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Abstract—Thermostatically Controlled Loads (TCLs) provide
a source of demand flexibility, and are often considered a
good source for Demand Response (DR) applications. Due to
their heterogeneity, and as such a lack of dynamics models,
Reinforcement Learning (RL) is often used to exploit this flexi-
bility. Unfortunately, RL requires exploratory interaction with
the TCL, resulting in a period of potential discomfort for
the users. We present an approach to reduce this exploratory
time by pre-training the RL-agent. Domain randomization is
used to facilitate knowledge transfer. We evaluate the pre-
training potential in a DR energy arbitrage scenario with an
Electric Water Heater (EWH). Our experiments show that a pri-
ori knowledge about EWH dynamics can be used to initialize
and improve the control policy. In our experiments, pre-training
attributes to 8.8 % additional cost savings, compared to starting
from scratch.

Index Terms—Demand response, electric water heater, rein-
forcement learning, domain randomization.

I. INTRODUCTION

DEMAND response programs aim to exploit consump-
tion flexibility. A common challenge in DR is developing

scalable control algorithms. In the past, residential TCLs were
identified as promising appliances for DR, mainly due to their
inherent flexibility emerging from their decoupled electricity
and heat demand [1]. But, a wide variety of TCLs exist, thus
amplifying the need for scalable control [2].

RL has shown promising results in several different DR
applications. Four examples are considered here. In a first
application, Ruelens et al. [1] illustrate that a RL method
called Fitted Q-Iteration (FQI) reduces the electricity con-
sumption cost of an EWH by 24 %, when charged with
Belgian day-ahead electricity prices. Similar results have been
obtained for space-heating [3], [4]. In a second application,
De Somer et al. [5] use EWH storage and FQI for local
photovoltaic (PV) self-consumption. During their four month
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real-life demonstration with six residential buildings they
observed an increase of 20% in total PV self-consumption. In
a third application, Liu et al. [2] use an aggregation of EWHs
to balance wind power generation. Our fourth and final exam-
ple of DR applications consists of the work of Kazmi et al. [6],
in which the authors employ RL to increase energy efficiency
of EWHs. While maintaining occupant comfort their con-
troller reduced energy consumption for hot water production
by almost 20%.

While all the results mentioned above are promising, they
share the same drawbacks. RL has an unavoidable initial-
ization/learning phase, where the controller inevitably takes
random actions. Ruelens et al. [7] acknowledge this draw-
back and, building upon their earlier work [1], they propose
a policy adjustment method based on expert domain knowl-
edge. Contrary to the approach of using domain knowledge,
Lampe and Riedmiller [8] introduced Model-Assisted Fitted
Q-Iteration (MAFQI). In this method, a model is trained on
observed data and virtual trajectories are added to the training
set, reducing interaction time needed to reach reasonable poli-
cies. The experimental analysis of Costanzo et al. [9] showed
MAFQI can obtain sensible DR policies after 10 days and,
these policies reach a nearly optimal performance after 20
days.

Recent breakthroughs in RL indicate we can avoid learning
a model from observations in case we have prior knowledge
about the system’s dynamics. Tobin et al. [10] showed it is
possible to transfer Neural Networks (NNs) from simulation
(source domain) to practice (target domain). They proposed
domain randomization, i.e., randomize the source domain in
certain parameters. Further research [11] has shown domain
randomization greatly reduces target domain training time and
policies are capable of adapting to unfamiliar target-system
dynamics. It is unclear if these results are applicable to the
DR setting.

A wide variety of EWH buffer models has recently been
presented [12]–[14]. We aim to exploit both the modelling and
RL research. Our objective is two-fold: apply RL for EWH
control and minimize initialization time. Our main contribu-
tion consists of combining the usage of these buffer models
with domain randomization, in order to reduce initialization
time when applying RL in a DR setting. The aim of this
work is thus to verify that the combination of buffer mod-
els, domain randomization and RL is fruitful for DR. As a
first step, both our source and target domain are simulated.
However, as the lab-validated target domain model is more
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TABLE I
BUFFER MODEL PARAMETERS

TABLE II
BUFFER MODEL VARIABLES

elaborate than the source domain model(s), this results in a
clear modelling difference.

In Section II we present the different buffer models used
throughout this article. Section III begins by laying out
the problem formulation and, thereafter, looks at the RL
algorithms. Section IV is concerned with the methodology.
Consequently, in Section V, we present the experiments and
their findings. In Section VI, we conclude this work and
indicate future work directions.

II. ELECTRIC WATER HEATER MODELS

Throughout this work we use three buffer models. We will
start by introducing them and end with using them for cal-
culating water temperature, which clearly shows where each
model resembles or differs from the others.

All three models rely on the heat balance equation. As a
result, they share mostly the same parameters and variables,
summarized in Tables I and II. The buffer has rated power
Pr and tank volume V . While hot water is tapped at the top,
it is replaced by cold water at the bottom, where the heat-
ing element is located. Total boiler capacitance Cboiler equals
V · Cpw, with Cpw the specific heat capacitance of water.

Tap demand ṁw has been obtained from hot water tap pro-
files at a 5 minute resolution [15]. The profile’s daily average
Domestic Hot Water (DHW) consumption equals 189 l/day.
Edwards et al. [15] state it corresponds to an average con-
sumption level of a household mainly demanding hot water in
the evening.

All buffers include a hysteresis controller, which preserves
user comfort and turns the heating element on when water
temperature drops below Tmin and off when it raises above
Tmax. We assume this controller cannot be by-passed. External
control is only possible when the water is in between these
temperature limits. Requested Tasked, inlet Tiw water and
ambient Tamb temperature have been assumed constant.

We assume the buffer’s internal State of Charge (SoC) [14]
can be calculated from the available measurements. The SoC
expresses a measure of the buffer’s energy content, relative
to its minimal and maximal allowed energy stored. Hence,
SoC = 0 occurs when the whole water content is at temper-
ature Tmin and SoC = 1 when it is at Tmax. Water colder than
Tmin is not considered.

A. Uniform Buffer Model

We use the buffer model as presented by Farooq et al. [12].
This model describes the heat balance of a mass of water,
with temperature TL. It models three processes: heat supplied
by the heating element, transfer of heat by the inlet water and
losses to the environment. The model is given by equation (1).

dTL

dt
= 1

Cboiler

(
Q̇heat + ṁwCpw(Tiw − TL)

+ U(As + 2At)(Tamb − TL)
)

(1)

All symbols are defined in Tables I and II. Since the water
content of the buffer has a uniform temperature SoC is defined
as in (2).

SoC = TL − Tmin

Tmax − Tmin
. (2)

B. Two Mass Buffer Model

To take into account thermal stratification we can extend
the previous model with a second water layer [13].
Sinha et al. [13] model 2 separate layers, each with their
own temperature. Th and Tc for top (hot) and bottom (cold)
layer, respectively. The layer temperatures are monotonically
increasing with buffer height, i.e., Tc ≤ Th.

Sinha et al. argue that a thermocline exists inside the buffer,
which limits mixing between top and bottom layer. As a con-
sequence, they assume a hard boundary between both layers.
When both layers reach the same temperature, they merge.
Both layers diverge when hot water is tapped and, therefore,
cold water is added at the bottom. As more cold water is
added, the cold (hot) layer’s volume increases (decreases) and
the boundary between hot and cold layer moves up. We call mc

the cold layer’s mass and Vc the cold layer’s volume. We add
another model variable M indicating if the layers are merged
(M = 1) or not (M = 0). We define the share of cold and hot
water as in (3) and (4), respectively.

Xc = Vc

V
(3)

Xh = V − Vc

V
(4)

Heat balance is defined by (5) and (6), with F = 1 −
(1 − M)(1 − Xc). Thus F = Xc when M = 0 and F = 1
when M = 1.
dTh

dt
= 1

XhCboiler

(
MQ̇heat + MṁwCpw(Tiw − Th)

+ U(AsXh + At + MAt)(Tamb − Th)
)

(5)
dTc

dt
= 1

FCboiler

(
Q̇heat + ṁwCpw(Tiw − Tc)

+ U((1 − M)AsXc + MAs + At + MAt)(Tamb − Tc)
)

(6)
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Fig. 1. Comparison between buffer models.

The cold layer’s mass and the binary variable M are then
determined by (7) and (8), respectively.

mc =
{

0 M = 1 and Q̇heat �= 0∫
ṁwdt Q̇heat = 0

(7)

M =
{

1 Th ≤ Tc or V ≤ Vc

0 otherwise
(8)

Heat balance equations (5) and (6) can more easily be
interpreted by separating them in three.

1) When the layers are merged and no hot water is tapped
both layers have an equal temperature. The model
reduces to the uniform case, i.e., (1) with ṁw = 0.

2) When the layers are merged, hot water is tapped but the
heating element is on, no thermocline is created. Again,
the model reduces to (1), now with Q̇heat �= 0.

3) Otherwise, the temperature of both layers is described
by (5) and (6), with M = 0, F = Xc and mc = ∫

ṁwdt.
Using this model we define the buffer’s SoC as in (9), with
L = {i ∈ {c, h}|Ti ≥ Tmin} and Vi = Xi · V for i ∈ {c, h}.

SoC =
∑

i∈L Vi(Ti − Tmin)

V(Tmax − Tmin)
. (9)

C. Stratified Buffer Model

We can take the idea of modelling separate layers of
water even further. Here, we model N = 50 differ-
ent water layers in the buffer. The stratified buffer model
we use has been presented and validated in the lab by
Vanthournout et al. [14]. This model has been used in DR
research several times [1], [16], [17], and for more details we
refer to Vanthournout et al. [14].

In contrast with the two mass model’s variable layer size,
here each layer has an equal and constant volume V/N.
Furthermore, the temperature Ti of each layer i ∈ {0, . . . , N} is
uniform and monotonically increasing with buffer height (Ti ≤
Ti+1). Vanthournout’s model also considers heat exchange
between layers.

Equation (9) can also be applied to the stratified model’s
SoC [14], with L = {i ∈ {1, . . . , N}|Ti ≥ Tmin} and Vi = V/N
for all i ∈ {1, . . . , N}.

D. Comparison

The three models have been simulated according to the
same pattern, and Fig. 1 shows their Ti and SoC. Fig 1(a)

shows the water temperature of the uniform and stratified
buffer on the left axis. At the start, temperature is 60 ◦C and
the heating element is turned on for 40 minutes. Until hour
7, the buffers are left idle, which shows standing heat losses
to the environment. The next 7 hours hot water is drawn at
2 ml/s. While taking hot water the stratified model’s layers
diverge. This highlights the difference between both models.
When the heating element is turned on again, the stratified
model’s layers heat from bottom to top, since the heat source
is at the bottom of the tank. The right axis depicts SoC of
both models. With no water demand and when all layers of
the stratified model have an approximately equal temperature,
SoC of both models is almost identical. However, when water
is drawn the uniform model’s SoC differs from the stratified
model. This underestimation of SoC occurs since the uniform
model does not capture stratification. While in the stratified
model a large portion of layers is still relatively hot, the uni-
form model assumes the whole buffer’s water temperature
decreases.

This effect is mitigated by modelling a second layer.
Fig. 1(b) shows SoC of the two mass and stratified model
match more closely. In the two mass model, as soon as hot
water is tapped a second layer is created with temperature
Tc = Tiw. Notice that after hour 7, while the cold layer’s
temperature is constant, its volume is increasing, resulting in
SoC decrease. Fig. 2 visualizes the simplification made by
modelling 2 instead of 50 layers. It shows buffer section, i.e.,
temperature in function of height at different times. Comparing
hour 9 and 13 shows the mentioned effect of constant cold
layer temperature but raising thermocline, when hot water is
being tapped. At hour 14 the heating element is turned on,
layers are heated from top to bottom. Due to the two mass
model’s larger share of water at temperature Tiw, this results
in a buffer section as shown in the rightmost graph of Fig. 2
at 14h30.

III. PROBLEM FORMULATION AND ALGORITHMS

Demand response of an EWH gives rise to a Sequential
Decision Problem (SDP). In earlier work [1], [3], [16], [17]
the learning agent’s SDP has already been formulated as a
Partially Observable Markov Decision Process (POMDP). This
section reviews the POMDP and introduces the algorithms
used in our work.
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Fig. 2. Section of two mass and stratified buffer model at hour 9, 13 and
14:30.

A. Markov Decision Process

We consider a discrete-time Markov Decision
Process (MDP) with time steps of length �t = 15 minutes,
a one day horizon T = 96, state-space X , action-space U ,
reward-function r : (X ,U ,X ) → R and state-transition
probabilities p(·|x, u), modeled by the EWH models. In this
MDP, we aim to find a policy π∗ : X → U which maximizes
total expected discounted rewards, i.e., maximizes J(π) with
discount factor γ and rt+1 = r(xt, ut, xt+1) [11].

J(π) = Eτ∼p(τ |π)

[
T−1∑

t=0

γ trt+1

]

(10)

Due to the difficult system-identification step in residential
DR settings p(·|x, u) is not known. Additionally, only part of
X is observable. Therefore, we aim to approximate π∗(x) by
sampling from p(·|x, u), i.e., by interacting with the EWH.
The state-action value function Q(x, u) is estimated using the
update rule (11), and (12) defines the policy [18].

Qi+1(xt, ut) = E

[
rt+1 + γ max

u
Qi(xt+1, u)|xt, ut

]
(11)

π(x) = argmax
u

Q(x, u) (12)

The next paragraphs give a description of the (observable)
state-space, action-space and cost-function.

1) State-Space: Patyn et al. [16] investigated the influ-
ence of different observable state-space configurations on the
performance of a RL agent applied to an EWH. Observing
SoC results in the best performing control policy. We there-
fore consider (observable) state x at every time step t to be
given by (13), with SoCt the SoC at time-step t. The current
quarter of the day t, is transformed to tcos and tsin according
to (14) and (15).

xt = [
SoCt−3, SoCt−2, SoCt−1, SoCt, tcos, tsin

]
(13)

tsin = sin(2π · t/96) (14)

tcos = cos(2π · t/96). (15)

2) Action-Space: The MDP has a binary action-space u ∈
U = {0, 1}. Action u = 1 implies the EWH’s heating element

is turned on at rated power, u = 0 turns the heating element
off. However, the EWH’s internal controller maps the agent’s
action u to a physical action uphys according to (16), with Tb

the temperature at the backup sensor location.

uphys = H(u) =
⎧
⎨

⎩

1 Tb ≤ Tmin
u Tb > Tmin and Tb < Tmax
0 Tb ≥ Tmax

(16)

While H(u) is unknown to the agent, it’s effect can be observed
through the cost-function.

3) Cost-Function: We consider an energy arbitrage DR
setting, with Time-of-Use (ToU) pricing. The cost-function
defines the MDP’s reward as in (17), given energy price λt

and energy consumption Et = H(ut)Pr�t.

rt+1 = −ct+1 = −λtuphys,tPr�t = −λtEt (17)

We present the different price profiles used during our exper-
iments in Section V.

B. Double Q-Learning

Double Q-learning (DQL) has been proposed, and later
updated, by Van Hasselt et al. [19], [20]. It incorporates two
NNs: the online network, with parameters θt at time step t, and
the target network, with parameters θ−

t . Van Hasselt et al. [20]
proposes the following update rule for the online network

Yt = rt+1 + γ Q

(
xt+1, argmax

u
Q(xt+1, u; θt); θ−

t

)
(18)

The targets Yt are calculated using uniform samples from expe-
rience replay memory F , containing transitions of the form
{xt, ut, xt+1, rt+1}. We use update rule (19) [21], with τ = 0.1,
for the target network’s parameters.

θ−
t = τθ−

t + (1 − τ)θt (19)

All NNs were implemented using the PyTorch framework [22].
They consist of two hidden layers, each with 64 neurons and
a ReLU activation function.

C. Fitted Q-Iteration

Due to its proven track record in DR applications we
also consider FQI [1], [2], [16] in our experiments. In a
discrete-time MDP with a one day horizon (T = 96) we
can reformulate the SDP as a sequence of T control prob-
lems. Approximating the Q-function Q̂t(xt, ut) at each time
step t gives rise to T supervised learning problems. Assuming
QT = rT+1, Q-values at time steps t ∈ {0, . . . , T − 1} are
defined as in equation (20).

Q̂t(xt, ut) = rt+1 + γ max
u

Q̂t+1(xt+1, u) (20)

We calculate Q̂t using all samples in F and represent it with a
random forest [23]. One of the main advantages of FQI in DR
is this division of the SDP into T supervised learning prob-
lems. The iterative re-training of all Q-functions inherently
allows a changing ToU-price profile, as rewards can be recal-
culated each iteration, which might be the case in certain DR
settings.



1374 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 2, MARCH 2021

Fig. 3. Policy π(x) and experience replay memory F transfer approach.
Training phase model is a distribution ρ over the source domain. The agent
observers stratified model dynamics (p(xt+1|xt, ut)) during test phase.

IV. METHOD

Our objectives are two-fold. We want to keep all benefits
of a model-free approach when controlling an EWH in energy
arbitrage DR settings, and we want to exploit the limited a
priori available information to reduce learning time. The main
hypothesis is that pre-training can be used for policy initial-
ization despite the presence of modelling errors, and that it
reduces initialization time. In this work, we know the RL
agent is going to be applied on an EWH to minimize operating
cost when energy consumption is charged with a (given) ToU
price. The stratified model presented in Section II-C, and with
parameters as given in Table I, represents the target domain.
This implies we can only use it as a virtual test-bed. The uni-
form and two mass model represent the source domain, i.e.,
simplified (or approximated) models of the target domain. Our
objectives then translate to training policies that can control
the EWH under the stratified model’s dynamics p(xt+1|xt, ut),
while reducing learning time using its approximate dynamics
p̂(xt+1|xt, ut).

All experiments consist of a training and test phase, as
illustrated in Fig. 3. During training, the agent samples
from p̂(xt+1|xt, ut), by interacting with the source domain.
It saves the samples in F and updates π(x) using either
DQL or FQI. To account for discrepancies between source
and target domain, i.e., modelling differences, we include
variability in the former [11]. We use domain randomization
and expose the agent to a distribution ρ over environments
p̂(xt+1|xt, ut) ∼ ρ [10]. Tobin et al. [10] state that with enough
variability during the training phase, the RL agent will be able
to generalize to dynamics seen in the test phase. Because,
instead of training a policy that can perform the EWH control
task under one dynamics model, we train a policy that can
perform the task over a variety of models.

In the remainder of this work, we assume the EWH’s height
h, diameter d and rated power Pr are known in the training
phase and equal to the value in Table I. Furthermore, the tar-
get domain’s thermal transmittance U equals 0.75 W/(m2K).
In the training phase, we assume a normal distribution over
U ∼ N (μ, σ 2) in the source domain, with the value of μ

and σ depending on the experiment. During this phase, the
agent’s objective is then to maximize expected return across
a distribution of dynamics models ρ [11]. The agent learns
a control policy using DQL or FQI. The training phase lasts
for Ttrain = 15T simulation days (t = 1440). We assume a
separate tap water profile ṁw of 15 days is available for this
phase. Both in the training and test phase we use an ε-greedy
exploration policy [18]. After pre-training, the policy π and/or

Fig. 4. Sinusoidal price profile (full line) and a one day example of the
Belpex price profile (dashed line).

the replay memory F are transferred, as shown in Fig. 3. The
transfer approach differs slightly for DQL and FQI.

A. DQL

The parameters θ of the two NNs are iteratively updated
during training phase and encapsulate information about the
MDP. The target domain uses the final source domain’s θ

and θ− as initial values. The experience replay memory’s
maximum size |F |max is 35 days, or |F |max = 35 · 96 state-
transitions. Each time step t, we perform one update of online
and target NN according to (18) and (19), with a batch of size
3T = 288 uniformly sampled from F .

B. FQI

At each iteration the whole set of random forests is refit-
ted, rather than updated. Therefore, we only transfer the replay
memory F from source domain to target domain. This is an
extension of the MAFQI [8], [9] idea. Since, while Lampe
and Riedmiller [8] propose to train a NN to approximate the
state-transition function and add virtual tuples to F , we use a
physics-based approximate model with domain randomization
to (initially) populate F . Again, |F |max = 35T . This is suffi-
ciently large, as Costanzo et al. [9] show FQI converges after
approximately 20 days. As a result of this limitation, source
domain state-transitions start to be removed from F after 20
simulated test days (|F |max − Ttrain = 20T).

V. EXPERIMENTS AND RESULTS

The experiments aim to verify our main hypothesis: is it
faster to fine-tune a DR controller learned on an approximate
model rather than learn one from scratch? All simulation set-
ups and their results are presented next. The same experiment
has been run 20 times, in order to account for the variability
present in the training and test phase. We drew new samples
U ∼ N (μ, σ 2) each of the 20 times. The two ToU price pro-
files divide the experiments into two main categories. First, we
present the experiments which use a sinusoidal price profile.
Thereafter, we display the ones using the Belgian day-ahead
wholesale electricity prices (of 2018) [24].

A. Sinusoidal Price Profile

Fig. 4 shows the sinusoidal price profile. We have based this
tariff both on the Belgian day-ahead prices and on the ToU
price profile which has been proposed to one of the Belgian
energy regulators (VREG) [25]. Prices vary throughout the
day, but the same profile occurs every day.
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Fig. 5. Cumulative cost comparison: DQL-sin experiment. Mean of 20
simulations, vertical bars indicate 95 % confidence interval.

TABLE III
TOTAL COST AND P-VALUES FOR INTERVALS OF 7 DAYS:

DQL-SIN EXPERIMENT

1) Double Q-Learning: Direct vs. Pre-Training: In a first
experiment we have applied DQL directly in the target domain,
and compare it with the pre-training approach as presented in
Section IV-A. We employed the two mass model, presented in
Section II-B, in the source domain, as this resembles the target
domain (stratified model) most closely. Each simulation run
we sampled five two mass models, with U ∼ N (0.75, 0.12).

Fig. 5 shows the cumulative cost of three control approaches
over 35 days. The most expensive control approach, with a
final cost of e 23.9, is the hysteresis controller. This con-
troller acts according to (16), with u = 0. The dotted and
dashed line show the cumulative cost of the direct and pre-
training approach. The bars depict the 95 % confidence bound
(over 20 simulation runs). As known from previous research
[1], [16], [17], RL (without pre-training) manages to reduce
cost compared to a hysteresis controller. Here, cost has been
reduced by 23.4 %. With DQL and given this price profile,
pre-training reduces cost 8.8 % further, and has a total cost
reduction of 32.2 % compared to the hysteresis controller.

Fig. 6 compares performance of both approaches. It sepa-
rates the simulation days in 5 intervals of 7 days and shows the
mean total cost and standard deviation (of 20 simulation runs).
Table III shows the t-test’s p-value for the mean of these costs,
i.e., the probability that these two distributions have an identi-
cal average. The table shows total cost of all intervals differs
significantly for this experiment. Additionally, the whole sim-
ulation run’s total cost differs significantly, as the p-value is
close to zero. While cost between days within one approach
can vary because of tap water demand, the same days have
the same tap demand across all approaches.

Fig. 7 shows the policy in the target domain for both DQL
approaches. The top row visualizes the policy learned from
scratch, after 5 and 35 days. The bottom row shows the same
after pre-training. To create this figure, snapshots of the target
domain policy NN were saved during simulation at the given
time steps. Afterwards, random state-space samples were fed

Fig. 6. Cost comparison of intervals of 7 days: DQL-sin experiment.

Fig. 7. Policy comparison: DQL-sin experiment. Top row: policy without
transfer learning, bottom row: policy with transfer learning. Left column:
snapchot of policy after 5 days, right column: snapchot of policy after 35 days.
Back indicates ut = π(xt) = 1.

through these snapshots. As is clear from (13), each state x
consists of four SoC values. Thus, given a certain value for
SoCt, the policy outcome can be either u = π(x) = 0 or
u = π(x) = 1, depending on the other three SoC values. Fig. 7
is a two-dimensional representation of the policy, i.e., states
with the same value for SoCt and t are depicted on the same
point in this two-dimensional space, although they might have
different values for SoCt−1, SoCt−2, SoCt−3. Black indicates
the EWH is turned on (π(x) = 1) for that particular time-step
t and SoCt, for all state-space samples. Lighter shades indicate
energy consumption only for certain samples with the same
SoCt and t (but possibly different values for SoCt−1, SoCt−2,
SoCt−3).

The top left figure shows that only a limited amount of the
state-space has been explored in the direct approach, and the
policy is initialized only in this part. After pre-training, the
policy is already initialized over a larger part of X . After 5
days, the pre-trained agent has learned a basic policy, turn-
ing the EWH on when prices are low. After 35 days, the RL
agent that started from scratch has also learned this behaviour.
Additionally, when SoC turns out to be low before the highest
peak, the agent turns the EWH on. We see the policy learned
after 35 days and with pre-training is similar, but the big charg-
ing cycle has moved to the afternoon price drop. This results
in a cheaper policy, as most of the DHW consumption occurs
in the evening [15]. In the morning it is sufficient to charge
to ±50 %.

2) Fitted Q-Iteration: Direct vs. Pre-Training: The same
figures are shown, now for the FQI approach. Fig. 8 shows the
cumulative cost of the compared control approaches. Again,
the hysteresis controller is the most expensive, while the pre-
training approach is the cheapest. Table IV shows that the
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Fig. 8. Cumulative cost comparison FQI-sin experiment. Mean of 20
simulations, vertical bars indicate 95% confidence interval.

TABLE IV
TOTAL COST AND P-VALUES FOR INTERVALS OF 7 DAYS:

FQI-SIN EXPERIMENT

Fig. 9. Cost comparison of intervals of 7 days: FQI-sin experiment.

difference between pre-training or not is significant for all
but the last interval. Despite learning from scratch reducing
total cost with 27.6 %, compared to hysteresis control, pre-
training reduces cost with 35.1 %. Fig. 9 compares all three
controllers in this experiment. It shows both FQI-based RL
approaches are already cheaper than the hysteresis controller
in the first interval. The figure also shows pre-training results
in additional cost gains, starting from the first interval.

3) Comparison With Model Predictive Control: Of
the three presented buffer models, the uniform model
is the only one that is linear. For this case, the
source domain’s control problem can thus be formu-
lated as a Mixed Integer Linear Problem (MILP), given
in (21). Therefore, it is possible to use Model Predictive
Control (MPC). This experiment compares MPC with both
transfer learning approaches, when using the uniform model.
With MPC, the target domain’s (observable) state is sampled
at time step t. Here, the target domain’s (stratified buffer)
backup sensor temperature at that time step (Tb,t) is used as
initial state in the source domain (uniform model), as shown
in (21e), and U = 0.75 W/(m2K) in both domains. The MILP’s
solution is a vector of length T with the source domain’s
optimal control actions for period [t, t + T]. After applying
action ut in the target domain, the procedure is repeated, and
this for every time step t. For a more elaborate explanation
of MPC we refer to other literature [26]. We solve the MILP

Fig. 10. Cumulative cost comparison: FQI and DQL vs. MPC experi-
ment (uniform model). Mean of 20 simulations, vertical bars indicate 95 %
confidence interval.

TABLE V
RESULTS FOR DIFFERENT DISTRIBUTION PARAMETERS OVER U

using the Gurobi solver [27].

min
uk

t+T∑

k=t

λkukPr�t (21a)

subject to (1) (21b)

TLk ≥ Tmin (21c)

TLk ≤ Tmax (21d)

TLt = Tb,t (21e)

Fig. 10 shows the cumulative cost of all 4 controllers (MPC,
pre-trained FQI, pre-trained DQL and hysteresis control). Pre-
trained DQL’s final cost is e 15.6, and thus 26 % cheaper
than MPC, with a final cost of e 21.2. Pre-training FQI with
the uniform model results in a total cost of e 16.1. It is thus
clear it does matter to capture the non-linearities of the strat-
ified model, which a RL agent is able to do. Although RL
manages to capture relevant information from the uniform
model, the model does not seem to be sufficiently accurate
for MPC. Furthermore, this figure also shows there is barely
any performance difference between FQI and DQL.

4) U Out of Distribution: In a last experiment with this
price profile, we investigated the effect of a bad distribution
over U, both for DQL and FQI. Apart from sampling U from
N (0.55, 0.12) the procedure is equal to the first and second
experiment. The target domain’s thermal transmittance U is
now 2σ away from the source domain’s mean value.

Table V shows the results. For both algorithms, the
performance with a good guess for the distribution over U
(target domain value equal to source domain mean) and with
a bad guess is very similar. This indicates that pre-trained
policies are indeed able to generalize over different buffer
model parameters, and that we can use RL to further fine-tune
policies in the target domain.
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Fig. 11. Cumulative cost comparison: FQI-Belpex experiment. Mean of 20
simulations, vertical bars indicate 95 % confidence interval.

B. Belpex Price

In a final experiment, we have used the Belgian day-ahead
electricity prices [24] (dashed line in Fig. 4), and compared
performance difference between the use of pre-training or not.
Belpex is an hourly-varying price profile which differs every
day. E.g., Fig. 4 shows the first day of the test-set prices. FQI
separates the SDP in T supervised learning problems and refits
the regressor for every control step t. Ruelens et al. [1] pro-
pose to exploit this property when dealing with a time-varying
ToU price profile, which is different every day, by recalculating
all rewards in F at every step. As DQL is an online learn-
ing algorithm, adapting it in a similar way is non-trivial, as
information of previous rewards is encapsulated in the NN’s
weights. Another possibility, as explored by Cao et al. [28],
is to add future prices to the state. Thus, for the FQI-based
controller no additional adaptations are needed to the state, but
every training day the rewards in F need to be recalculated.
For the DQL-based controller on the other end, this recalcu-
lation step is unnecessary, but the observed state at time step
t is now given by (22).

xt = [
SoCt−3, . . . , SoCt, tcos, tsin, λt, . . . , λt+24

]
(22)

First all FQI results are presented. Fig. 11 shows the cumu-
lative cost over the simulation period for all considered FQI
controllers. While their order stays constant, the difference
between them reduces. With this price profile, direct RL is
5.5 % cheaper than the hysteresis controller and the transfer
learning approach is another 4.4 % cheaper. Compared to the
same experiment with the sinusoidal price profile, the cost
gains are smaller.

This can be explained by the smaller valleys and peaks in
the price profile, as is clear from Fig. 12. This figure shows the
target domain’s final five simulation days, for the pre-trained
case. The top graph depicts Belpex price on the right axis and
the buffer’s SoC on the left axis. The grey areas indicate if
the EWH is consuming power (uphys = 1) or not (uphys = 0).
The bottom graph depicts DHW consumption. The control
policy turns the EWH mostly on when prices are relatively
low. However, completely avoiding energy consumption dur-
ing higher priced hours is not always possible due to hot water
consumption.

Fig. 12. Final five simulation days: FQI-Belpex experiment.

TABLE VI
TOTAL COST AND P-VALUES FOR INTERVALS OF 5 DAYS: FQI-BELPEX

EXPERIMENT. MEAN OF 20 SIMULATIONS, VERTICAL BARS INDICATE

95% CONFIDENCE INTERVAL

Table VI divides the simulation period in 5 intervals, each
of 7 days. The table shows that each group’s mean cost for
direct FQI is larger than the group’s cost with pre-trained FQI.
The difference is, again, significant for all but the last group.
As expected since F is almost only filled with target domain
transitions at that time.

With pre-trained DQL and, using states as defined in (22),
the Belpex price profile resulted in a mean total cost of e 23.22
with a standard deviation of 0.64. These results seem to indi-
cate FQI is more suited in a setting with daily varying prices.
Additionally, with the Belpex price profile, MPC resulted in
a total cost of e 25.5. This result indicates that, with this
price profile, more system-identification effort is needed to
get satisfactory MPC performance.

VI. CONCLUSION AND FUTURE WORK

We demonstrated the use of pre-training with domain ran-
domization in a residential DR setting for two different RL
algorithms and with two ToU price profiles. We show adapt-
ing a pre-trained policy to the target domain is significantly
faster than starting from scratch. Pre-trained policies allow
for cost savings immediately at the start of operation, which,
in the considered cases, results in a significant price reduc-
tion throughout the simulated period. Using DQL, pre-training
results in 8.8 % cost reduction compared to starting from
scratch and a 32.2 % reduction compared to a hysteresis con-
troller. Although the pre-training approach differs slightly
between DQL and FQI, both algorithms benefit very simi-
larly from it. Moreover, despite the two mass model’s more
accurate SoC estimate, compared to the uniform model, the
RL agent manages to benefit from pre-training almost equally.
Average total cost with the two mass model is e 16.2 while
it is e 15.6 with the uniform model, for the DQL agent. Our
experiments also showed pre-trained RL agents, with domain
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randomization, show similar cost savings when there is a larger
discrepancy between source domain and target domain. And,
this discrepancy can be caused by modelling (uniform model)
or by system-identification (bad guess of model parameter U).

Finally, we showed it is relevant to use a non-linear pol-
icy which adapts to the target domain, as this results in
26 % cheaper operation than applying optimal source domain
control actions in the target domain, i.e., MPC. While state-
of-the-art MPC might result in better performance, our results
indicate that the uniform model suffices for RL but does not
suffice for MPC.

It is not certain that dissimilarity between uniform / two
mass model and stratified model is as large as the dissimilarity
between the stratified model and a real buffer. Therefore, future
work is directed towards verifying the presented approach for
transfer from simulation to practice. Additionally, we aim to
investigate other methods of including prior knowledge in the
policy as we have showed this can result in better policies.
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