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Abstract—The likelihood of an unintentional power system
islanding is increased in systems with significant penetration
of distributed generation. To mitigate the adverse effects of
islanding, a quick and reliable islanding detection method is
needed. This paper first analyzes covariance matrices of a
linearized power system model, and relates them to the prin-
cipal component analysis of experimentally obtained covariance
matrices. Additionally, a new model-independent islanding detec-
tion method is proposed that uses measurements of voltage
angle differences between multiple locations in the system. The
angle differences are first preprocessed to remove the effects
of nonstationarity. Thereafter, a probabilistic model of principal
component analysis is trained using the acquired measurements.
The principal and residual spaces extracted from the measure-
ments are used to discriminate between islanding and other
events in the system. The applicability of the proposed method is
demonstrated by using real measurements gathered from several
locations in a transmission grid.

Index Terms—Bayes methods, covariance matrices, islanding,
phase angle differences, principal component analysis, wide area
monitoring.

I. INTRODUCTION

SUSTAINABLE production of electrical energy is one
of the cornerstones of many countries’ environmental

agendas. For instance, the European Union (EU) has put
forward its 2020 strategy that aims to increase the share of
renewable energy sources in Europe to 20% by the year 2020.
Eurostat reports that the EU is on track to reach the goals
of the strategy with some member countries surpassing their
respective goals [1]. In particular, Sweden generated 54% of
its electric energy in 2017 from renewable energy sources.
The environmental targets, in addition to the technological
advancements and economic opportunities, have facilitated the
integration of renewable distributed generation (DG) in electric
power systems [2].

However, significant penetration levels of DG can introduce
technical challenges for the system operators which, if not
appropriately addressed, impact the safe and stable operation
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of power systems [3]. For example, DG can increase the like-
lihood of sustained islanded operation of a power system. A
power system island is created when an area of a power system
is electrically disconnected from the rest of the system, yet
it continues to be energized by local energy sources. If an
islanding event remains undetected, it can endanger line work-
ers, impair the effectiveness of voltage and frequency controls,
cause out-of-step reclosing when automatic reclosers operate
and reduce power quality [4]. Therefore, it is important to
quickly and reliably detect an islanding event to be able to
take appropriate corrective actions such as disconnecting DG
units in the island or, alternatively, ensure a safe transition
to an islanded mode of operation. A recent event in Great
Britain’s power system exemplifies the importance of reliable
islanding detection schemes in systems containing distributed
generation. A lightning strike triggered a sequence of events
leading to a loss of power supply to approximately 1 million
customers [5]. One of the events which contributed to the loss
of supply was the operation of islanding protection schemes
installed at distributed generators, namely vector shift and rate
of change of frequency (ROCOF) protection.

Literature proposes various islanding detection methods [6].
Generally, the methods can be broadly classified into local
and remote. Local methods base their operating principle on
a locally observed system’s response to either intentionally or
unintentionally introduced system perturbations. On the other
hand, the advent of wide-area monitoring systems (WAMSs)
has enabled the development of remote islanding detection
methods that rely on the availability of time-synchronized
measurements from phasor measurement units (PMUs) at dif-
ferent locations in the network. It is generally expected that
the PMU measurements from remote locations can make
islanding detection more robust. Moreover, the report in [7]
states that the synchrophasor-based islanding detection can
provide information to the operators which are not avail-
able from SCADA systems, it can aid decision making and
assist with resynchronization and monitoring of the electrical
island. Examples of such methods are based on comparison of
ROCOF [8], accumulated phase angle drift [9], frequency or
angle difference [10] and slip frequency and acceleration [11].
However, all of the aforementioned methods depend on thresh-
old settings which are hard to optimize for timely and reliable
islanding detection.

An alternative to setting hard thresholds can be found in the
analysis of information useful for islanding detection extracted
from historical PMU measurements. The abundance of mea-
sured data produced by the WAMSs has facilitated research
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in data-driven applications for power systems [12]. The cen-
tral data analysis tool of this paper is principal component
analysis (PCA). PCA is a dimensionality reduction technique
introduced nearly a century ago [13]. It is well known within
various application areas such as face recognition, process
monitoring, and data compression. Dimensionality reduction
has also been exploited in power system applications. For
example, the authors of [14] provide a linear system analysis
view on measurement analysis by using PCA and demon-
strate its applicability for online event detection, although the
proposed approach does not provide information on which spe-
cific event occurred. Similarly, PCA along with the k-Nearest
Neighbor algorithm has been used for detection and localiza-
tion of power system events in real-time [15]. In [16], the
authors propose to identify events based on a comparison of
the data subspace of a current event obtained from PCA to
the elements of a dictionary of subspaces corresponding to
known past events. Other applications of PCA include voltage
stability assessment [17], methods for alleviating the bad data
problem [18]–[20], PMU data compression [21] and coherency
identification [22].

Specifically for islanding detection, PCA and PMU mea-
surements of frequency have been utilized in [23]. The authors
of [23] show that PMU measurements of frequency during
normal operation are centered around a mean point at the nom-
inal frequency and they assume that no significant deviations
of frequency can occur between two points of measurements
during non-islanding events. They also show that statistical
limits for frequency deviations can be obtained using PCA and
measurements collected during normal operation. If frequency
measurements start to deviate from each other and surpass
the statistical limit, the proposed method concludes that an
islanding event occurred.

To address the time-varying nature of power systems and
lower the number of false alarms, the work in [24] proposes
an improvement of the aforementioned method by recursive
updates of the correlation matrix used by PCA. Furthermore,
since frequency differences can be small in cases of bal-
anced islanded systems, frequency-based methods suffer from
a non-detection zone (NDZ). To reduce the NDZ, the same
group of authors in [25] propose a refined method involv-
ing a moving window kernel PCA (KPCA) that models the
behavior of nonstationary signals of voltage angle differences.
The voltage angle differences are mapped to a higher dimen-
sional space where a PCA is again applied to detect islanding.
This approach requires a pre-defined kernel (a mapping func-
tion) that removes the physical interpretability of PCA. The
method is computationally expensive since the KPCA model
needs to be updated with each newly reported measurement.
Similarly to the moving window approach of [25], the nonsta-
tionarity issue of angle differences was addressed by iteratively
updating the probabilistic PCA model of angle differences
in [26].

A. Scope and Contributions

The contributions of this paper are the following. First, the
paper derives the covariance matrices of a linearized power

system model subject to random load variations and relates
those to the system’s controllability Gramian. It also claims
that an islanding event can be characterized as a departure
of the measured voltage angle differences from the princi-
pal subspace obtained from historical PMU measurements
using PCA.

The presented derivation of the covariance matrices is valid
only for stationary signals in the proximity of an equilibrium.
The PMU measurements of angle differences are typically
not stationary in their means, and thus we propose to prepro-
cess the angle differences by using a high-pass finite impulse
response (FIR) filter prior to building the PCA model of
the measurements. Filtering data in such a way removes the
long term dynamics observed in the angle differences which
makes them stationary during normal operation. It is also
demonstrated that the filtered measurements follow a normal
distribution which makes inference using newly reported PMU
measurements possible.

Finally, based on the first two contributions, an islanding
detection method independent of the power system model is
proposed that is based on the application of a probabilistic
approach to PCA. The detection method uses a machine learn-
ing algorithm and historical measurements of voltage angles to
extract the principal subspace of the data which is later used in
real-time to detect islanding. The learning algorithm requires
no human interaction nor knowledge of the system states and
topology. The performance of the method is demonstrated
using PMU measurements taken from a European transmission
system.

II. PCA AND COVARIANCE MATRICES

Consider a bulk power system with PMUs installed at a
subset of the buses in a network. This section discusses the
possibility of detecting an islanding event based on the PCA
of measurements of voltage angle differences in a such PMU-
equipped system. First, however, PCA as a mathematical tool
for data analysis is introduced.

A. PCA—Classical Interpretation

PCA can be interpreted as a transformation of originally
correlated set of variables into a new set of uncorrelated vari-
ables (principal component scores). In essence, PCA does that
by extracting the directions of the highest variance observed
in the data.

Consider a matrix of N multivariate observations, Y ∈
R

N×m. Each row vector y[k] ∈ R
m×1 in this matrix corre-

sponds to one observation at time t = k/fr and fr is the
sampling rate. In the case of PMU measurements in power
system applications, fr corresponds to PMU reporting rate.
Singular value decomposition (SVD) allows one to express
the data matrix as:

Y = USVT , (1)

where S is a diagonal matrix of decreasingly ordered singular
values, and the columns of the matrices U and V are left and
right singular vectors of Y , respectively. A covariance matrix
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of the measurements, assuming that the measurements are zero
mean, can then be expressed as:

�y = 1

N − 1
YTY = 1

N − 1
VS2VT , (2)

since UTU = I. The matrix V is now treated as the matrix of
eigenvectors of �y. Graphically, �y can be depicted by form-
ing an m-dimensional ellipsoid that encircles the data using the
eigenvectors in V scaled by the eigenvalues in S as the semi-
axes of the ellipsoid. These semi-axes indicate the directions
in the space where the data has the highest variance. We refer
to the space spanned by the direction of the highest variance
as the principal subspace.

Typically, most of the data’s variance can be captured by
retaining only the directions of the highest variance, i.e., it
is considered that the data lies on a low-dimensional mani-
fold where the most information is contained. Following this
principle, the data matrix can be decomposed as follows:

Y = UrSr
︸︷︷︸

T

VT
r + E, (3)

where the subscripts denote that only r < m columns were
retained from the original matrices. The matrix E contains
errors caused by the truncation and T is the truncated matrix
of principal component scores.

B. Covariance Matrices of a State Space Model

Dynamics of a multi-machine power system can be repre-
sented by a set of nonlinear differential-algebraic equations
(DAEs) of the following form:

ẋ(t) = f (x(t), z(t)), (4a)

0 = g(x(t), z(t)). (4b)

DAEs in (4) can be linearized around an equilibrium to obtain
the following linear DAEs

�ẋ(t) = fx�x(t)+ fh�z(t), (5a)

0 = gx�x(t)+ gz�z(t)+ gu�pL(t), (5b)

where fx, fh, gx, and gz are the corresponding Jacobian matri-
ces. An additional term gu�pL(t) was added to the algebraic
set of equations in order to be able to analyze the impact of
random load variations on the system dynamics. The algebraic
variables in (5) can be eliminated by Kron reduction which
results in the following continuous linear time-invariant (LTI)
model:

�ẋ(t) = Ac�x(t)+ Bc�pL(t), (6a)

�y(t) = Cc�x(t), (6b)

where Ac, Bc, and Cc are the matrices of the state space model.
The state space model in (6) can be discretized which yields
the following discrete LTI system:

�x[k + 1] = A�x[k] + B�pL[k], (7a)

�y[k] = C�x[k] + v[k], (7b)

where A, B, and C are the discrete versions of matrices
Ac, Bc, and Cc, respectively. We assume that the vector of

random load variations is normally distributed according to
�pL[k] ∼ N (0, �u). A random variable is included in the
output equation in (7b) to model measurement noise which
we assume to be normally distributed, i.e., v[k] ∼ N (0, �v).
Furthermore, it is assumed that the random variables x[k],
�pL[k] and v[k] are independent.

Now, we are interested in properties of the covariance matrix
of the measurements �y. First, the steady-state covariance
matrix of state variables �x can be obtained from the following
discrete Lyapunov equation:

�x = E
[

�x[k + 1]�x[k + 1]T]

(8a)

= A�xAT + B�uBT , (8b)

where E [• ] is the expectation operator. Then, the steady-state
covariance matrix of the measurements is obtained from:

�y = E
[

�x[k]�x[k]T] + E
[

v[k]v[k]T]

(9a)

= C E
[

�x[k − 1]�x[k − 1]T]

CT +�v (9b)

= C�xCT +�v. (9c)

It is apparent from (8b) and (9c) that any change in the model
will cause a change in the covariance matrix �x and in �y.
However, it is necessary to identify a change in the covariance
matrix which can be related only to islanding detection and
not other system events.

It can be observed that, by setting �u to be an iden-
tity matrix, the solution of (8b) yields the controllability
Gramian of the system. The decreasingly ordered eigenvalues
of the controllability Gramian and the associated eigenvectors
describe the directions in the space of the system’s states where
the system is most controllable which is then by extension also
reflected by �x and �y. This property of the controllability
Gramian is utilized, for instance, in the field of model order
reduction as shown in [27] where PCA is used to define the
most controllable subspaces of the state space.

Power system models exhibit the property of high correla-
tions between the measurements of the system’s frequencies.
Furthermore, the controllability Gramian similarly shows that
it is not “easy” to control the generator’s speeds in all direc-
tions of the space by using �pL as an input, i.e., the frequency
tends to be equal in all parts of the system. This property of
the Gramian and �y, although not stated explicitly, was used
for islanding detection in [23]. A similar phenomenon can be
observed in the case of voltage angle differences. There are
principal directions of movements of the voltage angle differ-
ences and thus the deviation of the angle differences from the
dominant directions can signify islanding. It will be shown in
Section V that this is indeed the case. However, conversely to
the case of frequency measurements, there might exist more
than one principal direction of angle differences.

C. Gaussian Characteristics of Angle Differences

One of the premises for successful inference by using PCA
of PMU measurements is that the measurements are nor-
mally distributed. It was shown in [23] that the histograms
of frequency measurements follow the Gaussian distribution,
while that was not the case for the measurements of the phase
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Fig. 1. The effect of FIR filtering of the angle differences.

Fig. 2. Histograms of preprocessed voltage angle differences.

angle differences. We claim that the non-Gaussian probability
distribution of voltage angle differences arises due to the
nonstationary behavior of random loads in the system, i.e., that
the random load is comprised of slowly varying equilibrium
changes and high frequency Gaussian fluctuations. We also
claim that, if the angle differences are detrended, they do
indeed follow a Gaussian distribution.

To support the aforementioned claims, real PMU measure-
ments of voltage angle difference between two buses in a
system were analyzed over three different periods of time.
The measurements were preprocessed by a high-pass FIR filter
with a cut-off frequency at 0.1Hz. The length of each con-
sidered period corresponds to the time of 400s. A raw and
a filtered signal of one of the periods are shown in Fig. 1.
Histograms and the fitted pdfs for the measurements in each
of the periods are shown in Fig. 2. It can be observed that, if
the slow dynamics contained in the measurement signals are
removed, the filtered measurements do obey Gaussian distri-
bution. Therefore, as it will be shown in Section V, PCA can
be used to perform statistical inference on the newly reported
PMU measurements.

III. PROBABILISTIC PCA

A manual selection of r in (3), i.e., the number of prin-
cipal directions of data, can be challenging when there are
no clear dominant directions of variance as can be the case
with voltage angle differences. For this reason, we propose
to model the PMU measurements of angle differences using
the probabilistic PCA (PPCA) model introduced in [28]. The
probabilistic treatment permits one to automatically determine
the dimensionality of a dataset using the data itself.

Fig. 3. A graphical representation of the probabilistic model of PCA.

A. Model Description

The graphical representation of the relationships between
the random variables of the PPCA model is given in Fig. 3.

Similarly as in the case of classical PCA, y[k] are observa-
tions of an m-dimensional random variable at time k (i.e., a
PMU measurement sample), and t[k] is a q-dimensional latent
(unobserved) random variable, i.e., a principal component
score. PPCA defines the following latent variable model:

y[k] = Wt[k] + μ + ε[k], (10)

where W ∈ R
m×r is a transformation matrix that relates

the two random variables. The m-dimensional vector μ ∼
N (μμ, β−1Im) models a nonzero mean of the measurements
and ε[k] ∼ N (0, τ−1Im) is a noise variable. The latent variable
is also assumed to be Gaussian with the following prior:

p(t[k]) = N (0, Im). (11)

Similarly as in classical PCA, the elements of the principal
component score (the latent variable in case of PPCA) are
assumed to be uncorrelated since the covariance matrix in (11)
is diagonal.

With these definitions, the conditional distribution of the
observed variable can be written as:

p(y[k]|t[k],μ, τ ) = N
(

Wt[k] + μ, τ−1Im

)

. (12)

Applying Bayes’ rule and integrating the observed variable
results in the marginal distribution of the observed variable:

p(y[k]) = N (

μ,�y
)

, (13)

where �y = WWT + τ−1Im. Also, we can obtain the posterior
distribution of the latent and noise variables:

p(t[k]|y[k]) = N
(

M−1WT(y[k] − μ), τ−1M−1
)

, (14)

p(ε[k]|y[k]) = N
((

Im − WM−1WT
)

(y[k] − μ),�ε

)

, (15)

where M = WTW + Ir and �ε = τ−1WM−1WT . It can
be observed here that in contrast to the deterministic PCA,
which deterministically projects the data points into a lower-
dimensional latent and residual spaces, PPCA provides both
the expected value of the projection and its uncertainty.

The automatic determination of dimensionality is achieved
by including a prior distribution over the columns of matrix W:

p(W|α) =
r

∏

i=1

( αi

2π

)

e−0.5αiwT
i wi , (16)
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where wi are the columns of W. The random r-dimensional
Gamma-distributed random variable α = [α1 · · · αr] gov-
erns the norm of the columns of W and, in turn, also the
dimensionality of the principal subspace.

In summary, this subsection presented the assumed prior dis-
tributions for all of the random variables comprising the PPCA
model. These distributions can be used to incorporate known
information prior to the training of the model. Furthermore,
once the PPCA model is trained, it is possible to obtain poste-
rior distributions of the unobserved (latent and noise) variables
given new observations, e.g., PMU measurements in the appli-
cation of islanding detection. These posterior distributions can
then be used to quantify the how well the model fits to the
new measurements.

B. Learning Algorithm

The probabilistic treatment of PCA makes it possible to
apply machine learning algorithms to obtain the model’s
parameters from measurements. Therefore, in this subsection,
we introduce an algorithm for learning the model’s parameters
originally proposed in [29].

Integrations over the distribution of the parameters of the
PPCA model introduced in the previous subsection are ana-
lytically intractable due to the model’s complexity. In order
to circumvent this problem, variational inference methods can
be employed [30]. These methods introduce a new simpli-
fied probability distribution of the unobserved variables (latent
variables and model’s parameters):

q(ψ) = q(T)q(W)q(α)q(μ)q(τ ), (17)

where ψ = {T,W,α,μ, τ } is a set of model’s parameters and
X is a matrix of latent variables. The factorized distribution
q(ψ) serves as an approximation of the true posterior distribu-
tion, which simplifies the estimation of parameters described
later in (19). Nonetheless, the distribution q can be chosen
to be sufficiently close to the original one as shown in [29].
Using q(ψ), the log marginal likelihood can be expanded as:

ln p(Y) = ln
∫

p(Y, ψ)dψ = ln
∫

q(ψ)
p(Y, ψ)

q(ψ)
dψ (18a)

≥
∫

q(ψ) ln
p(Y, ψ)

q(ψ)
dψ = L(q). (18b)

The inequality in (18b) defines a lower bound on the log data
likelihood, L(q). Increasing L(q) corresponds to increasing
the fit of the PPCA model to the data. It can be shown that
the lower bound L(q) is maximized by iteratively updating
model’s parameters according to:

ln qi(ψi) = Eψi

[

ln p(Y, ψ)
] + const, (19)

where qi(ψi) are elements of the product in (17). Moreover,
each iteration of (19) strictly increases the lower bound L(q)
which can serve as an indication of convergence.

C. Monitoring Measures

To be able to quantify how well the newly observed
measurements fit the trained PPCA model two monitoring
measures need to be introduced. First, a new measurement

Fig. 4. Proposed islanding detection method.

is projected into the latent and noise variable spaces by taking
the expectations of the distributions in (14) and (15), which
are denoted by E [t[k]] and E [ε[k]], respectively.

The following two squared Mahalanobis distances (SMDs)
are defined:

D(t[k]) = E[t[k]]T E[t[k]], (20)

D(ε[k]) = τ−1 E[ε[k]]T E[ε[k]]. (21)

Using these two distances, one can effectively measure how
closely the newly observed variable obeys the trained PPCA
model in both the latent (principal) and residual space. A prob-
ability distribution of the two measures can be derived and the
confidence limits can be defined as shown in [31]. The sig-
nificance level for calculating the confidence limits for the
distances is set to 99.9% in this paper.

IV. PROPOSED ISLANDING DETECTION METHOD

By utilizing the concept of principal directions of volt-
age angle differences discussed in Section II and the PPCA
model presented in Section III that can be used to identify
these principal directions, this section proposes a new island-
ing detection method. We claim that the proposed method is
able to distinguish between islanding and other types of events,
and, thereby, addresses the potential weaknesses of methods
in [23] and [25].

The flowchart of the islanding detection method is shown
in Fig. 4. It consists of a learning (offline) phase and an
online phase. In the learning phase, historical PMU measure-
ments of voltage angles are first unwrapped and the angle
differences are calculated with respect to a selected refer-
ence angle. Before proceeding, such angle differences are
filtered to remove the effects of nonstationarity discussed
in Section II-C. These preprocessed measurements are then
used to train the PPCA model using the learning algorithm
presented in Section III-B. Once the PPCA model is trained,
it is ready to be used in the online phase. The training of
the model can continue in parallel with the online operation,
and the online phase can be updated, for instance at regular
intervals, with the results from the offline phase.

In the online phase, PMU measurements are sequen-
tially processed. First, the voltage angle measurements are
unwrapped, which can be done as proposed in [32], and the
angle differences are calculated. These differences also need
to be detrended to be able to use the trained PPCA model. The
detrended data is then used to estimate the means of the latent
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Fig. 5. Overview of the PMU locations in the power system.

and residual variables using (14) and (15). Finally, SMD of the
residual variable, computed using (21), can be compared with
the confidence limit. If the distance is above the limit, it is
concluded that angle differences have departed from the prin-
cipal subspace and an islanding event has happened. Similarly,
the SMD of the latent variable from (20) can be used to detect
other nonislanding types of events.

A. Signal Filtering

As mentioned, angle differences are filtered in both the
learning and the online phase. In the learning phase, the sig-
nals are filtered using a finite impulse response (FIR) high-pass
filter with a cut-off frequency at 0.1Hz. This filter is of lin-
ear phase which ensures that the filtered angle differences are
not distorted. Since the filtering delay in the learning phase
does not degrade the method’s performance, filter’s order was
selected to be 2129 resulting in a group delay of 21.28s.

The high-pass filter from the learning phase cannot be used
in the online phase due to this large group delay. Therefore, in
the online phase the signals are instead detrended by subtract-
ing a moving average from the signal. The moving average
is computed over a window of 500 samples of angle differ-
ences which corresponds to a group delay of 4.98s. It should
be noted that the length of the moving average filter might
imply a nonnegligible filtering delay. However, since the sub-
traction of the moving average does not affect high frequencies
notably, these are reflected in the output with essentially no
delay.

V. CASE STUDIES

This section demonstrates the performance of the proposed
islanding detection method by applying it to real PMU
measurements taken from a European transmission system
which were reported at a rate of 50 samples per second. The
abstracted diagram in Fig. 5 shows the locations of the PMUs
in the system. The reference location with respect to which the
positive-sequence angle differences were computed was taken
to be at PMU #4.

The following subsection presents results from the learning
phase of the method followed by the results of the method’s
performance during two events, namely, frequency oscilla-
tions and islanding. Additionally, the results of the methods
proposed in [23] and [24], respectively referred to as PCA and
recursive PCA (RPCA), are shown for the same two events.

A. Model Learning

The historical data which was used in the learning
phase of the case study is comprised of N = 177964

Fig. 6. Convergence of the learning phase reflected in the monotonic increase
of the lower bound and the histogram of iterations’ execution times.

observations corresponding to 59.3 hours of measurements.
These measurements were taken from time periods spread
over a year and 4 months of system’s normal operation. Given
that each observation is a vector containing angle differences
from d = 4 different locations, the number of processed mea-
surement samples in the learning phase is 533892. Since the
large amount of data can imply a high computational burden
of the learning phase, the case study evaluates not only the
performance of the method but also the feasibility in terms of
computational burden.

As previously mentioned, the convergence of the learning
algorithm can be tracked via the lower bound on the log data
likelihood introduced in (18b), i.e., the training of the model is
interrupted once a sufficiently small change in the lower bound
between two consequtive iterations is observed. Fig. 6(a)
shows the evaluation of the lower bound at each iteration of the
learning algorithm. It can be observed that the bound is mono-
tonically increasing and already past the 50th iteration there is
no large change in the bound which then indicates model con-
vergence. The training was carried out on a PC equipped with
an Intel Core i7-7600U 2.8 GHz CPU and 32 GB of RAM. The
execution of 100 training iterations took 4.01s. Furthermore,
a histogram of execution times of 1000 iterations is shown
in Fig. 6(b). Most of the iterations were executed faster
than 0.06s.

In the following subsections, previously unseen
measurements from two events and the trained model
discussed in this section are utilized to validate the detection
method.

B. Frequency Oscillations

As stated in Section I, an islanding detection method needs
to be stable, i.e., it must not operate for nonislanding events
such as frequency oscillations. Therefore, this event is used in
the case study to illustrate the stability of the proposed detec-
tion method. Fig. 7 shows PMU measurements of frequency at
three different locations in the system, and Fig. 8 shows angle
differences with respect to an angle at one of the locations. For
the sake of figure clarity, the angle differences were centered
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Fig. 7. PMU frequency measurements during an oscillation event.

Fig. 8. PMU measurements of angle differences during an oscillation event.

Fig. 9. Squared Mahalanobis distances of latent and noise variables during
a frequency oscillations event.

by subtracting the measurements at t = 0s from measurements
at other time instants. The measurements were taken during
a period of frequency oscillations that were caused by an
unknown event at approximately t = 1.1s.

The PPCA model, previously trained with historical PMU
measurements of filtered voltage angle differences, was used to
obtain the SMDs of latent and noise variables that are shown
in Fig. 9. As can be seen, the SMD of the latent variable
surpasses the confidence limit at the start of the oscillation
event, while that is not the case for the SMD of the noise
variable. This signifies that an event occurred which caused
the angle differences to behave as modeled by the principal
components of the trained PPCA model. Therefore, the method
is stable during the frequency oscillation event.

Similarly, the T2 and Q scores, i.e., the equivalents to the
SMDs of latend and noise variables respectively, of the PCA
and RPCA methods are shown in Fig. 10 along with their
respective statistical limits. It can be observed that the Q score
of both PCA and RPCA methods surpasses the statistical limit
during the first part of the frequency oscillations which would
result in a false detection of an islanding event.

Fig. 10. PCA and RPCA results during the frequency oscillation event.

Fig. 11. PMU frequency measurements during an islanding event.

Fig. 12. PMU measurements of angle differences during an islanding event.

C. System Islanding

Another case that demonstrates the performance of the
method is an islanding event. Fig. 11 and Fig. 12 show
PMU measurements of frequency and voltage angle differ-
ences, respectively. Again, the angle differences were centered
with respect to the initial value at the start of the observation
period.

At approximately t = 8.4s, an islanding event occurs. Both
the frequency and the angle difference at the islanded, i.e., at
the location of PMU #1 in Fig. 5, start to diverge from the ones
at the other two locations. The same PPCA model as in the
preceding case study was used to obtain the SMDs of the latent
and noise variables shown in Fig. 13. Similarly, the T2 and Q
scores of the PCA and RPCA methods are shown in Fig. 14. It
can be observed that, upon the inception of the islanding event,
both of the monitoring measures of the proposed method start
growing and exceed their respective limits at t = 9.12s, i.e.,
the method operated in 720ms. It can similarly be observed
that the PCA and RPCA methods operate for the islanding
event within 60ms after the islanding event, disregarding the
proposed time delay of 500ms suggested by [23].
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Fig. 13. SMDs of the latent and noise variables during an islanding event.

Fig. 14. PCA and RPCA results during the islanding event.

Fig. 15. PMU frequency measurements during the resynchronization event.

Both SMDs of the proposed method exceed the limits during
approximately 55 minutes after which the island was resyn-
chronized to the rest of the system. Fig. 15 and Fig. 16
show measurements of frequency and centered angle differ-
ences during the resynchronization event which started at
t = 3270.76s. Fig. 17 shows the monitoring measures during
the resynchronization event. The SMD of the noise vari-
able falls below the confidence limit at t = 3271.58s which
indicates detection of the resynchronization in 820ms.

VI. DISCUSSION

The preceding section demonstrated a successful application
of the proposed method for islanding detection. Additionally, it
should be pointed out that the method remained stable during
the frequency oscillation event. Conversely, we demonstrated
that, since the frequency measurements shown in Fig. 7 were
not equal at all three PMU locations, the methods based on

Fig. 16. PMU measurements of angle differences during the resynchroniza-
tion event.

Fig. 17. SMDs of latent and noise variables during the resynchronization
event.

frequency differences, namely those proposed in [24] or [23],
can erroneously classify this event as islanding.

It should also be noted that the proposed method is lim-
ited by the existence of its non-detection zone. The analyzed
islanding event is an example where the generation and load
in the island were not balanced, and consequently, this was
reflected in the apparent divergence of both frequency and
angle differences. Conversely, in a case of a perfect balance in
the island, the divergence would not be as apparent. However,
the high sensitivity of voltage angle differences with respect
to the power imbalance greatly reduces the possibility for an
unsuccessful islanding detection.

Furthermore, care has to be taken when selecting the mea-
surement locations. The proposed method is based on the
existence of the principle subspace in the prefiltered measure-
ments of angle differences. If the locations are chosen in such
a way that they are uncorrelated, e.g., when the covariance
matrix �y is diagonal, the principal subspace would be of an
effective dimensionality equal to m, i.e., the dimension of the
measurements. This would mean that the measurements can
“move” in all directions and that the method would not be
able to discriminate between different types of events in the
system. Therefore, one has to ensure, while selecting the mea-
surement locations, that the angle differences are sufficiently
correlated, which also means that the measurements have to be
sufficiently electrically close. In other words, the more elec-
trically close the measurements are, the better the method will
perform.

Another potential pitfall in the application of the proposed
method is imperfect detrending. While the PPCA model was
trained by using the measurements processed by an FIR filter,
the same filter cannot be applied in real-time due to the fil-
ter delay which is the reason why we resorted to the moving
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average filter. Certainly, the frequency response of the moving
average filter is not as good as the one of the FIR filter. The
poorer performance of the moving average detrending might
jeopardize the stability of the method, however, this was not
observed in the cases studied in the previous section. In rela-
tion to the filtering delay, it should also be noted that the
performance of the proposed method might be affected by
delays introduced by the communication infrastructure.

VII. CONCLUSION

This paper analyzed the covariance matrices of a linearized
power system model and showed that detrending ensures nor-
mality of the voltage angle differences and permits the use of
the proposed inference procedures. Building on this analysis,
a data-driven method for islanding detection using probabilis-
tic PCA of detrended measurements of angle differences was
proposed. The advantage of the method is that, by using only
the measurements of the angle differences, the non-detection
zone is reduced compared to methods based on frequency dif-
ferences. Furthermore, the need for user-defined settings of the
thresholds is removed through the employed machine learning
algorithm. The method was applied to the real historical and
also previously unseen PMU measurements from two differ-
ent events which illustrated that the SMD of the noise variable
can be used for timely and reliable identification of islanding
events and that the SMD of the latent variable indicates the
occurrence of nonislanding events.

It should also be noted that, conversely to other similar
methods which are based on the adaptive (moving window)
PCA models, the proposed method in this paper performs all of
the computationally expensive operations in the offline phase
as shown in the Fig. 4. In the online phase, the method only
performs the computationally inexpensive operations needed
to compute SMDs of the two variables. In other words, the
method is suitable for real-time application.
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