. (2)

The condition ŵ modifies the dependency structure of the time
steps transitions according to the annual energy value ŵ. The
conditioned model in (2) should match statistical properties
of a smart meter dataset, consisting of N tuples of actual
smart meter measurements of active power consumption for
households with different annual energy consumption

D = {(
x1,n, . . . , xi,n, wn

)}N
n=1, (3)

where the sub-index n is used to indicate the instance number
in the data set D.

Four statistical criteria are desired for the model in (2) that
should match the actual data set D. These are: (i) the den-
sity distribution of active power consumption during the year,
(ii) the density distribution of the active power rate change
between time steps, which is crucial for studies where the tem-
poral behavior or net deviations are important, e.g., demand
response management [40]; (iii) density distribution of the
active power for each season of the year, divided by weekends
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and weekdays; and (iv) the average of the autocorrelation of
the daily load profiles.

The complex dependency between random variables seen in
Fig. 1 makes the modeling a difficult task. The finite mixture
modeling based on Gaussian distributions [26] is a popular
and flexible option to model (1). These models, known as
GMMs, can also be conditioned as showed in [41] and [27] to
model (2). Based on this, our proposal is referenced against a
conditioned GMM.

C. Multivariate Elliptical Copula Modeling and Selection

For notation simplicity, the set of random variables in (1)
are substituted as

{x1, . . . , xT , w} = {x1, . . . , xd},
defining sub-index d as d = T + 1.

The Sklar’s theorem [42] shows that a multivariate joint
distribution of random variables Xi can be described by the
distribution function of its marginals Fi(·) and a copula C(·)
for i = 1, . . . , d. The copula models the dependency between
the marginal uniform random variables [U1, . . . , Ud] =
[F1(X1), . . . , Fd(Xd)]. Formally, a function C(·) : [0, 1]d →
[0, 1] is a copula described by

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

= C(u1, . . . , ud). (4)

In general, Fi(·) is the transformation function from the
smart meter measurement space X to a uniform space U
on which the copula is modeled. The projection transfor-
mation is described as X → U . Here, the marginal
distributions are not assumed to belong to any paramet-
ric probability distribution model. Therefore, Fi(·) in (4) is
the Probability Integral Transform (PIT) using an empirical
distribution function (EDF), described as

F�i(xi) = 1

N + 1

N∑

n=1

1{xi,n≤xi} ∀ xi ∈ D, (5)

where 1 is the indicator function.
In literature, there are multiple multivariate copula models

available. The most common classes are the Archimedean, and
the multivariate elliptical copulas. These last are derived from
the MVG and MVT probability distributions. Archimedean
copulas have only one or two parameters of dependence for
their marginal distributions, limiting its applications for multi-
variate cases [43]. Alternatively, multivariate elliptical copulas
offer the possibility to assign different values of dependence
for all the pairs of random variables in (4), which is embedded
in the correlation matrix of the multivariate elliptical functions.
Due to this, multivariate elliptical copulas will be used here.

1) Multivariate Gaussian (MVG) Copula [44]: The MVG
copula can be constructed based on (4) using a multivariate
normal cumulative distribution function �d(·), with zero mean
vector and correlation matrix � ∈ R

d×d, described as

C(u1, . . . , ud) = �d

(
�−1(u1), . . . , �

−1(ud); �
)

= �d(z1, . . . , zd; �), (6)

where �−1(·) is the inverse function of the univariate standard
normal cumulative distribution. The inverse function can be
seen as a projection from the uniform space to the standardized
elliptical distribution space, i.e., U → Z . The corresponding
MVG copula density can be expressed as

c(u1, . . . , ud;�) = Nd(z1, . . . , zd; �)
∏d

i=1 φ(zi)
, (7)

where φ(·) is the univariate standard normal density distri-
bution function, and Nd(·;�) the multivariate normal density
distribution function. The linear correlation between variables
described by matrix � has a known relation with Kendall’s
tau [44], denoted by τ , which is a rank-based dependence mea-
surement between variables xi in the dataset (D). This relation
is described as

ρ(k,l) = sin
(π

2
τ(k,l)

)
. (8)

The subscript (k, l) describes the element position in the
matrix �. Therefore, the parameter estimation � for the MVG
copula is given by the relation in (8), and it is referred as �̂.

2) Multivariate t-Distribution (MVT) Copula [39]:
Similarly, the MVT copula can be constructed using a
multivariate cumulative t-distribution function Td(·), with
zero mean vector, scale matrix �, and ν > 0 degrees of
freedom, described as

C(u1, . . . , ud) = Td

(
T−1(u1; ν), . . . , T−1(ud; ν); (�, ν)

)

= Td(z1, . . . , zd; (�, ν)). (9)

where T−1(·; ν) is the inverse cumulative distribution function
of the univariate t-distribution with ν > 0 degrees of freedom,
and serves as the projection function U → Z for the MVT
copula model. The MVT copula density is defined as

c(u1, . . . , ud; (�, ν)) = td(z1, . . . , zd; (�, ν))
∏d

i=1 tν(zi; ν)
, (10)

where tν(·; ν) is the univariate standard density, and
td(·; (�, ν)) the multivariate density t-distribution functions.

The relation in (8) for the parameter estimation of � can be
extended to the MVT copula [45]. Therefore, �̂ is the same
for the MVG and MVT copulas.

The parameter estimation of ν for the MVT copula is
computed using a maximum pseudo-likelihood estimation
(MPLE) [46], as the model uses a non-parametric approach
over the marginal distributions. The MPLE maximizes the
log-likelihood of the MVT copula density (10) over the N
uniform pseudo-observations ui,n, which are obtained apply-
ing the transformation (5) on the smart meter dataset (D). The
optimization problem to find the optimal ν̂ is defined as

ν̂ = arg max
ν

N∏

n=1

c
(

u1,n, . . . , ud,n;
(
�̂, ν

))
. (11)

The model selection between MVG and MVT copulas that
better describes the dataset D is made using the Bayesian
information criterion (BIC), defined as

BIC ≡ −2 ln
(
	
(
D; θ̂

))
+ ln(N) p, (12)
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Fig. 2. Example of the conditional elliptical copula approach in a bivariate data set. (A) The original data set with a joint probability density f (x, y) is
conditioned in a value x̂2 = 1.0, depicted by the red dotted line. (B) The data set is projected to the uniform space X → U using the EDF. (C) The parameters
θ̂ are fitted for a multivariate elliptical copula. The multivariate elliptical copula is conditioned in the Z space, using the projection of x̂2 → ẑ2 (vertical
red line). (D) The conditioned copula is sampled and projected back to the actual units Z → U → X . (E) The samples follow the original conditioned
distribution function F(x1|X2 = x̂2).

where 	(D; θ̂) is the log-likelihood of the multivariate ellipti-
cal copula on the dataset D, θ̂ are the fitted parameters which
define the multivariate elliptical copula, and p is the number of
parameters of the copula. The BIC balances the model good-
ness of fit, measuring the log-likelihood of the multivariate
elliptical copula on the dataset penalizing the model complex-
ity by the number of samples N, and the number of parameters
on the model p. The model with the lowest BIC value is
selected, meaning that the model is simpler, i.e., explaining
the actual data with fewer parameters. The log-likelihood for
both multivariate elliptical copulas densities are

	
(
D; θ̂

)
=

N∏

n=1

c
(

u1,n, . . . , ud,n; θ̂
)
. (13)

Here, θ̂ represents the correlation matrix �̂, for the MVG
copula, or (�̂, ν̂), for the MVT copula. A summary of the mul-
tivariate elliptical copula parameter fitting and model selection
procedure can be found in Algorithm 1.

A visual overview of the multivariate elliptical copula fitting
process discussed in this section can be seen in Fig. 2. Steps
(A) to (C) show an example of the projection of a bivariate
dataset to the uniform space using the PIT in (5). Step (C)
shows the elliptical distribution in Z that fits the multivari-
ate elliptical copula density in the uniform space U . Sampling
from the fitted elliptical distribution density in Z space, and
projected back to the X space, creates RLPs with random
annual energy consumption that follows the marginal distribu-
tion F(w). In order to control the specific generation of RLP
for a household with given annual energy consumption, the
multivariate elliptical copula model needs to be conditioned.
This conditioning can be done as discussed next.

D. Conditioned Copula Model

Here, the expression defined in (2) is modeled to
simulate RLPs for a household with a specific annual
energy consumption ŵ. The following variable vectors
notation is used: x1 = [x1, . . . , xT ]ᵀ, x2 = w
and u1 = [F�1(x1), . . . , F�T (xT)]ᵀ, u2 = F�w(w). To condi-
tion (2), the Sklar’s theorem is extended to its conditional

Algorithm 1 Multivariate Elliptical Copula Parameter Fitting
and Model Selection

1) Transform the smart meter dataset from the smart
meter measurement space X to the pseudo-observation
uniform space U , using (5).

2) Compute Kendall’s tau τ(k,l) between variables xi,n of
the smart meter dataset D.

3) Compute scale matrix �̂ using relation in (8).
4) Compute the numerical optimization in (11), fixing scale

matrix �̂, and finding optimal ν̂.
5) Compute BIC for MVG and MVT copulas using �̂ and

ν̂ in (12).
6) Select the multivariate elliptical copula model with the

lowest BIC.

form as

F(x1|x2) = C(u1|u2) = Ce
(

z1|z2; θ̂1|2
)
, (14)

where θ̂1|2 is the conditioned parameters for the multivariate
elliptical copula discussed in Section II-C, and Ce(·) refers
to any of the multivariate elliptical copula models, i.e., either
MVG or MVT copula. Based on this, to condition the mul-
tivariate elliptical copula model, the annual energy value ŵ
should be projected from the smart meter space to the ellip-
tical distribution space X → Z . Fig. 2, step (C), shows and
example of this projection, which is represented as a red ver-
tical line. The projection X → U → Z depends on the copula
model selected by the BIC and is expressed as

ẑŵ =
{

T−1
(
F�w

(
ŵ

); ν̂
)
, if Ce(·) is a MVT copula,

�−1
(
F�w

(
ŵ

))
, if Ce(·) is a MVG copula.

(15)

The annual energy value projected condition the elliptical dis-
tribution parameter to θ̂1|2, using Z2 = ẑŵ. The details of
parameter conditioning can be found in the Appendix. The
conditioned elliptical distribution function is sampled to gen-
erate ẑ = [ẑ1, . . . , ẑT ]ᵀ ∈ R

T , which should be projected to
active power units in order to obtain an RLP. The projection
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Algorithm 2 Profile Simulation From the Conditional
Multivariate Elliptical Copula

1) Project the annual energy value (ŵ) to the multivariate
elliptical copula function space Z using (15).

2) Condition the parameters of the multivariate elliptical
copula θ̂ z1|Z2=ẑŵ

using (20) and (21).
3) Draw N samples from the conditioned elliptical distri-

bution {ẑn}N
n=1.

4) Transform the N samples into power units using (16).

Z → U → X is done by

x̂i =
{

F−1
�i

(
T
(
ẑi; ν̂

))
, if Ce(·) is a MVT copula,

F−1
�i

(
�

(
ẑi
))

, if Ce(·) is a MVG copula.
(16)

An example of the projection (16) in the bivariate case can be
visualized in Fig. 2 in step (D), indicated by the arrows. All the
simulated values follow the original conditioned distribution
function, as shown in (E). A summary of the steps to simulate
RLPs from the conditioned model is described in Algorithm 2.

III. CASE OF STUDY

In order to assess the effectiveness of the proposed cop-
ula models, an assessment is performed by comparing the
statistical properties discussed in Section II for actual RLPs
measurements and simulated RLPs for different case of study.
Additionally, simulations of RLPs obtained from the condi-
tional GMM are used as a benchmark. These cases of study
consists of four applications to analyze the performance of the
Algorithms 1 and 2, described as:

1) Individual and aggregated residential data modeling at
15-minutes resolution. Results are presented in terms
of parameter estimation analysis and model selection
(Sections III-A and III-B).

2) Modeling RLPs at 15, 30, and 60-minute resolutions
(Section III-C).

3) Modeling over different consumption load profile pat-
terns, testing for multiple smart meter datasets from
different countries (Section III-D). The open dataset
sources used for the different tests in this case study
are summarized in Table I.

4) The conditional copula modeling is extended to include
weather variables, i.e., solar irradiance and temperature.
The conditional elliptical copula’s flexibility to model
daily power consumption profiles under different daily
weather conditions is analyzed (Section III-E).

The first test is divided in two cases: (i) aggregated RLPs,
which represents MV/LV distribution transformer loading for
residential areas; and (ii) individual RLPs, which describes
individual household consumption. RLPs for the two cases
have different correlation characteristics, and the purpose is to
evaluate the effectiveness of the methodology in such scenar-
ios. The individual case data set corresponds to smart meter
measurements of active power consumption for 77 house-
holds in the Netherlands (NL) [47], with a 15 min resolution
for one year. The data set for the aggregated case consists

Fig. 3. RLPs for the weekdays in June. The first column shows the aggregated
RLP, and the second column shows the individual RLP. The bottom row shows
Kendall’s tau correlation matrix in a heat map visualization.

TABLE I
SMART METER DATASETS FOR THE CASE OF STUDY

of 100 MV/LV distribution transformers, with the same time
resolution and period as the individual case.

Figure 3 shows the actual daily RLPs for the week-
days in June. The top left plot shows the aggregated RLPs,
which has a range of annual energy consumption between
123 and 160 [MWh/year]. The top right plot shows the indi-
vidual RLPs with has annual energy consumption between
11.17 and 1.00 [MWh/year]. The bottom row of Fig. 3 shows
a heat map of Kendall’s tau correlations coefficients between
variables (time steps) of the day. The heat map shows that the
covariance between subsequent time steps is stronger in the
individual case, which varies between (0.52 - 0.75), compared
to the aggregated case that varies between (0.4 - 0.63). Also,
the correlation values vanish quickly in the aggregated case for
shorter time windows, compared to the individual case, which
has correlation values of 0.6 to 0.75 for one hour apart. Based
on this, we can see that aggregated and individual cases have
different correlation structure and uncertainties.

RLPs for both cases (aggregated and individual) have an
intrinsic seasonal trend during the year and have different con-
sumption patterns between weekdays and weekends. Hence,
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for this case of study, the datasets are split into separate dis-
joint groups, dividing them into weekdays and weekends, and
for each month of the year, creating 24 smaller datasets for
each case. Thus, the copula models and the GMM used for
the benchmark are fit for each of these datasets to simulate a
daily RLPs for different months of the year. A bootstrap tech-
nique [51] was applied for building the models and test the
performance evaluation. To this end, 70% of the dataset was
used for parameter estimation and model selection, while the
remaining 30% was reserved as the original dataset for eval-
uation purposes. The bootstrapping was repeated 1000 times
to compute the probability distance metrics named the Energy
(ED), Kolgomorov-Smirnov (KS), and Wasserstein distances
(WD). Algorithms 1, 2, and conditional GMM were imple-
mented in Python 3.8 and run on an Intel i7 @2.8 GHz PC
with 8 cores and 32 GB of Memory [52].

A. Parameter Estimation and Model Selection

The results presented here are related to the modeling proce-
dure of the expression in (1) using Algorithm 1. Additionally,
the building procedure of the GMM based on [26] is also
presented. The GMM is used for comparison purposes.

Figure 4 shows the parameter estimation results for the
GMM and the multivariate elliptical copula models for the
weekdays of November. The top row shows the number
of components for the GMM, defined after running the
expectation-maximization algorithm using 1 to 20 compo-
nents and deciding the optimal number using the BIC. As
can be seen in Fig. 4, the optimal number of components
that best describes the data set is equal to K = 2, for both
the individual and aggregated case. The bottom row of Fig. 4
shows the multivariate elliptical copula parameter estimation.
In the individual case, the negative log-likelihood curve for
the MVT copula has a minimum in ν̂ = 19.38 with a neg-
ative log-likelihood value lower than the MVG model. The
BIC value of the MVT copula was also computed, giving
a value of −151 376, and the BIC for the MVG copula is
−133 325, selecting the MVT copula model for the individual
case. Results show similar results for the rest of the months,
where the MVT copula is selected for all individual cases.

In the aggregated case, which is shown in the second col-
umn of Fig. 4, the negative log-likelihood of the MVT copula
has a flatter behavior than the individual case; this trend is
also seen for the rest of the months. The MVT copula has an
optimal ν̂ = 144.44 with BIC of −188 069, and the BIC of
the MVT copula is −187 524, which is a difference of BIC of
less than 0.3%. It should be recalled that as ν → ∞, the MVT
distribution tends towards an MVG distribution, which means
that both copula models are almost identical. Even though the
BIC in the MVT copula is lower than the MVG copula, there
is no substantial difference between both types of copula mod-
els when the degrees of freedom is high [53]. Results show
that for values of ν > 200, both elliptical copula models are
indistinguishable.

In order to visually assess the capability to reproduce the
complex correlations seen in Fig. 1, all the fitted models
are sampled to simulate RLPs for both cases. The results

Fig. 4. Parameter fitting for the GMM and multivariate elliptical copula
models. The top row is the best number of components for the GMM. The
bottom row shows the negative likelihood values for the multivariate elliptical
copulas. The first column is for individual residential consumption, the second
column is for aggregated residential consumption.

Fig. 5. Comparison between power values of the original dataset and N=1500
simulations for GMM and multivariate elliptical copula models, for the time
step transition between 17:00 and 17:15 a weekday in November. The top
row is the aggregated case, the bottom row is the individual case.

are presented in Fig. 5 for the time step transition between
17:00 and 17:15 for one weekday in November. For the indi-
vidual case, the dependency structure between time steps on
the original smart meter measurements (D), can be modeled
by the multivariate elliptical copula (E). However, the GMM
has a poor representation due to the restriction to fit only
Gaussian-shaped distributions (F). This difference highlights
the flexibility of the copulas, which can model complex depen-
dence structures seen on RLPs. For the aggregated case, a
simpler correlation is seen in the original dataset (A), with a
more Gaussian-like distribution. In this case, the multivariate
elliptical copula and GMM perform similarly.

B. Simulations With Conditioned Multivariate Elliptical
Copula Models

The results presented here are related to the modeling pro-
cedure of expression in (2) using the conditioned multivariate
elliptical copula model shown in Algorithm 2. Additionally,
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TABLE II
SUMMARY OF RESULTS FOR INDIVIDUAL RESIDENTIAL DATA - NETHERLANDS DATASET

Fig. 6. Simulation results of the conditioned multivariate elliptical copulas
for nine households randomly selected and grouped by different annual energy
consumption ranges. The red vertical line represents the annual energy con-
sumption value were the models are conditioned. Percentage shows the error
between the mean of the simulations and the conditioned energy value.

the building procedure of a conditioned GMM based on [41]
is also presented. To quantify the differences between the
active power values simulated by the developed copula models
and the original dataset, the Energy Distance (ED) [54] and
Kolgomorov-Smirnov (KS) distances are used as a probability
distance metric.

The multivariate elliptical copula and GMM models are con-
ditioned to each household’s annual energy consumption and
transformer for the individual and aggregated case, respec-
tively. Simulations are executed for N = 300 annual scenarios.
Fig. 6 shows simulation results with the elliptical copula
models for nine randomly selected households with differ-
ent annual energy consumption values. The average errors
between the conditioned annual electricity consumption values
and the mean of the simulations are 4.9%.

The top row in Fig. 7 shows the distribution density of
active power values for all the houses (individual case) and
transformers (aggregated case) for a year. The results in (A)
and (C) show that both techniques have similar performance
in the aggregated case, with maximum ED differences of just
4.7%. However, for the individual case in (B) and (D), the
conditional copula performs better, improving the ED by 20
times, which means that our proposal outperforms the GMM
significantly.

The original dataset and simulation results are split into
seasons, weekdays, and weekdays. The results are shown in
Fig. 8. The box plots in (A) and (C), which are for the aggre-
gated case, shows that the RLPs generated by the conditional
elliptical copula has similar distributions based on the first and

Fig. 7. Density distributions and energy distance metrics of the active
power consumption every 15 minutes, for one year for the original data set,
and the simulated profiles using conditional multivariate elliptical copula and
conditional GMM.

Fig. 8. Load consumption of one year split into seasons, weekends, and
weekdays. The conditional multivariate elliptical copula can model the original
data set for both aggregated and individual residential consumption cases
successfully.

third quantiles. However, the GMM tends to underestimate the
lower power consumption in the aggregated case, which can
be seen in the lower whiskers. For the individual case, (B) and
(D), the proposed model outperforms the GMM for all seasons.
In (D), the GMM underestimates the high power consumption,
simulating just 70% of the highest consumption values, which
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Fig. 9. Simulation results of the conditional multivariate elliptical copula and
the conditional GMM for the 15-min resolution models over the NL dataset.
(A)-(B) daily profiles simulated from both models. (C)-(D) Kendall’s corre-
lation matrix on the simulated profiles. (E)-(F) Show the 2-D Wasserstein
distance between the simulated profiles and the original profiles, (G)-(I)
Highlight one example of the cross-plot that shows a time transition used
to compute the Wasserstein metric.

can be seen in the boxplot’s upper fliers. This could be crit-
ical for network planning studies, as the equipment could be
undersized, resulting in lower grid security. The differences
between the density distributions for Fig. 8 are summarized in
Table II. Based on the distance metrics values, the multivari-
ate elliptical copula models RLPs accurately, outperforming
the GMM by one order of magnitude.

The simulated profiles for the weekdays in June are dis-
played in Figs. 9. (A) and (B) show that the conditional
elliptical copula generates profiles that keep household con-
sumption behavior volatility. The conditional GMM is more
conservative, underestimating the high power consumption
spikes, as discussed in Fig. 8. Subplots (C) and (D) of Fig. 9
show a heatmap of Kendall’s correlation matrix of both mod-
els’ simulated profiles. The heatmaps should be similar to
the original shown in Fig. 3 (D), similar structure means that
models can capture the correlation between time steps in the
generated profiles. The correlation matrix of the conditional

Fig. 10. Averaged daily autocorrelation plots for the aggregated case (A),
and the individual case (B) for one year of data.

elliptical copula shows similarity to the correlation matrix of
the original dataset, with a mean difference of 4%. In contrast,
the conditional GMM has a poor structure and a maximum
difference of 60%.

It is also important to note that a comparable correlation
matrix does not necessarily imply a similar probability dis-
tribution for each time step transitions. A two-dimensional
Wasserstein distance is computed to quantify the similarity of
the probability distributions of time step transitions between
the original and simulated datasets. The tests were carried out,
showing the results as a heatmap in the subplots (E) and (F) in
Fig. 9. The color bar scales for the WD heatmaps show that the
conditional elliptical copula is almost one order of magnitude
smaller than the conditional GMM. The largest WD values
are 0.074 and 0.688 for the conditional elliptical copula and
conditional GMM, respectively. The WD heatmaps highlight
one example of active power transition between 19:00 and
19:15, for the original dataset (G), simulated by conditional
copula (H) and conditional GMM (I). In (H) and (I), in the
upper right corner is shown the WD metric for the specific
time step transition on the heatmap. The conditional elliptical
copula can simulate the consumptions seen in the tails of the
original dataset, e.g., consumptions above 4 kW, which agree
with the findings from Fig. 8.

The daily consumption profile is a time series that can be
characterized by an autocorrelation plot. Figure 10 shows the
autocorrelation signals’ averaged value for the weekdays in
June between all the houses in the NL dataset for the original
and simulated RLPs. The autocorrelation plot shows how is
the dependency structure of consumption between the current
and past demand values. The plot indicates that the past 20 and
10 times steps are the most significant values for the aggre-
gated and individual cases, respectively. It is also shown that
all the simulated values, e.g., the 96-time step vector sampled
from the probability models, of the simulated RLPs from the
conditional elliptical copula models have the same time series
structure of the original profiles for the aggregated and indi-
vidual cases. The root mean squared error (RMSE) is used to
quantify the similarity of the simulated RLPs and the original
datasets. The RMSE values in Table II show that the condi-
tional copulas have an average error of only 3.1%, and the
GMM models are 5.6%, meaning that the proposed model
almost halved the error.

C. Modeling at Different Time Resolutions

Smart meters deployed in field can gather data at differ-
ent temporal resolutions, e.g., 15, 30, and 60 minutes. For
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Fig. 11. Probability distribution comparison between original dataset and
simulated power profiles with Cond. Copula and Cond. GMM, for profiles
with different time resolutions.

the second case of study, this subsection analyses the model
performance at different time resolutions using the NL and
USA datasets. Both datasets originally consists of energy data
(Wh) at 15 min resolution. An down-sampled for 30 and
60 minutes is done, using a sum of the active power of
the corresponding time intervals and then converted to power
units (kW).

Figure 11 shows the active power consumption in June for
both datasets at different time resolutions. The conditional
elliptical copula shows a consistent small ED across time res-
olutions. The conditional GMM shows an improvement when
the resolution is decreasing, reducing the ED by 70%. Two
observations are noticed at lower resolutions: The volatility of
power peaks is reduced (lower probability distribution tails),
and the median of consumption is shifted to higher values. The
conditional GMM has an improvement when the load profile
is less uncertain. This can also be seen in Fig. 12, subplots (A)
and (B), on which the first and third quantiles of the boxplot
for all the models have similar values at 60 minutes resolution.
Nevertheless, the conditional elliptical copula shows a consis-
tent good behavior on modeling the high consumption peaks
for all time resolutions.

Simulated profiles with the proposed conditioned multi-
variate elliptical copula at higher resolutions, e.g., 1 and
5-minutes, showed an accuracy decay. At higher data
frequencies, an actual RLP shows a “squared-wave” time-
series profiles [14] since the use of home appliances is more
evident, i.e., it is visible with the devices on/off switching.
Additionally, at higher time resolutions, the time of use of
the home appliances becomes an important variable. Bottom-
up modeling approaches, discussed in Section I, can capture
such dynamic behaviors of the household profile for relevant
demand-response applications.

D. Modeling Different Smart Meter Datasets

The third case of study is analyzed in this subsection, where
the effectiveness of the model is quantified for different con-
sumption habits across countries. Fig. 13 from rows (1) to (4)
in column (A) shows the difference in profiles for one day in

Fig. 12. Box plot comparison between original datasets and simulated active
power consumption for different datasets and time resolutions, for the smart
meter readings in Fig. 13.

June for the smart meter measurements in Table I. The USA
dataset has households with the highest energy consumption
per year and has the most evident pattern showing a peak con-
sumption around 6:00 p.m. More volatile patterns are seen in
the AUS readings, with higher power values than the NL and
U.K., which can be observed in Fig. 12. It should be noted
that these high consumption peaks are explained because of
the winter season (in June) in AUS.

All profiles have a different correlation dependency struc-
ture, as shown in Fig. 13 from rows (5) to (8) in column (A).
The profile simulations and the correlation matrices can be
seen in columns (B), (D), (E), and (F). For all datasets, the
MVT copula is selected by Algorithm 1 as the best model.
In general, the conditional elliptical copulas closely replicates
the correlation structure with a mean error over all correlation
matrices of 6.8%, while the conditional GMM has 10.9%. For
the same month, the profiles are down-sampled to 60 minutes
resolution, using the same procedure as in Section III-C, and
the results are shown in the columns (D) to (F) in the same
Fig. 13. The up-sampling has a smoothing effect on the corre-
lation heatmaps and reduces the volatility of the load profiles.
The underestimation of peaks from the conditional GMM can
be seen in the simulation profiles of U.K., i.e., subplots (3C)
and (3F), in which power values above 2 kW are rarely seen.
All probability distance metrics are summarized in Table III,
which shows that both models perform better at a lower res-
olution. Nevertheless, the conditional copula keeps the best
scores by one order of magnitude for all the datasets at dif-
ferent resolutions. Finally, Fig. 12 shows that the conditional
elliptical copulas models can simulate all the range of power
peaks for all 60-minutes resolution cases.

E. Modeling Including Weather Variables

The previous subsections focused on the modeling of the
residential profiles conditioned to specific annual energy con-
sumption. Load consumption profiles’ changes due to weather
factors such as temperature and irradiance, were implicit in the
modeling when the datasets were split into 24 disjoint groups.
This was done to cope with the seasonal changes during a
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Fig. 13. Simulation results for the smart meter datasets of Table I. Columns (A) and (D) show the original load profiles from one day in June at 30 and 60
minutes resolution. Thick black lines show the median RLP for each dataset. Simulations from the conditional elliptical copula models are shown in columns
(B) and (E). Simulations form cond. GMM are in columns (C) and (F). The heat maps of the correlation matrix from (1) to (5) show correlation structures,
meaning different consumption profiles patterns from each dataset.

year. This subsection extends the model in (1) to consider the
weather variables into one explicitly joined dataset modeling.
To accomplish this, the multivariate copula modeling now
includes the continuous random variables irradiance, Q ∈ R

r,
and temperature, O ∈ R

s, with random realizations q and o:

F(x1, . . . , xT , w, q1, . . . , qr, o1, . . . , os), (17)

where r and s represent the index of the time step discretization
of the irradiance and temperature profiles, respectively. e.g.,

for 1-hour resolution of temperature data s = 24. The dataset
in (3), used to compute the extended model in (17) with
Algorithm (1), is also extended to consider meteorologi-
cal measurements, which were collected at the same time
as the active power consumption measurements. Thus, the
model (17) is then conditioned using Algorithm 2, based on
the energy, temperature, and irradiance variables, such as

F
(
x1, . . . , xT , |W = ŵ, Q = q̂, O = ô

)
, (18)
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Fig. 14. Summary of the analysis of the aggregated and individual daily profiles changes seen in (A) and (F), considering different factors such as: Winter
and summer seasons (B) and (G), high and low annual energy consumption (C) and (D), temperature change during peak hours, i.e., 16:00 - 19:00, (D) and
(I), and active power change due to irradiance during sunlight ours (8:00 - 18:00) for meters with and without PV installations (E) and (J). The datasets
correspond for loading profiles from January until July. The red dashed lines in all subplots are the quantiles’ results from the simulations from the conditional
elliptical model that considers weather variables as shown in (17).

TABLE III
PROBABILITY DISTANCE METRICS FOR ALL DATASETS

where q̂ = (q̂1, . . . , q̂r) is the daily profile of irradiance, and
ô = (ô1, . . . , ôs) is a daily profile of temperature. To validate
this extended model, an original dataset is used consisting
of active power readings of 97 distribution transformers, 71
smart meters (both at 15-minute resolution), and meteorolog-
ical measurements (at 1-hour resolution) for one year. The
number of solar irradiance variables was reduced to those time
steps with significant sunlight (8:00 - 18:00). Therefore, the
number of dimensions for irradiance variables is s = 10. Thus,
the models in (17) and (18) have a total of 131 variables.

Figure 14 summarizes the conditioned copula model’s sim-
ulation results, compared to the original dataset, for multiple
scenarios using the bootstrapping method. Due to the model’s
high dimensionality and heterogeneity of the dataset, the
conditional GMM could not be computed for this case. In
Fig. 14, the meter readings on (A) and (D) have combined
measurements of service areas (aggregated level) and house-
holds (individual level) with and without PV installations. The
different profiles could have different correlations with the irra-
diance variable, e.g., in sunlight hours, reverse power flow
may exist into the grid, visible as a duck curve in the profile.

Figure 14(B) and (G) segregates the profiles based on sea-
sons for winter and summer. The differences over the median
between seasons are highlighted in grey. These differences
are assumed to be mainly caused by temperature changes and
global irradiance profiles between both seasons. A significant
difference is seen in the peak hours for the aggregate and indi-
vidual cases, while the consumption remains nearly the same
in the nighttime. This means that changes in weather condi-
tions do not equally change the load profile in a linear way for
all the time steps in the daily profile. For the aggregated case,
the sunlight hours also significantly differ in the medians due
to the transformers with high PV penetration. The maximum
error between the medians of the simulated profiles and the
original dataset is 4%.

The subplots (C) and (H) on Fig. 14 also highlight in grey
the median differences between measurements coming from
service areas and households with high and low annual energy
consumption. It is clear from these subplots that the annual
energy consumption (w) plays a notable role in changing the
loading profiles, affecting all time steps during the day, com-
pared to the seasonal factor. In order to further analyze the
impact of temperature in the load profiles, subplots (D) and (I)
show the active power consumption from peak hours (16:00 to
19:00) versus temperature, which are the most affected hours
according to subplots (B) and (G). The power consumption
is inversely proportional to the temperature until a minimum
point, depicted by an orange circle in subplots (D) and (I),
in which the power consumption starts to be directly propor-
tional. This behavior could be attributed to installed cooling
systems, on which the minimum point could be the average
of the cooling devices’ temperature setpoints.

The simulated power at higher temperatures starts to diverge
(dashed red line on subplots (D) and (I)). The divergence
is explained by the fact that there is a bimodal behavior in
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Fig. 15. Simulations of the weather variables from model (17) (top
row). Active power simulation results from the conditioned elliptical cop-
ula model in (18), for a day in winter and summer at two different annual
energy consumption values, for the aggregated and individual case (mid and
bottom row).

the correlation between the two marginals, e.g., at 18:00, the
power could have the same power consumption based on two
completely different temperatures. One mode is negative, and
the other is positively correlated. This means that for high
temperatures, e.g., heat waves, a single conditional elliptical
copula could underestimate the power consumption, limiting
the simulated scenarios under those circumstances. The con-
ditioned elliptical copula model has an error of 5% between
the medians of the original and simulated profiles for the
temperature analysis.

The changes in power due to the global irradiance are shown
in subplots (E) and (J) for the serviced areas/households with
and without PV installations. The simulation has a maximum
error of 7% of the aggregated case with no PV subplot (E).
The simulations from the model diverge at high irradiance due
to the same reason of the temperature analysis. Irradiance and
temperature are highly correlated, e.g., on Fig. 15, conditioned
weather column. Meaning that the temperatures are also high
at higher irradiance values, on which the cooling systems start
to work, and consumption climbs up; this creates a slight diver-
gence at the end between the original and simulated medians.
The effect of bimodality is reduced by the active power mea-
surements affected by the PV installations. Higher irradiance
values mean higher PV energy production, which lowers the
active power consumption from the grid. The model over the
data with PV installations has a maximum error of 1.1%.

Figure 15 shows the simulation results for a year of the
weather variables from the generative model in (17), on which
the 0.05, 0.5, and 0.95 percentiles are overlayed between
the original and simulated profiles. The maximum difference
on the median is about 1.5% for temperature and 2.3% for
irradiance. The mid and bottom row on Fig. 15 shows 300
scenarios for active power consumption with the conditioned
model in (18) for one a sunny in summer (high irradiance)
and one day in winter (low temperature), for the cases of a
household/serviced area with high and low energy consump-
tion. In the aggregated case, it is observed the increase of
consumption at lower temperatures and the decrease of the
duck curve during the sunlight hours when the irradiance is
low. In the individual case, the low annual energy consump-
tion household with PV installation shows a higher generation
in sunlight hours in summer than winter. In the case of the
high annual energy household, the median of the consump-
tion increases due to the lower temperatures. The simulation
examples show that the conditional elliptical copula model can
generate profiles consistent with multiple weather conditions.

It should be emphasized that the model in (17) could have
both weather profiles at different time resolutions. Suppose
the weather variables are increased due to a higher sam-
pling resolution, e.g., 15-min resolution. In that case, the
model’s dimensionality increases, which can cause an ill-
conditioned covariance matrix �̂. A numerical approximation
for the nearest correlation matrix can be used to overcome the
problem [55] but could potentially decrease the accuracy of
the conditional elliptical copula modeling.

IV. CONCLUSION

In this paper, a new top-down approach based on multivari-
ate elliptical copulas was presented. The proposed approach
builds a probabilistic model that is able to capture the statisti-
cal properties of any smart meter measurement data set. The
model is used to simulate RLPs specifying different annual
energy consumptions and different daily weather conditions
of temperature and solar irradiance.

Different from conventional top-down approaches based
in Markov models, the proposed model does not require
active power consumption discretization for each time step.
Additionally, a benchmark against a GMM for two cases:
aggregated and individual consumption, was also presented.
Results showed that the GMM had a fair representation of
the true probability distribution of the smart meter dataset at
the aggregated level. However, the heteroskedastic dependency
structure seen for individual RLP makes the GMM technique
less flexible for modeling individual households. Due to this,
the multivariate elliptical copula outperforms the GMM in one
order of magnitude in the Energy and Kolgomorov-Smirnov
distance metrics, and also was found to be 1.8 times better
on the RMSE metrics for the autocorrelation plots. On the
aggregated case, special preference was seen for the condi-
tional MVG copulas, different from the individual case that
the conditional MVT copula models had better fit. Five dif-
ferent smart meter datasets at different time resolutions had
been tested, showing the general application of the presented
algorithms. Finally, the proposed model is fully flexible in
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order to capture and simulate the complex correlations and
changes caused by temperature and irradiance fluctuations to
the daily profiles’ time steps.

APPENDIX

The conditioned elliptical distributions functions are defined
using the following notation:

X =
(

X1
X2

)
, μ =

(
μ1
μ2

)
, � =

(
�11 �12
�21 �22

)
, (19)

where {X,μ} ∈ R
d1+d2 for d1 + d2 = d, and block matrices

�11 ∈ R
d1×d1 , �22 ∈ R

d2×d2 , �12 = �
ᵀ
21 ∈ R

d1×d2 .
An elliptical density distribution function f e(·, θ), named

MVT distribution or MVG distribution, conditioned as X1
given X2 = x2 is another elliptical distribution f e( · ; θ1|2),
defining θ1|2 = (μ1|2 , �2|1) for the MVG distribution and
θ1|2 = (μ1|2 , �2|1, ν1|2) for the MVT distribution. The
conditional mean vector and covariance matrix are

μ1|2 = μ1 − �12�
−1
22 (x2 − μ2)

�1|2 = �11 − �12�
−1
22 �21. (20)

For the conditional MVT distribution, the conditioned mean
μ1|2 is the same as the MVG distribution. The conditioned
scale and degrees of freedom for the MVT are given by

�1|2 = ν + (x2 − μ2)
T �−1

22 (x2 − μ2)

ν + d1

(
�11 − �12�

−1
22 �21

)

ν1|2 = ν + d1. (21)
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