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Abstract—This paper proposes a method for three-phase state
estimation (SE) in power distribution network including on-load
tap changers (OLTC) for voltage control. The OLTC tap posi-
tions are essentially discrete variables from the SE point of
view. Estimation of these variables in SE presents a formidable
challenge. The proposed methodology combines discrete and
continuous state variables (voltage magnitudes, angles, and tap
positions). A hybrid particle swarm optimization (HPSO) is
applied to obtain the solution. The method is tested on stan-
dard IEEE 13- and 123-bus unbalanced test system models. The
proposed algorithm accurately estimates the network bus voltage
magnitudes and angles, and discrete tap values. The HPSO-based
tap estimation provides a more accurate estimation of losses in
the network, which helps in fair allocation of cost of losses in
arriving at overall cost of electricity.

Index Terms—Hybrid particle swarm optimization (HPSO),
tap estimation, three-phase state estimation (SE).

I. INTRODUCTION

HE STATE estimation (SE) is described as a process

of finding network voltage magnitudes and angles so
that all the other network quantities such as transformer,
feeder loadings, etc. can be obtained from them. SE is a
standard computational task in supervisory control and data
acquisition (SCADA) for transmission system. At transmis-
sion level generalized framework [1] is well adopted for
SE with emphasis on bad data analysis including handling
switch status error. There is always an assumption of bal-
anced system at transmission level so single-phase positive
sequence network data are adequate. The distribution net-
work is hardly balanced and symmetric so three-phase SE
is necessary. Until recently it was not much important to
have mandatory SE at distribution system. But with growing
controllable devices and components, it is now important to
have state estimator for efficient operation of the distribution
network.
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There have been growing literatures in distribution sys-
tem SE (DSSE). Chen et al. [2] have provided a thorough
model of distribution transformer including core loss to
obtain more accurate state estimates. Standard weighted least
square (WLS) is suggested. The quality and adequacy of
measurements being less than required-several papers focused
on accurately estimating the loads through additional mea-
surement placements. References [3]-[5] have proposed the
concept of minimum additional measurements for improv-
ing accuracy of the SE in WLS framework. Because of the
radial nature of the distribution network it was found com-
putationally much easier to formulate feeder current as state
variables [6], [7]. The results are very convincing and with
slight modification in the form of inclusion of constraints in
the optimization objective, small meshed network can also
be solved. Small meshed network arises from closing nor-
mally open point to extend the feed. Wang and Schulz [8§]
later extended the branch current-based estimation to obtain
set of locations where placement of meters provide max-
imum impact in terms of accuracy. References [9]-[12]
have demonstrated the impact of various degrees of unbal-
anced in the network loads and parameters and topolog-
ical uncertainties on the accuracies of SE. Zero injection
is taken as constraints in the nodes having no measure-
ment. Meliopoulos et al. [13] and Zhong and Abur [14]
have demonstrated further the impact of inaccurate param-
eters, untransposed lines, ignored transformer vector groups
etc. not only on the accuracy of the estimated quantities but
on the bad data rejection capability as well. This led to the
requirement of synchronized phasor measurements at the dis-
tribution level. Recently, Haughton and Heydt [15] proposed a
linear state estimator for full three-phase unbalanced distribu-
tion system. It assumes that synchronized phasor measurement
unit (PMU)-based measurement and other smart demand mea-
surements are available. It is indicated smart meters may
record and transmit active and reactive power, energy con-
sumption over time intervals, e.g., 5, 15, and 60 min, so real
time SE is not possible. Thukaram ef al. [16] used graph
theory approach to place measurement to guarantee observ-
ability and then solve the node current injection equations to
obtain node voltage and angle which appears to work as robust
approach to obtain the estimates. The radial nature of the dis-
tribution network is exploited by the backward forward sweep
method proposed in [17] which is somewhat along the lines
of load estimation as performed in radial distribution system
power flow computation. It refines the pseudo measurement
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by power summation at node. Reference [18] provides faster
algorithm for estimating loads. The approach is to reduce the
complexity of the network into several load estimation zones
connected through physical measurements. None of the above
references considered primary distribution transformer on load
tap changing position as estimated variable. This exclusion of
transformer tap position as estimated variable from the above
references encouraged us to develop a three-phase SE algo-
rithm including the tap as discrete variable and obtain the
exact tap position which is not possible by conventional WLS
method.

Distribution network has also other problem of rapid volt-
age fluctuation because of the indeed from DG. The output
from DG being not predictable (solar and wind) the voltage
variation in the network is very severe. So the voltage control
is as important as feeder flow control. On load tap changing
transformer in the primary substation is also subjected to rapid
control actions. It is very important to include tap position as
an estimated variable so that network control can be performed
more effectively. There have not been much literature in tap
observability detection. Pires et al. [19] proposed a robust
algorithm based on Givens rotation of the gain matrix to obtain
the state and tap position under erroneous zero injection. The
method is demonstrated to work well in Brazilian system mod-
els of varying complexity. Shiroie and Hosseini [20] used node
voltages, angles and tap position as state variables under the
assumption that the taps are continuous. However, in practice
OLTC has discrete tap positions so inaccurate estimate pro-
duces inaccurate computed values of other network quantities
such as feeder flows, losses, etc. So, the incorporation of the
discrete tap variables in SE is required for effective network
control.

Commonly, SE algorithm is developed based on the assump-
tion of balanced network model which assumes that line
parameters and loads are balanced. Based on this assump-
tion the analysis is applied on the single-phase model, simply
using the positive sequence network for estimation of the sys-
tem states. However, in distribution networks the presence of
single and two-phase laterals, untransposed three-phase cir-
cuits and unbalanced loads affect the accuracy of the estimated
states when assumption of balanced system is applied. This
results in unexpected system performance or undesirable oper-
ating situations. So, an appropriate three-phase estimator is
required to accurately obtain the states with taps as discrete
variables [7], [21]. The motivation of this paper came from the
need of a comprehensive three-phase state estimator including
tap as discrete variable to obtain most accurate network nodal
voltages and angles under unbalanced situation.

SE is commonly formulated as a WLS problem [22].
However, transformer tap positions make the problem a mixed
integer nonlinear one. So, the solution of the problem through
normal equation framework is not possible as the objective
function is not differentiable [23].

Teixeira et al. [24] and Korres et al. [25] have assumed
continuous taps instead of discrete and have incorporated
rounding technique or sensitivity method to address the com-
plexity of discrete values. However, this assumption reduces
the accuracy of the SE and the solution does not represent
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the actual network taps positions. Therefore, the estimation
of transformer tap positions has to be obtained from the
solution of the mixed integer nonlinear optimization problem
containing continuous and discrete values [26], [27].

There has been growing interest in the application of
heuristic algorithms such as neural networks, genetic algo-
rithms (GAs), honey bee mating optimization, and particle
swarm optimization (PSO) in recent years. To overcome the
computational difficulty of such complex optimization prob-
lem, these algorithms have been successfully applied to wide
range of optimization problem where they can handle mixed
integer variables of the objective functions as they do not need
the function to be continuous and differentiable [28].

PSO appears to be a very effective technique compared to
GA and other evolutionary algorithms as it is simple in con-
cept and implementation. It has limited number of parameters
in comparison to other heuristic optimization methods. It can
be easily applied to diverse issues where it can produce satis-
factory solutions and stable convergence characteristics [29].
However, PSO has weak form of selection that increases the
amount of time to get to the effective area in the solution
space.

A hybrid form of PSO (HPSO) is used to overcome this
situation [30] combining the feature from PSO and GA. HPSO
has been applied in balanced SE problem [31]. HPSO uses a
selection method which is based on the evolution from gen-
eration to generation. Reference [31] considered a balanced
three-phase distribution network model without considering
unbalanced nature of the system and discrete tap as state
variables.

Our research proposes a full three-phase state estimator
including unbalanced load, network model and the discrete
taps as additional estimated variables based on HPSO opti-
mization technique in order to estimate the discrete value
of the transformer taps. The contribution of our research
lies in handling the complexity of the unbalanced system
and correctly computing the discrete values of the tap. The
performance of the proposed method has been tested on
IEEE 13- and 123-bus test system models and the results are
presented.

Like all the methods based on heuristic search, the HPSO
method takes longer time (tens of minutes) to converge in
a reasonably sized network model. This apparently weak-
ens the case for HPSO for SE in real time. It is important
to note that SE in distribution SCADA is not done in real
time. Since the life expectancy of the tap changing mecha-
nism is influenced by the number of operations of the taps,
it is also not allowed to have frequent tap operation when
rapid changes and loads and generation take place. HPSO
can be applied for network computation used for opera-
tional planning purposes such as hour ahead contingency
analysis and reactive power control scheduling, loss estima-
tion for dynamic pricing purpose. The HPSO-based solution
in this way is still attractive to operate the network with
higher efficiency even though the calculation is not done in
real time. This paper demonstrates the value of this concept
through comprehensive modeling, computation and analysis
in this context. We have also made several modifications
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of traditional PSO and HPSO techniques to obtain solutions
faster.

This paper is organized as follows. Section II provides an
overview of SE in distribution system. In Section III, the PSO
solution method is described. Section IV provides an overview
of HPSO. Section V presents the HPSO approach in the con-
text of three-phase unbalanced SE for distribution network
model. Section VI demonstrates the results and discussions of
the SE for IEEE 13- and 123-bus model networks. Section VII
concludes this paper.

II. DISTRIBUTION SYSTEM STATE ESTIMATION

The solution to DSSE problem is formulated as a min-
imization of the following objective function subject to
satisfying several equality and inequality constraints. The
goal is to obtain the bus voltage magnitudes, angles and
tap positions that minimizes weighted square of the dif-
ference between the measured quantity and the estimated
quantity which are functions of estimated states. It is
expressed as

m
min  J(x) = Zwﬁr% (1)
i=1
subject to: zi = hi(x) + r; (2a)
c(x)=0 (2b)
gmin < &(*) < gmax (20)
where
X state variables such as voltage magnitudes, angles,
and tap positions;
m number of measurements;
Wii weighting factor of measurement variable i, z =
[A52 ... 282 ... 2828 %)
Z; measured value of lth measurement;
h; ith measurement as a function of state x;
T ith measurement error.

In three-phase system x = [Vl.k 8;‘ tf-‘], where V{‘ =
[V¢ Vb VC]—r is the vector of three-phase voltage magnitude
at bus i, 81‘ [6¢ (Sb 86]—r denotes the phase angles of bus i
except the reference bus and tk [« tb t"]T is the transfomer’s
tap vector if present at ith bus

In three-phase model, the power injected at bus i for

phase k can be written as

= VkZZVll:leCOS(

=1 j=1

o) + B sin(sf - 5})]

k [ kl k k [
— V! ?1,21 V[ sm(S 3) B cos(8 sj)]
4)

where G+ jB is the system admittance matrix, n is number of
buses and / is the number of phases that can be single-, two-,
or three-phase. The power flow from buses i to j for phase k
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can be written as follows:
3
Vi VI[GY' cos(sf — o!) + By sin(sf - o)

=1
—8!) + By sin(s - )|

Vk Z %4 [G cos(
(%)

3
0f = —vEY_vi[GY'sin(sf —o!) - B cos(sf — ) |
=1

3
— VK Z VJI[GZ[ sin(z?llC - 8}) B]j[cos(8k 3})]
=1

k
Py

(6)
where
Pi‘, Q;‘ active and reactive power injection of phase k in
bus i;
k .
lj, Q;; active and reactive power flow of phase k from
buses i to j;
Vl-l voltage magnitude of phase [ at bus i;
8{ angle of phase [/ in bus i.

A. Equality Constraints c(x)

The equality constraints are the set of equation correspond-
ing to virtual measurements

3 n
k k fey [ .l PN
0= Pl — Py = 3> ViVI[ Gl cos(8 - )
=1 j=1
+ Bh! sin<8k — 61)] (7)
ij i )j
0= 0; — O — Z Z VkV[[ sm(sk 8})
=1 j=1
_ Bg;lcos<8f‘ - 8})] 8)
where P’éi and Q’éi are the real and reactive power injected

at bus i, respectively, the load demand at the same bus is
represented by P]Z)i and Q]L")i [32]. Indices n is number of buses
and [ is the number of phases which can be single-, two-, or
three-phase.

B. Inequality Constraints

These are the set of constraints of continuous and discrete
variables that represent the system operational and security
limits, such as setting upper and lower limits for control
variables. These are as follows.

1) Bus Voltage: Voltage magnitudes at each bus in the

network
vk < VE<VE

mm i max,i*

2) Bus Angle: The bus angle at each bus in the network

sk <k < sk

mm i max,i*

3) Transformer Taps: Transformer taps settings

~ .<tk<t

min,i max,i*
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III. PARTICLE SWARM OPTIMIZATION

The PSO is a population-based optimization method first
proposed by Kennedy and Eberhart [33], which is used to
search the solution space of a given problem to find the can-
didate solution which can maximize or minimize a particular
objective function. Some of the attractive features of the PSO
include the ease of application and the fact that no gradient
information is required which allows the PSO to be used on
functions where the gradient is either unavailable or computa-
tionally expensive to obtain. It generates high quality solutions
and has stable convergence characteristic than other stochastic
methods; so can be used to solve a wide array of optimiza-
tion problems. It uses a number of particles that constitute a
swarm. Each particle traverses the search space looking for
the global minimum (or maximum). During flight, each par-
ticle adjusts its position according to its own experience and
the experience of neighboring particles, making use of the best
position encountered by itself (pbest) and its neighbors (gbest).
Let X and V represent a particle position and its correspond-
ing velocity in a search space, respectively. The best previous
position of a particle is recorded and represented as pbest. The
index of the best particle amongst all the particles in the group
is represented as gbest. The modified velocity and position of
each particle are calculated as follows [34]:

Vi = WVZ(]) + C1Ry x (Xpbest - Xg) + CRy x (ngest - Xg)

€))
Xj=X)+Vj (10)
where
i ith particle;
Jj dimension of the velocity associated with particle i;

Vij, Xjj velocity and position of the particle at iteration j;

w weighting function;

C1, Cy weighting factors;

Ri, Ry random numbers between O and 1.

In (9), Xpbest is the pbest of particle and Xgpest is the gbest
of the group.

A. Selection of Parameters for PSO and
Simulation Condition

The selection of key parameters to set up PSO such as W,
C1, Ca, and Vpax is an important task as they govern the rate
of convergence.

1) Weighting Function: W is a weighting factor which is
related to the velocity of the particle during the previous iter-
ation. It controls the amount of the previous velocity that
particle takes in the next iteration. This value is equal to 1.0
for the original PSO. The concept of velocity will be lost if
this value is set to zero. Shi and Eberhart [35] investigated the
effect of W in the range (0.0, 1.4). The faster convergence is
obtained by setting this value between (0.8, 1.2). However, set-
ting of inertia weight that decreased from 0.9 to 0.4 generated
satisfactory result [34].

The weighting function is obtained as

(Wini —

itermax

Win) X iter

W = Wipi — (11)
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where Wi, and Wy, are the initial and final weight, respec-
tively, itermax 1S the maximum iteration number, and iter is the
current iteration number.

2) Acceleration Coefficients (C1 and C3): Ci and C, affect
the maximum step size of a particle in a single iteration. C;
regulates the maximum step size of a particle in the direction
of the pbest while C regulates the maximum step size in the
direction of the gbest [34] as shown in (9).

The particle velocity is limited by Vpax to minimize the
possibility of the particle escaping the search space. If the
search space is defined by the bounds [Xin, Xmax], the value
of Vinax 1S typically set to

Vinax = K X (Xmax — Xmin) (12)

where
0.1 <K<1.0.

Initially, PSO has been performed several times with differ-
ent values of the key parameters of W, Cy, Ca, and Vpx to
achieve the satisfactory results.

B. Improving the Speed of Convergence

We have made appropriate modification to update the posi-
tion of the particle by changing the direction when reaching
the search space boundary in order to improve the speed of
convergence. The direction of the particle should be modified
in such a way that it keeps the particle inside its range when
the velocity takes the particle out of its boundary [Xmin, Xmax]-
So the new position of the particle will be updated-based on
the following equation instead of (10):

Xj=X) -V (13)

the optimal solution be close to the boundary the « factor
helps to reach the solution faster

X =Xj — aVj (14)

where « is an optimally chosen number between 0 and 1. We
have discussed about a suitable value of alpha later in the
discussion section.

C. General Algorithm for PSO

The general steps of PSO algorithm can be described as

follows.

1) Generate initial population of particles with random
velocities and positions. In this paper, these particles are
bus voltage magnitudes and angles and transformer tap
positions.

2) These initial particles must be feasible candidate solu-
tions that satisfy the practical operation constraints. Set
upper and lower limits for these particles (v, §, 1).

3) For each particle of the population, calculate the error
based on (2a).

4) Obtain value of each particle in the population using
the evaluation function (fitness function) and the penalty
function. The value of fitness function is obtained as
follows:

1

FF(x) = 1 + J(x) + Penalty(x)

15)
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where J(x) comes from (1) and Penalty(x) as follows:
N
Penalty(x) = p Z(xl- — xo)2

1

(16)

N number of penalized control variables;

p scalar quadratic penalty weight;

Xxo control variable current value (p.u.);

x; control variable penalty offset (p.u.).
5) Compare each particles value with its pbest. The best

value among the pbest is denoted as gbest.

6) Update the time counter ¢ = ¢+ 1.
7) Update the inertia weight W given by (11).
8) Modify the velocity V of each particle according to (9).
9) Modify the position of each particle according
to (10) and (14). If a particle violates its position lim-
its in any dimension, set its position at the proper limit
according to (14).
Each particle is evaluated according to its updated posi-
tion. If the value of each particle is better than the
previous pbest, the current value is set to be pbest. If
the best pbest is better than gbest, this value is set to be
gbest.
If the maximum of a variation of the state variable
Ax is smaller than 0.001 and the iteration has reached
maximum number of iteration specified go to step #12.
Otherwise, go to step #6 until the end criteria are
satisfied.
The particle that generates the latest gbest is the optimal
value.

10)

1)

12)

IV. HYBRID PARTICLE SWARM OPTIMIZATION

The PSO algorithm has a weak selection process which
very much depends on pbest and gbest, therefore, the search-
ing area is limited by pbest and gbest. This leads to increase
in the amount of time that it takes to get to the effective
area in the solution space. The HPSO method has been intro-
duced based on tournament selection method of GA, in order
to improve the weakness of PSO method in this area. The
introduction of the tournament selection mechanism in PSO
algorithm, the effect of pbest and gbest is gradually elimi-
nated by the selection which can result in the wider search
area. The purpose of the selection in evolutionary algorithm
is to influence the execution of the algorithm on a specific
region of search space; usually one that delivered promising
solutions in the recent past. Particle positions with low values
are replaced by those with high values using the tournament
selection method [30]. Therefore, the number of highly evalu-
ated particles is increased while the number of lowly evaluated
particles is reduced at each iteration. It should be mentioned
that although, the particle position is substituted by another
particle position, the information related to each particle is
reserved. Therefore, the intensive search in a current effective
area and dependence on the past high evaluation position are
realized [30].

V. DISTRIBUTION SYSTEM STATE ESTIMATION BY HPSO

This section presents the application of the HPSO algorithm
for solving the DSSE problem. The set of tasks involve.
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A. Network Configuration and Network Data

The presence of unsymmetrical-network components and
unbalanced-load on unbalanced distribution system makes it
essential to consider the exact model of the system components
(three-phase model). It includes the information about line
resistance, reactance, tap setting connectivity information, etc.

Therefore, the following provides information regarding
three-phase model of various components of the network such
as line, transformers and switches [36].

1) Line Model: The distribution overhead lines and under-
ground cables are three-, two-, or single-phase and are most
often untransposed serving unbalanced loads. In addition,
since the voltage drops due to the mutual coupling of the
lines is playing important part in the analysis of the distri-
bution network, it is important to compute the impedance of
the overhead and underground line segment as accurate as pos-
sible. Therefore, it is necessary to retain the self and mutual
impedance terms of the conductors and take into account the
ground return path for the unbalanced currents [37].

A modified Carson’s equation has been applied to model
the overhead lines and underground cables

1
+7.934 |2 / mile
MR;

7)

Zii = r; +0.095 + j0.121 x (LnG

1
Zjj = 0.095 +0.121 x <LnD— + 7.934) Q/mile (18)
ij

where
Zii self-impedance of conductor i in €2/mile;
Z;j mutual impedance between conductors i and j in
Q2 /mile;
T resistance of conductor i in 2 /mile;
GMR; geometric mean radius of conductor i in feet;
Dj distance between conductors i and j in feet.

While using the modified Carson’s equations there is no
need to make any assumptions, such as transposition of the
lines. By assuming an untransposed line and including the
actual phasing of the line and correct spacing between con-
ductors, the most accurate values of the phase impedances,
self and mutual, are determined.

While applying modified Carson’s equations (17) and (18)
to a three-phase overhead or underground circuit which
consists of n phases and neutral conductors the resulting
impedance matrix will be n x n. For most applications, it is
necessary to have the 3 x3 phase impedance matrix. Therefore,
the following Kron’s reduction is applied in order to break-
down the impedance matrix into the 3 x 3 phase frame matrix.
In this approach, all the lines will be modeled by 3 x 3 phase
impedance matrix and for two- and single-phase lines the miss-
ing phases are modeled by setting the impedance element to
zero [37]

Zin X an
Znn -
2) Transformer Model: The three-phase transformer banks

are commonly used in the distribution network and pro-

vide the final voltage transformation to the customers load.

The conventional transformer models based on a balanced
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three-phase assumption can no longer be used when system
is unbalanced. Three-phase transformers are modeled by an
admittance matrix which depends on the connection type.
The admittance matrix of a transformer is sub-divided into
sub-matrices for both self and mutual admittances between
the primary and secondary. In the analysis of the distribution
feeder, it is required to model the various three-phase trans-
former connections correctly. The comprehensive calculations
of three-phase transformers and their various connections can
be found in [37].

3) Switch Model: Switches are modeled as branches with
zero impedance when the switch is closed or as branches with
zero admittance when it is open. The operational constraints
imposed by the open or closed status of the switching branches
will be as follows.

1) When the switch between buses i and j is closed for

branch i—j, the voltages and angles for buses i and j for
all the three phases are equal

Vi— V=0
5 — 8 = 0.

2) When the switch is open between buses i and j, the active
and reactive power flow to the switch will be zero

P;=0
0; =0.

These have been included as equality constraints in the SE
formulation and a weighted quadratic penalty function defined
in (16) is applied to solve the above equality constraint prob-
lem in which a penalty factor is added to the objective function
moment any constraint violation occurs.

4) Load Model: The loads on distribution network are
generally unbalanced and can be connected in a grounded
wye configuration or an ungrounded delta configuration. It is
also possible to have three-, two-, or single-phase loads with
varying degree of unbalance. The loads are commonly indi-
cated by complex power consumed per phase and supposed
to be line-to-neutral for wye load and line-to-line for delta
load [37].

In this paper, loads are modeled as constant impedance, con-
stant current and constant complex power or any combination
of the three. Typically, the load values are given as nominal
power delivered to the load and must be converted into the
appropriate constant model parameters. The general form of
ZIP model is as follows [38]:

1% V2
PL=Py|cf + & — )+ =
L n| €y %<w> 3 v,
1% V\?2
_ 0, 0 0
QL— Qn Cl +C2 (7,!) +C3 <7n)

The two- and single-phase loads are modeled by setting the
values of the complex power to zero for the nonexistent phases
for both wye and delta connected loads [37].

(20)

21
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Generate initial population of (V, §, t) with
random velocities and positions

!

Set upper and lower limit for state variables
WV, 8,1

> Evaluate the fitness function of each state
variables

l

Compare each particle’s fitness value with
the current particle’s to obtain pbest

Compare fitness value with population’s
overall pbest to obtain gbest

Tournament selection using evaluation
value

Update velocity and position

No

Stopping criteria met?

Fig. 1. Setting up of HPSO.

B. Power Flow Calculation

Three-phase power flow program suitable for distribution
system has been set up with network information and load
data to generate measurement data as an input to the state
estimator. The normally distributed noise component has been
added to these measurements to produce input for state
estimator. Usually, 1%-3% error is associated with true mea-
surements while the error for pseudo measurements (load data)
is considered to vary between 20% and 50%.

C. State Estimation Based on HPSO Algorithm

The following steps have been followed to estimate the state

by HPSO estimator.

1) Set up a set of HPSOs parameters such as number of
particles N, weighting function W, acceleration coeffi-
cients C| and C;, and maximum number of iterations.

2) Generate an initial population of the state variables
(V, 8, and 1) with random velocities and positions in
the solution space.

3) Set wupper and
(V, 48, and 1).

lower limits for state variables
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Fig. 2. 1EEE 13-bus distribution system.
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Fig. 3. IEEE 123-bus distribution system.

4) For each state variable, if the variable is within the set
limits, go to the following step. Otherwise, that variable
is infeasible.

5) The state has been calculated based on the minimization
between measurements and calculated value based on
HPSO algorithm.

Fig. 1 illustrates the DSSE using HPSO algorithm.

VI. RESULTS AND DISCUSSION
A. Case Studies

The proposed modified HPSO approach was implemented in
MATLAB by Intel Xeon processor at 2.40 GHz with 12.0 GB
of RAM and has been tested on IEEE 13- and 123-bus test
systems to validate the proposed algorithms. The network
parameters and load data are obtained from [39] and [40].
The topologies of the test systems are shown in Figs. 2 and 3.
The systems consist of both overhead lines and underground
cables. The overhead lines and underground cables have been
modeled with modified Carson’s equations. There are both
three- and single-phase loads. The three-phase loads are either
star or delta connected. The loads in the system have been
modeled in ZIP-model. A three-phase transformer is modeled
as three individual single-phase transformers.

Measurements were generated using three-phase power flow
program with addition of normally distributed noise com-
ponent to generate noisy measurements. The error of true
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measurement was assumed 3% while the error in pseudo-
measurement (load data) was considered 20%.

Several trials are performed for appropriate parameter
value selection. Appropriate combination of Wip, Wg,, Ci,
C> have been applied. The following values have been
chosen for HPSO estimator; Wi,; = 0.9, Wi, = 04,
Cy = Cy =2.05. The values are very close to those recom-
mended by Naka ef al. [31] and van den Bergh [34]. In order
to choose the best value for alpha, the algorithm was run for
different values of alpha between O and 1 in step of 0.1 in
order to obtain the value with the least convergence time. It is
found that ¢ = 0.2 produces the best convergence speed for
this example system. The number of particles and the number
of iterations are 200 and 1000, respectively. The lower and
upper limits of control variables corresponding to the coding
on the HPSO is set in such a way that the inequality constraints
of the control variables are satisfied as listed in (22a). The
shape of the proposed penalty function is displayed in Fig. 4

0.95 p.u. < V4, VP, Vf <1.05 p.u. (22a)
—30° < 8¢, 8b, 8¢ < 430° (22b)
0.9 <, 1, £ <1.l. (22¢)

The tap ratio of transformer is specified in the range of
0.9-1.1 in steps of 0.00625.

The zero injections, voltages, and angles across the closed
switch and voltage at the regulator bus have been taken
as equality constraints in the SE formulation. A weighted
quadratic penalty function is added to the objective function
to take care of each of these equality constraints.

The switch between buses 9 and 10 is assumed to be closed
for 13-bus test system. Figs. 5—7 show the real and estimated
vector of voltages and Table I shows the real and estimated
vector of angles at different phases of the IEEE 13-bus model
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6 04974 | -04869 | -11987 | -11864 | 11939 171 Fig. 10. True and estimated phase voltage c¢ for IEEE 123 bus system.
7 -120 119.39 117.51
8 -0.6488 -0.6297 -120 119.41 117.62 TABLE II
9 -0.631 -0.6513 11925 | -118.27 119.42 117.45 TRUE AND ESTIMATED TAP POSITION FOR 13-BUS SYSTEM AT BUS 6
10 -0.631 -0.6494 -119.25 -117.8 119.42 117.65
11 -0.6725 -0.6845 11926 | -117.78 119.45 117.49 Phase al bl e
12 0.6242 | -0.6332 - - - >
06 0.633 True Tap position 21211
13 0.6317 | -0.6193 -119.25 -118.19 119.42 117.26

distribution network. There are five switches in the 123-bus
system. The switch between buses 121 and 123 is assumed
to be open while other switches are assumed to be closed
for this network. Figs. 810 show the real and estimated
vector of voltages of the IEEE 123-bus model distribution
network. In Figs. 5-10, the value of voltage has been taken
as 1 where there is no phase available for the given bus on
the graphs. Also, in Table I, the dashes show that there is
no phase available for the given bus. The obtained results
are found to be very satisfactory within the allowable error
range. The main advantage of the HPSO-based method is in
correct estimation of the transformer taps as it is shown in
Table II for 13-bus test system and Table III for 123-bus sys-
tem, which is the most important findings from this research
reported here.

Estimated tap position HPSO | 2 | 2 | 1

TABLE III
TRUE AND ESTIMATED TAP POSITION FOR 123-BUS SYSTEM
State variable | Real value | WLS | HPSO
T15-Phase a -1 -1 -1
T27-Phase a 0 0 0
T27- Phase ¢ -1 -1 -1
T68-Phase a 8 7 8
T68-Phase b 1 1 1
T68-Phase ¢ 5 4 5

B. Discussions

We have applied both PSO and HPSO to obtain tap posi-
tion estimates. Both methods have been tested on IEEE 13-
and 123-bus test systems. PSO takes on an average of 67 h to
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obtain the solution on 13-bus test system. We have modified
the particle position update equation for improving the speed
of convergence as given in (14). Therefore, the execution time
reduced to 2-3 h. HPSO on the other hand takes 18—20 min to
converge for 13-bus test system. The convergence characteris-
tic of HPSO and improved PSO with correction are shown in
Fig. 12 for 13-bus test system. As can be seen from conver-
gence characteristic, HPSO method is much faster than PSO
method.

In the ideal smart grid environment in principle the state
estimator in distribution system should be running in real
time. There are several practical limitations to realize this in
practice. Even the data from modern smart meters are com-
municated to distribution SCADA every few hours. The most
automated distribution network in the U.K. does not transmit
data more than twice a day. The telecommunication infras-
tructure in most automated distribution network is such that
it is not possible to transmit half hourly measured and stored
smart meter data more than twice a day to the control center.
Samarakoon et al. [41] have documented in details the stan-
dard and practice of data transmission from smart meters in
various countries across the world. Given this situation, one
obvious question arises: is there any possibility for real time
SE in power distribution system in the forcible future? The fre-
quency of tap operation is also another practical consideration.
Considering the operating life of transformer, after 3000 oper-
ations, it requires maintenance and after 30 000 operations the

1.02

1.04 AN
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A4} \\

A
s == L
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Estimated Ve

0.98

0.97
NTOUOoONTVRXONTON
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R A I R IR R IR )

Fig. 14. True and estimated phase voltage ¢ for reduced model of IEEE 123
bus system.

transformer tap changing mechanism should be replaced with
a new one. In that case changing the tap position every few
seconds will damagingly result in shortening the transformer
operating life. So it is convincing that unlike transmission
system the SE in distribution system will not run every 2-5 s.

Also, the HPSO method with correction for improving the
speed has been applied to IEEE 123-bus test system model.
It takes on an average of 4 h to obtain the solution. However,
by identifying and considering only those buses where volt-
age and angles are affected significantly by changing the tap
changer position the execution time has reduced to 90 min
as a result of the reduction in the number of state variables.
Those buses have been enclosed through a dashed line in Fig. 3
and the results are shown in Figs. 11, 13, and 14. One way
to improve the speed of convergence of HPSO is to paral-
lelize the algorithm. In the context of computation in power
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transmission, it has been explored to obtain improvement in
speed of computation. Jeong et al. [42] have achieved 4.8 times
faster than normal PSO for transmission system SE. Because
of the similarity of the structure of the equations and between
the inter-relationship between variables it is possible to achieve
similar results based on the application of parallel PSO for
the given network in this paper. This is not pursued further
because of the lack of access to parallel computing cluster.
The comparison of the results of tap estimation from WLS
and HPSO reveals that estimation of the continuous values of
tap changer may result in an inaccurate tap position since it
is based on the rounding technique while HPSO provides the
exact position of transformer taps by estimating the discrete
values of transformer tap positions. So HPSO output provides
more accurate voltage and angle estimates thus helps in obtain-
ing better estimate of line and transformer loading and losses.
This is very useful in dynamic price setting for efficient elec-
tricity market operation and also for optimum scheduling of
voltage and var control (VVC) resources. The power losses
in the lines for 123 node system have been computed and
the results are shown in Figs. 15 and 16. It is clearly seen
that HPSO-based technique provides more accurate loss fig-
ures. Given the customer has to bear the cost of the losses
HPSO-based estimated voltage and angles and tap positions
when used to calculate operational losses for pricing, they will
result in more fairer value. This clearly justifies the novelty
and benefit of this research contribution. One network opera-
tor (Scottish and Southern Energy) in the U.K. has already
found this approach useful for network loss calculation in
their 33/11 kV network. Compared to WLS-based approach
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the computed network losses are noticeably different which is
very useful outcome of this proposed methodology.

VII. CONCLUSION

The technique proposed in this paper has addressed the
transformer taps estimation in the context of distribution SE.
It has, for the first time, applied HPSO method to estimate
transformer tap positions without any assumption and also
in unbalanced three-phase distribution system. The simula-
tion results on IEEE 13- and 123-bus standard system models
showed that the HPSO method can generate reliable estimate
for transformer taps with discrete variables in distribution
network while minimizing the objective function. It is also
demonstrated that it performs better when compared to PSO.
This paper also contributes to novel strategies to expedite solu-
tion from PSO and HPSO. The solution from HPSO is accurate
and is very useful for computation of various quantities accu-
rately used in the operational planning time scale, i.e., VVC
and pricing in short term market.

Moreover, operational losses from HPSO is much accurate
in this case lower than WLS method. In that sense this method
is better than WLS method as it provides higher accuracy. Such
lower losses will help lowering the overall cost of electricity.
In a distribution network where about 6% of electricity gen-
erated is lost, accurate estimation of that has huge technical
and commercial benefits. The technique proposed in this paper
definitely will help to realize those benefits.

No gross error is assumed in tap measurement, the tap
position measured can be corrupted while being telemetered.
A further work continues for bad tap error detection in a
large practical power distribution network model. Also, our
immediate future plan is to explore mixed integer nonlinear
optimization solver for distribution SE problem.
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