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Abstract—Electrical distribution systems have been experienc-
ing many changes in recent times. Advances in metering system
infrastructure and the deployment of a large number of smart
meters in the grid will produce a big volume of data that
will be required for many different applications. Despite the
significant investments taking place in the communications infras-
tructure, this remains a bottleneck for the implementation of
some applications. This paper presents a methodology for lossy
data compression in smart distribution systems using the singular
value decomposition technique. The proposed method is capable
of significantly reducing the volume of data to be transmitted
through the communications network and accurately reconstruct-
ing the original data. These features are illustrated by results
from tests carried out using real data collected from metering
devices at many different substations.

Index Terms—Data compression, power system monitoring,
smart grids.

I. INTRODUCTION

ISTRIBUTION systems have been experiencing fast and
D significant changes, making the problems related to oper-
ation and planning of such systems more challenging. The new
generation of smart distribution systems is characterized by the
presence of dispersed and diverse generation, two-way flow of
electrical power and the presence of meshed grid configura-
tions instead of only radial ones. Besides, a smart distribution
grid must be developed having in mind principles such as [1]
accommodation of all generation options, active participation
by consumers in demand response, power quality, efficient
operation, self-healing, and optimization of asset utilization.
The efficiency and reliability of the operation of smart dis-
tribution systems require monitoring, analysis, and control of
the power grid at different levels.
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Advances in metering and communications infrastructures
allow the collection and storage of a large volume of data rep-
resenting different system variables, taken at different voltage
levels. It is evident that the communications networks play
a very crucial role in the smart grid implementation, requir-
ing also the presence of a proper two-way communications
infrastructure, which should be able to meet the needs of
management and remote control of the grid [2]. Such infras-
tructure must allow real-time data communication through
wide area networks (WANSs) to the distribution feeder and
customer level [3]. Electrical utilities WANs usually adopt
different communications technologies [4], including wired,
such as fiber optics, power line communication (PLC) sys-
tems, copper-wire line, and wireless, such as cellular networks
and cognitive radio [5]. Many different developments of com-
munications technologies and strategies are reported in the
technical literature [4]. They are designed to support a wide
range of applications involving distribution systems monitor-
ing, analysis, management, control, automation, and planning.
Despite all the efforts in developing adequate communications
infrastructures for smart distribution systems, in some cases
their capacities still represent a major bottleneck for effec-
tively running the advanced functions and tools for distribution
management and control.

II. RATIONALE

The advances in metering system infrastructure and the
ongoing deployment of smart meters will generate a big vol-
ume of data every day, mostly steady state data associated with
system normal operating conditions. From an electric utility
point of view, it would be interesting if all the data could be
transmitted and become available to be processed. However,
the communications network can be a bottleneck to achieve
this goal. Data compression can enable the transmission of
a big volume of data, which can be further used for post-
operation steady state analyses that will help utilities to
assess the power system performance and to enhance their
operational processes. Many different techniques have been
proposed for data compression in smart grid computation and
control [6]-[8]. Most of them are devoted to power quality
analysis and aim at the compression of electrical signal wave-
form associated with a transient response that follows a given
system disturbance [9]-[12]. Ringwelski et al. [6] proposed
lossless compression algorithms for smart meters and com-
pare them to off-the-shelf algorithms. The best performance,
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in terms of compression ratio (CR), was achieved by the
Lempel-Ziv—Markov Chain Huffman Coding algorithm,
resulting in average CRs between 4:1 and 20:1. A com-
pression approach tailored for the requirements of load pro-
file data transmission in smart metering is presented in [7].
Zhang et al. [8] proposed a real-time data compression tech-
nique that combines exception compression with swing door
trending compression, which resulted in CRs that ranged from
6:1 to 11:1. In [9], a biorthogonal 5/3 spline filter is employed
for the compression of power system waveforms, achieving
CRs up to 8:1. A wavelet transform-based multiresolution
analysis is employed in [10] to perform the compression of
disturbance signals in the smart grid context, having achieved
a CR of 5.4:1. Focusing on the compression of data pro-
vided by phasor measurement units (PMUs), Klump et al. [11]
adapted techniques already employed to solve image com-
pression problems and proposed a new lossless compression
approach. The best CR achieved was 14.35:1. Also aiming
the compression of PMU data, the application of an embed-
ded zerotree wavelet transform-based technique is proposed
in [12]. According to the authors, the obtained performance is
not as good as it is observed when using the same technique
for image compression. The authors also point out that each
data has its own features and even if a particular data compres-
sion method may be very effective for a specific signal, it may
not be that productive in compressing other signals effectively.

Lai [13] presented a critical review on the impact of big
data on smart grid and argues that due to smart grid deploy-
ment, there is a need to deal with a huge volume of data and
different types of data sources in real time. It is stated that
decision support systems need to incorporate with data com-
pression mechanism to deal with big data situations effectively
and that achieving a high compression is a major concern. The
state-of-the-art and future trends of methods for the compres-
sion of electrical signal waveforms can be found in [14]. The
authors state that data compression for smart grids is far from
being as mature as for speech, image, and video compression.
Smart grids will demand data compression techniques that are
suitable for many distinct applications. While high compres-
sion levels are desirable in order to cope with the burden of
the communications systems and the storage utilization [10],
the level of tolerance to inaccuracies in the decompressed
data will depend mainly on the characteristics of the targeted
application.

Most of the works found in the literature show data com-
pression results that can be considered relatively good for
the intended applications. However, envisioning the volume
of steady-state data that will be available for transmission
and storage in the smart grid, higher CRs may be required.
Moreover, there is a lack of research works on the compres-
sion of steady-state data in comparison to the compression of
waveform signals.

This paper presents a methodology for the compression of
large datasets, which can be transmitted from data concen-
trators or a regional data and control center in a compressed
form and reconstructed to serve as input data for different
applications, thus reducing the burden that would be imposed
to the communications system capacity if the uncompressed
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data should be transmitted. The focus is on the compression
of data from different measurements, taken at several time
instants, which may cover, for example, an entire day of sys-
tem operation. The measurement data at any given time instant
will correspond, in general, to a steady state system operating
condition. The dataset can be conveniently stored in a matrix
format, which is suitable for the application of the singular
value decomposition (SVD) technique. SVD has been suc-
cessfully employed for image compression and other related
applications [15]-[18]. However, its application for data com-
pression in the smart grid has not been analyzed yet. The
main motivation for employing SVD lies in its simplicity
and potential to achieve good tradeoffs between data com-
pression and loss of information. When applying SVD for
data compression, the number of singular values (SVs) to be
retained is the only parameter that needs to be set. As in many
practical applications the ordered SVs decrease rapidly, only
a few SVs are necessary in order to effectively compress the
data. When the application of SVD is effective for a given
data compression task, this will probably be revealed at high
compression levels, with only a few SVs being retained. It
is not the objective of this paper to select the best technique
to perform a given data compression task in the smart grid
computation. Rather, it aims at presenting the SVD as a tech-
nique that is worth applying and exploring, as its application is
straightforward and can provide results of acceptable accuracy.
If the data compression achieved using SVD is not acceptable,
other techniques can be explored. In such case, the search for
an acceptable performance usually involves the exploration of
different models and parameters.

Tests using real-data collected from metering devices at
50 different substations are performed. The results show that
the proposed methodology leads to a significant reduction in
the volume of data to be transmitted. It is also shown that there
is a very low loss of information after the data reconstruction
is performed, meaning that the reconstructed data can serve
as valid inputs for many different applications. The compara-
tive results are presented and it is also shown that SVD can be
employed along with other techniques, such as discrete wavelet
transform (DWT), in order to achieve even better results.

The remainder of this paper is organized as follows.
Section III discusses the importance of the metering and
communications infrastructures in smart distribution sys-
tems. Aspects of the SVD are presented in Section IV. In
Section V, the proposed methodology is presented and dis-
cussed. Results for data compression using real-data are
presented in Section VI. Finally, the conclusion is made in
Section VII.

III. DATA HANDLING IN SMART DISTRIBUTION SYSTEMS

Power distribution systems, traditionally designed as passive
and radial networks, have been experiencing many transforma-
tions to deliver the concept of a smart grid. These changes are
driven by different factors, such as: the introduction of dis-
persed power generation directly connected to the distribution
grid, shift from conventional power generation to renewable
ones, the introduction of new technologies that will improve
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system monitoring and control capabilities, such as new power
electronic devices and smart metering systems.

Some of the characteristics usually associated with a smart
distribution system are [19]-[22] as follows:

1) presence of distributed and renewable energy resources;

2) capability to detect, analyse, and respond to disturbances

(self-healing);

3) easy integration (plug and play) of different sorts of

energy sources and loads;

4) automation and control of the distribution network;

5) automatic fault location and restoration;

6) islanding;

7) optimized and efficient use of assets.

The implementation of such characteristics requires the
introduction of technologies and techniques that allow effec-
tively monitoring and controlling the electric grid. In this con-
text, advanced metering and communications infrastructures
play an import role. Automatic meter reading (AMR) systems
can automatically collect and transmit measured data using
different communications technologies, wired or wireless. The
advanced metering infrastructure represents an advance with
respect to the AMR, as it makes possible not only to collect the
measured data, but also enables analyses and interaction with
consumers’ devices [4]. This requires a two-way communica-
tion between the utility and consumers. At power distribution
substations, intelligent electronic devices (IEDs) are capable
of collecting operational and commercial data and present
multiple communication channels, applications, and protocols.

Electric utilities” WANs usually employ hybrid communi-
cations technologies [4], such as PLC, fiber optics, WiMax,
ZigBee, etc. They have to support many different applications,
such as those related to monitoring, control, and automation
in a distribution management systems [23], as well as demand
side management. It is believed that with the deployment
of new smart grid components, an adequate communications
infrastructure is needed to allow sustainable operations to both
utilities and customers [24].

Considering the diversity of possibilities of monitoring,
control, and automation envisaged for the smart grid, the com-
munications infrastructure will have to cope with a huge flow
of data among the components of the grid [25]. Even with
significant investments in the communications infrastructure,
it can still be a bottleneck for the implementation of some
applications. Therefore, new algorithms and methodologies
that reduce the volume of data through the communications
network will enable a more efficient and effective utiliza-
tion of monitoring, control, and automation tools in a smart
distribution system.

1V. DATA COMPRESSION VIA SVD

Data compression can be, in general, classified as
lossless [26] or lossy [27], depending whether or not all orig-
inal data can be recovered once it has gone through the
compression process. In a lossless data compression, all orig-
inal data can be recovered when the data is decompressed. In
a lossy compression, on the other hand, part of the information
is lost when the data is compressed. In such a compression,
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Fig. 1. Typical decay of the ordered SVs.

not only the redundant data but also information found to be
less relevant is discarded. This will improve data compression
but at the cost of making lossy compression a nonreversible
process, as part of the information is permanently lost.

Lossy data compression has received significant attention
from researchers due to its potential to achieve better CRs,
generally much better than obtained with lossless compres-
sion. This will benefit a wide range of applications if adequate
tradeoff between the data compression and information loss
can be accepted.

Many applications of SVD for lossy data compression can
be found in [28]-[30]. The SVD technique can be used to
decompose a matrix X € N™*! into a product of three
matrices as

X =UxVvT 1)

where U € W™ and V € R are orthogonal matrices con-
taining eigenvectors of XXT and XTX, respectively, X € Rmx!
is a diagonal matrix whose elements are the SVs, which are
the square roots of the eigenvalues of XXT or XTX arranged
in decreasing order.

Equation (1) can also be expressed as a sum of rank one
matrices as

m
X = ZuioiViT = ulalvlT + uzazvg + -4 umormvg1 2)
i=1

where vectors u;j and v; are, respectively, the left and right
singular vectors of X, while o; are the corresponding SVs.

The SVD can be used for data compression, enabling
noise reduction and data dependencies, as small SVs mainly
represent the noise and interdependences in X. In many appli-
cations, it is found that the ordered SVs in the diagonal X
decrease rapidly, as typically illustrated in Fig. 1. In such
cases, a few terms in (2) would be necessary for a good
approximation of matrix X and a few SVs need to be retained
in X. This is the main idea of the proposed methodology,
which will be explored further in the next section.

V. PROPOSED METHODOLOGY

The deployment of a large number of smart sensors and
meters in electrical distribution systems poses enormous chal-
lenges to the information infrastructure, as it will have to
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support the exchange of a huge volume of data to be processed
by many different smart grid applications. This will require the
collection and transmission of enormous amounts of data, such
as, for example, measurements taken during a whole day of
system operation (for post-operation analysis or billing) or in
short time intervals (for network operation functions).

This section presents a methodology that allows the com-
pression of data to be exchanged in smart distribution systems.

A. Data Matrix

Consider, for example, that measurements from m differ-
ent meters, taken over ¢ time instants, need to be transmitted
through the communications network of a smart distribution
system to serve as inputs for a given application. Let this set
of measurements be put in the form of a matrix X, with each
row of X containing the measurements taken from a given
meter at each time instant. Matrix X is illustrated in Fig. 2.

This is a convenient form to represent the data, as it can be
easily manipulated for data compression, to be shown in the
next section.

B. Data Compression

As discussed in Section IV, data matrix X can be factorized
into three matrices by applying the SVD. This is shown in (3)
and schematically represented in Fig. 3. In order to simplify
the notation, matrix VT shown in (1) is hereafter written as
just V

X(mxt) — U(mxm)z(mxt)v(txt) (3)

where diagonal matrix X contains the SVs of X, ordered from
the highest to the lowest.

Data compression can be achieved by taking advantage of
the fact that many matrices occurring in practice do exhibit
some kind of structure that leads to only a few SVs actually
being non-negligible. In such cases, good approximation of
matrix X can be obtained by keeping only the SVs found
to be significant in matrix X. Assume that r SVs are to be
retained in ¥ and let matrix XR denotes the approximated
matrix X. Then, matrix XR can be computed by replacing X
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by X’ in (1), yielding expression (4)

XR = UX'V 4)
where each matrix can be partitioned into submatrices as
B (rxr) (rx(t=r))
<ro | XR)] XR|; }
= ((m=r)xr) ((m=1)x (t-1))
| XR,;, XR,,
(rxr) (rx(m-r))
U= U, Up
= | gl e
L Y21 22
B (rxr) (rx(t—r))
V= Vi Vi
T | yem yEnxian
L Y21 22
r (rxr)
5 = DI 0 .
0 0

Performing matrix multiplications on the right hand side
of (4) it is possible to express matrix XR as in (5), where the
submatrices dimensions have been omitted

XRyr XRpp | _ (UnZuVi UnXuVi 5)
XRy;  XRp U2V UniZnVie |

Then, it can be seen that the only submatrices needed to
compute the approximated matrix XR are: E(lrlxr); Uirlxr);
Ué(lm—r)xr); V?ixr); and Vggx (t—r)).

Noting the dimensions of each submatrix and observing
that Xq; is diagonal, it can be found that the total num-
ber of elements to be stored for those submatrices equals
m+t+1) xr.

C. Compression Ratio

The extent of compression achieved by a coding scheme
can be measured by a CR. The term CR has been defined
in several ways in the literature. In many contexts, the CR is
computed by dividing the size of the original data by the size
of the compressed data. A CR = 4, for example, means that
the data has been compressed with the ratio 4:1. Alternatively,
it can be said that the volume of the compressed data is 25%
of the original data. In this paper, the CR is computed by (6),
which expresses the ratio between the total number of elements
in the original matrix X (measurements) and the total number
of elements in the submatrices that are needed to compute
matrix XR

m Xt
T (m4t+ D xr

It can be noted from (6) that, given a measurement set, the
effectiveness of the data compression will basically depend on
the number of SVs, r, to be retained after performing the SVD.

Communications network bottlenecks will limit the value of
CR that can be considered acceptable for a given data com-
pression task. So, alternatively, it is possible to rearrange
expression (6) so that one can directly compute the number of
SVs that need to be retained in order to achieve a given CR

CR (6)

m Xt
r= .
(m+1t+ 1) x CR

)

Expression (7) will be used to directly compute the
value of r that will meet a given compression requirement.
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However, it should be noted that according to this expres-
sion r can assume any real-valued number, while only integer
values are practical, once it represents the number of SVs
to be retained in X. For practical purposes, a rounding of r
to the nearest integer value will be a good approximation to
meet the specified CR requirement. This will be illustrated in
Section VI.

D. Loss of Information

As discussed in Section IV, lossy compression methods
can be very effective for data compression, but this comes
with a cost, which is the loss of information that will not
be retrieved when the original data is reconstructed. Then,
data compression should be carried out in a way that a good
tradeoff between the CR and loss of information is achieved.
In other words, data compression should not result in loss of
information that renders the reconstructed matrix of limited
use to the applications that would employ it as input data.

In this paper, the loss of information is measured in terms
of the mean absolute error (MAE) and the mean percent-
age error (MPE) observed when comparing the reconstructed
data matrix with the original one. The expressions for com-
puting the MAE and MPE are

MA )Z

i=1j

m t
(mxt);;

Y X, j) — XR(, j)] ®)

t
j=1

X(i,)) — XR(. J)
X(@i,))

MPE =

x 100.  (9)

E. Algorithm

The block diagram in Fig. 4 illustrates the flow of data when
employing the proposed methodology. The data compres-
sion algorithm performed at the sending end (for example,
a data concentrator or a regional data and control center) can
be summarized by the following steps.
1) Form data matrix X as illustrated in Fig. 2.
2) Perform SVD to obtain matrices U, X, and V.
3) Based on a value of r chosen to achieve a given CR,
form submatrices Zgrlxr) U(rxr) U((m nxr). V(rxr),
and V?%X(t 28

4) Reconstruct matrix X by computing XR according
to (5).

5) Evaluate the loss of information by computing MAE and
MPE using (8) and (9), respectively.

Before sending the compressed data it is possible to check
if the loss of information after data compression is acceptable
or not for the targeted applications. If it is not acceptable,
data compression can be performed again by increasing the
number of SVs to be retained and repeating the steps 3)-5).
This will reduce the loss of information, but with the cost of
making data compression less effective. Once a good tradeoff
between CR and loss of information is achieved, the data is
transmitted. At the receiving end, the data matrix can be recon-
structed using (5), in the same way indicated by step 4) of the
presented algorithm. It is important to observe that when an

Data Matrix

A

Data Compression
(Sending end)

y

Communication
Network

A

Data Reconstruction
(Receiving end)

Applications

Fig. 4. Data flow.

acceptable tradeoff is not achieved by using SVD, the appli-
cation of a different data compression technique should be
considered, which means that steps 2)—4) of the algorithm are
changed accordingly.

It should be noted that other quantities can be calculated
to measure the loss of information. As this calculation is per-
formed still at the sending end, information about expected
inaccuracies in the reconstructed data can also be sent along
with the compressed data, which can be useful depending on
the intended application. Among the applications that will ben-
efit from the proposed approach are those devoted to steady
state analysis, such as power flow and state estimation [31].
In those studies, forecasted quantities are often employed and
those may be far less accurate than the reconstructed data.
The investigation of the influence of the proposed approach on
specific applications will be the subject of future publication.

VI. TEST RESULTS

The proposed data compression methodology has been
implemented using MATLAB and tested with real mea-
surement data from an U.K. utility. The tests have been
performed on a PC Intel core i7 processor, 2.20 GHz, with
8 GB of RAM. The data description and obtained results are
presented next.

A. Data Description

Input data for tests have been preprocessed using raw
data from the Electricity North West Company that owns
and operates the electric power distribution network in
the North West of England, which includes the regions
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TABLE 1
CRS VERSUS MEAN GLOBAL ERRORS

MPE Margin of Margin of

e r - (%) Er%‘or MRt Er%'or
100:1 5.54 92.3:1 | 4157 | +£1.39x10" | 0.036 | £1.37x10"
50:1 11.07 | 50.3:1 | 3210 | +£1.00x10" | 0.029 | £1.07x10"
33.33:1 | 16.61 | 32.6:1 | 2.612 | +0.85x10" | 0.024 | +0.86x10*
20:1 27.68 | 19.8:1 | 2.036 | +0.74x10" | 0.020 | +£0.65x10"
10:1 5536 | 10.1:1 1.340 | +0.66x10" | 0.013 | +0.39x10*
6.67:1 | 83.04 6.7:1 1.006 | +0.70x10" | 0.009 | +0.25x10*
5:1 110.72 5:1 0.761 | +0.65x10" | 0.007 | +0.16x10*
4:1 [13840[ 41 0.579 | +0.56x10" | 0.004 | +0.11x10*

of Cumbria, Lancashire, Greater Manchester and parts of
North Yorkshire, Derbyshire, and Cheshire. The company
has recently launched the customer load active system ser-
vices (CLASS) project, which aims to increase the capacity
of the electricity network by using voltage control to manage
electricity consumption at peak times. As part of the CLASS
project a significant amount of data has been collected in the
year of 2014, by installing metering equipment in many dif-
ferent substations of a trial area that represents 17% of the
company’s network, serving around 470000 customers. The
employed data is available in [32], where several measure-
ments collected since April 2014 can be found. Measurements
were collected at 1 min or 1 s time intervals. More details
about the CLASS project are described in [32].

The next section shows results obtained with the proposed
method for tests with measurement data collected in a 1-min
basis, from transformers at 50 substations, during the whole
day of December 10, 2014. Those include measurements
of three-phase voltages and currents, active power, reactive
power, and power factor, taken from a total of 900 m at
1440 time instants (minutes). This corresponds to a total of
1296 000 measurements and a 900 x 1440 data matrix.

It should be noted that the choice to show results obtained
with data collected on December 10, 2014 was arbitrary and
simply because this was the most recent date with available
data when the tests were run. Similar results were obtained
when performing additional tests using data collected on
other dates.

B. Results

The algorithm presented in Section V-E was tested
to evaluate the CR and loss of information for the
data matrix containing the 1296000 measurements collected
on December 10, 2014. Different situations have been consid-
ered, in which different CRs were aimed. The obtained results
are presented in Table I. The number of retained SVs was cal-
culated using (7), where the target CRs (TCRs) were those
shown in the first column of Table I. The second column
of Table I shows the number of SVs r computed by (7) in
order to achieve the corresponding TCR. As r must be an
integer number, the computed values are always rounded to
their nearest integer values. This results in the CRs shown
in the third column of Table I, some of them slightly differ-
ent from the TCRs. The mean global absolute and percentage
errors are also presented, along with the corresponding mar-
gin of errors for a confidence interval of 95%. Mean square
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TABLE II
MEAN ERRORS PER MEASURED QUANTITY (IN PERCENT)

CR v 1 P Q PF
923:1 | 0.306 | 1.948 | 1.806 | 23.555 | 5.287
50.3:1 | 0253 | 1.543 | 1413 | 17.834 | 4.259
32.6:1 | 0221 | 1325 | 1.219 | 13.952 | 3.700
19.8:1 | 0.189 | 1.116 | 1.018 | 10.751 | 2.636
10.1:1 | 0.142 | 0771 | 0676 | 7.085 | 1.557
6.7:1 | 0.114 | 0565 | 0472 | 5.684 | 0.863
5:1 | 0.093 | 0404 | 0285 | 4.530 | 0.541
41 0.073 | 0296 | 0.142 | 3.642 | 0319
TABLE III

MAES PER MEASURED QUANTITY

CR | V(kV) [1(kA) [P (MW) | Q Mvar) | PF
923:1 | 0.025 [0.007 | 0.087 0.098 [ 0.044
503:1 | 0.021 | 0.006 | 0.069 0.075 | 0.035
32.6:1 | 0.018 | 0.005 | 0.059 0.061 [ 0.030
19.8:1 | 0015 | 0.004 | 0.049 0047 [ 0.021
10.1:1 | 0.012 | 0.003 | 0.032 0.029 [0.013
6.7:1 0.009 [ 0.002 | 0.022 0.020 [ 0.007

5:1 0.007 | 0.001 | 0.013 0.014 | 0.005

41 0.006 | 0.001 | 0.006 0011 [0.003

TABLE IV

DATA VALUES RANGES

Variable | Min Max
V (kV) 6.302 | 11.523
I (kA) 0.058 | 1.059
P (MW) 1.359 | 13.184
Q (Mvar) | -3.014 | 4.822
PF -1 1

errors have also been computed and are very small, ranging
from 0.0001 to 0.0079, those extreme values corresponding to
the CRs of 4:1 and 92.3:1, respectively.

From Table I, it can be seen that very good tradeoff between
data compression and loss of information have been achieved.

Tables II and III present more detailed results and show also
the mean errors (in percent and absolute) per type of vari-
able being measured. From Table II, it is possible to observe
that more significant percentage errors are associated with the
reactive power, while voltage, currents, and active power mea-
surements present very low errors when reconstructed. Despite
the larger percentage errors observed in the reconstruction
of the reactive power measurements, it is also possible to
observe that those can be significantly reduced if lower CRs
are allowed.

The results in Table III show that the reconstructed data also
presents low absolute errors, considering that the measurement
values found in the original data lie in the ranges shown in
Table IV for each variable.

Regarding power factor and, particularly, reactive power
measurements, it was also observed that data reconstructed
with high percentage errors are not necessarily associated with
high absolute errors. In many cases, high percentage errors are
obtained when reconstructing power factor or reactive power
measurements whose values are close to zero. In such cases,
small absolute errors may be associated with large percentage
errors.
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TABLE V
MAXIMUM ERRORS PER MEASURED QUANTITY (IN PERCENT)

CR \4 1 P
92.3:1 3.51 24.35 17.58
50.3:1 3.33 20.29 13.41
32.6:1 3.33 19.77 11.81
19.8:1 3.04 19.00 11.86
10.1:1 2.74 11.53 11.08
6.7:1 241 9.18 6.50

5:1 1.72 6.21 4.85

4:1 1.09 5.05 3.86

TABLE VI

RESULTS WITH SVD AND DWT—MEAN ERRORS

SVD DWT (db2)
CR | MPE (%) | MAE CR_ | MPE (%) | MAE
92.3:1 4157 | 0.036 | 93.4:1 67.779 2.403
50.3:1 3210 | 0.029 | 50.9:1 | 40.053 1375
32.6:1 2612 | 0.024 | 32.3:1 6.679 0.183
19.8:1 2.036 | 0.020 | 19.6:1 1.126 0.011
10.1:1 1340 | 0013 10:1 0.669 0.007
6.7:1 1.006 | 0.009 | 6.7:1 0.490 0.005
51 0.761 0.007 | 5.1:1 0.396 0.004
4:1 0579 | 0.004 | 4.1:1 0.329 0.004

The maximum errors for voltage, current, and active power
measurements are presented in Table V. However, it is impor-
tant to note that those maximum errors can be seen as outliers.
As an example, consider the CR of 92.3:1, which is associ-
ated with the largest reconstruction errors. In this case, 95.38%
of the reconstructed active power measurements present errors
below 5%, the same happening to 94.31% and 100% of current
and voltage magnitude measurements, respectively. Maximum
errors associated with power factor and reactive power mea-
surements can be very high, as explained before. So, these
errors are not meaningful and are not shown in Table V.
However, considering again the worst case of the CR of
92.25:1, 82.35% of the reconstructed reactive power measure-
ments present errors below the corresponding MPE shown in
Table II. The same happens to 86.02% of the power factor
measurements.

C. Comparative Analysis

In order to compare the performance of the data compres-
sion obtained when employing SVD, additional tests have
been carried out using the DWT for the compression of the
same dataset. Different Daubechies’ wavelets [33] have been
tested, as well as different thresholds and levels of decomposi-
tion. Table VI shows results obtained with SVD and with the
order 2 Daubechies’ wavelet (db2) and five levels of decom-
position. Similar results were obtained when testing different
Daubechies’ wavelets.

It can be seen that SVD is capable of achieving better trade-
off for higher CRs. This can be associated with the fact that in
SVD the first SVs carry the most relevant information about
the data. Fig. 5 shows the 150 largest SVs obtained when
applying the SVD technique. In order to allow a better visu-
alization of the SVs decay, the three largest SVs have been
omitted. Regarding the db2 model, different thresholds have

s
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=
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Fig. 5. Decay of the 150 largest SVs.

TABLE VII
RESULTS WITH SVD AND DWT—MAXIMUM ERRORS (IN PERCENT)

SVD DWT (db2)
CR v I P CR v I P
923:1 | 351 | 2435 | 17.58| 93.4:1 | 13636 | 141.60 | 141.67
503:1 | 333 | 20.29 | 1341 50.9:1 |136.36 | 144.81 | 144.58
32.6:1 | 333 | 19.77 | 11.81| 32.3:1 |136.20 | 142.71 | 141.81
19.8:1 | 3.04 | 19.00 [ 11.86| 19.6:1 | 157 | 9.70 | 9.94
10.1:1 | 274 | 1153 |[11.08] 10:1 074 | 6385 | 6.09
671 | 241 | 918 | 650 | 6.7:1 | 042 | 580 | 553
51 172 | 621 | 485 | 5.0:1 | 034 | 522 | 4.00
41 109 | 505 | 3.86 | 4.1:1 | 030 | 440 | 347

been employed, aiming to retain the number of wavelet coef-
ficients that would result in the same CRs shown for SVD.
However, due to the discrete nature of this problem, it was
not always possible to exactly match the CRs obtained with
both techniques. As a result, the CRs presented in the first and
in the fourth columns of Table VI are in some cases slightly
different.

When using the DWT, the margin of errors associated with
MPE and MAE, for a confidence interval of 95%, presented
characteristics similar to those obtained when applying SVD
and shown in Table I.

The maximum errors observed with DWT are presented in
Table VII, along with the ones previously obtained with SVD.
When comparing such results it is possible to observe that
for higher CRs the maximum errors obtained with DWT are
much larger than those obtained with SVD. On the other hand,
maximum errors obtained with the application of DWT are
smaller for lower CRs. In order to achieve higher CRs with
the DWT (db2), it is necessary to discard not only detail coeffi-
cients, but also some approximation coefficients [33], resulting
in larger reconstruction errors.

As it happened for the results obtained with SVD, maximum
errors associated with power factor and reactive power mea-
surements presented very large values when using DWT. As
discussed in Section VI-B, this happens when attempting
to reconstruct power factor or reactive power measurements
whose original values are close to zero, which may result in
high percentage errors.

For lower CRs the results obtained with the DWT tend to be
better. However, regarding the tested data, the reconstruction
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TABLE VIII
RESULTS FOR REACTIVE POWER AND POWER FACTOR MEASUREMENTS

SVD DWT (db2)
MPE —Q | MPE_PF MPE_Q | MPE_PF
R @ | R | o
92.3:1 23.555 5.287 93.4:1 67.440 77.158
50.3:1 17.834 4.259 50.9:1 41.792 50.873
32.6:1 13.952 3.700 32.3:1 13.488 7.834
19.8:1 10.751 2.636 19.6:1 5.769 1.089
10.1:1 7.085 1.557 10:1 3.378 0.282
6.7:1 5.684 0.863 6.7:1 2.408 0.095
5:1 4.530 0.541 5.1:1 1.931 0.040
4:1 3.642 0.319 4.1:1 1.575 0.020
TABLE IX

RESULTS COMBINING SVD AND DWT

Variable CR MPE (%) | Technique
\Y 92.3:1 0.306 SVD
1 92.3:1 1.948 SVD
P 92.3:1 1.806 SVD
Q 5.1:1 1.931 DWT
PF 19.6:1 1.089 DWT

errors for lower CRs are already small for both methods, with
the exception of the errors associated with the reconstruction
of reactive power and power factor measurements. The MPEs
associated with reactive power measurements (MPE_Q) and
power factor measurements (MPE_PF), computed when using
SVD and DWT, are shown in Table VIII.

From the obtained results, one can think of combine SVD
and DWT in order to obtain a tradeoff that suits a given
data compression problem. If, for example, MPEs below 2%,
per measured quantity, are acceptable for a given application,
then SVD can be employed to compress only voltage, current
and active power measurements, while a DWT is employed
to compress reactive power and power factor measurements.
Table IX shows the CRs achieved and the associated errors
when using such strategy. Taking into account the number of
measurements associated with each variable, the global CR,
for the whole data set, will be 27.8:1. The resulting CR is
better than the one that would have been obtained if SVD or
DWT alone was employed.

The CRs achieved with the tested data when applying loss-
less methods, such as Block Zip 2 and Lempel-Ziv-Markov
chain-Algorithm, were approximately 6.6:1 and 7.8:1, respec-
tively. As previously mentioned, it is not the objective of
this paper to select the best technique to perform a given
data compression task in the smart grid, but to present SVD
as a technique that is worth applying and exploring in such
context. The application of SVD is straightforward, not requir-
ing the exploration of different parameters or models, and can
lead to competitive results. As illustrated in Table IX, it can
also be combined with other data compression technique to
achieve better data compression results. This strategy can be
easily addressed by the proposed methodology.

D. Comments

According to the proposed methodology, the measurement
data will be reconstructed at the receiving end by performing
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simple matrix multiplications using the transmitted com-
pressed data. One important feature of the proposed approach
is that the whole process, including the reconstruction phase,
can be performed in advance, before sending the compressed
data. This brings some advantages, which are discussed next.

1) Tradeoff Between CR and Loss of Information: The
choice of the best tradeoff between CR and loss of informa-
tion will depend, mainly, on the application that will make
use of the transmitted data and on limitations associated with
the communications network. In other words, that choice
will be driven by the tolerable loss of information and/or
data compression requirements.

Compression requirements or constraints are observed by
simply imposing limitations on the CR to be achieved. The loss
of information, on the other hand, can be evaluated in differ-
ent forms. Tables I-III show the percentage and absolute errors
computed as global or per variable measures. The observation
of the absolute errors per variable seems to be a good strategy
when the order of magnitude of the measurements being col-
lected is known. Consider, for example, that MAEs of 0.02 kV,
0.01 kA, 0.05 MW, and 0.05 Mvar are considered acceptable
for the measurement data set. Then, a CR of 19.8:1 would be
sufficient to simultaneously attend all the loss of information
constraints, as can be verified in Table III. Depending on the
intended application, different thresholds can be chosen and
different loss of information measures (or even a combination
of them) may be adopted.

2) Errors Associated to Metered Quantities: Besides the
errors presented in Tables I-III, it is also possible to com-
pute the errors associated with measurements taken from any
specific meter (rows of data matrix X) before transmitting
the compressed data. This is possible because data decom-
pression is also performed at the sending end [step 4) of
the algorithm of Section V-E]. Then, percentage and abso-
lute errors can also be calculated with respect to each row of
the original matrix X, which corresponds to a given meter.
This provides an even more detailed information about the
errors that can be found in the reconstructed data and may be
useful to identify, for example, specific meters whose associ-
ated reconstructed measurements are expected to present larger
errors and to be, consequently, less reliable. Those errors have
also been computed for the data set described in Section VI-A.
It was observed that the larger errors per meter were those
associated with reactive power measurements, which is in
accordance with the results in Tables II and III. However,
it was also observed that the expected errors may be very
different among the collected reactive measurements. Due to
limitation of space, the errors per meter are not presented.

It is important to note that the errors associated with mea-
surements taken from specific meters can also be transmitted
along with the compressed data. This information may be use-
ful for many applications, particularly those in which it is
important to model and take into account the uncertainties of
the data being processed.

3) Computational Efficiency: Computing a full SVD of
a m x t matrix has time complexity O(min{mz>, m*t}), which
may not be feasible for extremely large matrices. However,
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different algorithms for SVD can be found in the litera-
ture, with different complexities, such as, for example, those
that calculate the rank-r partial-SVD, reducing the complexity
to O(mtr) [34], [35]. Data compression in this paper has been
performed using MATLAB functions and the computational
time to compress the 1296 000 measurements of Section VI-B
was 0.641 s. On the other hand, the typical computational
time for tests performed using the DWT, also using MATLAB
functions, was 15 s. Different from the SVD, in which the
decomposition is performed for the entire data matrix at once,
the decomposition using DWT is performed for each measure-
ment vector (matrix rows). It is also important to observe that
the SVD is performed only once according to the algorithm
presented in Section V-E. This is because only steps 3)-5) of
the proposed algorithm need to be repeated if different val-
ues of r (number of retained SVs in X) should be tried until
an acceptable tradeoff between data compression and loss of
information is achieved. In such cases, only simple matrix
operations have to be performed, with minor impact on the
computational efficiency.

VII. CONCLUSION

This paper presented a methodology for data compression
in smart distribution systems using the SVD technique. The
proposed methodology can help the communications infras-
tructure to cope with the challenge of transmitting a big
volume of data that will need to be exchanged in future smart
grids. An algorithm for exploring different tradeoff between
data CR and loss of information was presented. The applica-
tion of SVD, due to its simplicity and effectiveness, has been
proposed. Tests have been performed employing real-data from
different substations of an U.K. company. The obtained results
show that a significant reduction in the volume of data to be
transmitted can be achieved, being the loss of information very
low after data reconstruction. It was also shown that SVD can
be competitive with other data compression techniques and
that the proposed methodology does not exclude the possibil-
ity of employing different techniques, cooperating to achieve
even better results.
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