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Abstract—This paper investigates the influence of control
bandwidth on the stability of loads, which are interfaced through
power electronic converters and are fed from a dc power source.
When tightly regulated, these loads exhibit a constant power
load (CPL) behavior. It is shown here that the ideal CPL assump-
tion, prevalent in literature, may not represent the worst case in
real-life applications. If the control bandwidth of the load is
sufficiently high, the load behaves like a CPL, and the system
stability margin decreases with the increase in output power.
However, in a practical range, with a lower control bandwidth,
the system stability margin is influenced critically by the con-
verter’s characteristic impedance, as well as its output power.
Under these conditions, the minimum stability margin may occur
at a low-power range.

Index Terms—Closed loop systems, dc–dc power converters,
dc power systems, linear feedback control systems, load model-
ing, negative feedback, nonlinear control systems, power system
stability, system analysis and design, voltage control.

I. INTRODUCTION

IN RECENT years, different topologies of smart distribution
systems have been proposed in the scientific literature; one

of these concepts is the microgrid. These microgrids can be
classified as ac or dc [1]–[3] based on the coupling point or
main bus.

The dc microgrid is, from a technology standpoint, an inter-
esting case, as all distributed generation and storage devices
are connected through an inverter and the majority of the loads
are also connected to the grid via a power electronics interface.

The application of the dc microgrids is not limited to terres-
trial distribution systems but can also be applied in other dc
systems with distributed generation from renewable and nonre-
newable energy such as aircraft power systems and shipboard
power systems [1], [4], [5].

The direct interface of a load through a converter introduces
significant challenges. These challenges lie in the dynamic
stability of the system, due to the nonlinear behavior of the
constant power load (CPL) [6]. From the point of view of the
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dc bus, such converters exhibit a CPL behavior, as they tend
to maintain the load power constant under fast current and
voltage disturbances (e.g., drive applications).

As a consequence, the converters present to the dc bus a
negative incremental resistance behavior, which may cause, in
certain conditions, instability of the bus voltage in a medium
voltage dc (MVDC) distribution [7]. These conditions and the
methods for stability analysis of MVDC systems have been
reviewed and discussed in [9].

The efforts to prevent MVDC instability due to small-
signal negative resistance behavior have been concentrated on
the design of the power converters interfacing the loads to
the MVDC distribution. With this approach, it is up to the
load themselves and their converters, to prevent the MVDC
from voltage instability: either through dedicated control algo-
rithms [9], [10], or through forcing disconnection, when
jeopardizing the MVDC system stability. Other solutions that
focus on guaranteeing the stability on the MVDC bus from
the generation-side converters were proposed in [11]–[14].

II. CHALLENGES AND METHOD

In order to analyze the stability of MVDC systems, an ideal
constant power assumption is often applied [15]. However,
this assumption has limitations when the input characteris-
tic of a load deviates from the CPL behavior. Furthermore,
the assumption of an ideal CPL does not take into account
the influence of the controller design and operating conditions
on the system stability. Therefore, it is necessary to estab-
lish detailed models of the power system to fully account the
dynamic behavior and its influence on stability [16]–[23].

However, there is very little systematic research on large sig-
nal stability analysis of MVDC systems due to the lack of reli-
able large-signal models of the converters. Youssef et al. [24]
use the state space averaging method or controlled voltage and
current source to replace the power converter switches in the
circuit. The duty ratio is embedded in the main parameters of
the model so that the model is different according to operating
conditions, necessitating a case-by-case analysis depending on
the operating mode. This problem also exists in the behavioral
model proposed in [25]. Another approach is shown in [18],
where ideal transformers are used instead of switches. All of
these approaches share the ideal CPL assumption as the worst
case behavior. However, it was shown that this assumption may
not always be true, as there is an interdependency between the
bandwidth of the involved generation and load units [26], [27].
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Fig. 1. Canonical model: a small signal equivalent circuit that models dc–dc
converter dynamics and transfer functions.

Nonetheless, until now the interdependency of the control
bandwidth of the load-side converter on the control goal of
the generation-side converter with respect to the control vari-
able (e.g., the voltage of the dc bus) has not been sufficiently
addressed: in effect, the ideal CPL assumption in the form of
a nonlinear controlled source inherits the time constant of the
passive components of the dc link.

In this paper, we will show how the practical results of dif-
ferent converter power levels and loads, switching frequency,
and control bandwidth yield a load behavior different from the
ideal CPL behavior. Main goal is to determine under which
circumstances the ideal representation is actually meaningful
and under which it may even produce misleading results.

III. SINGLE CONVERTER MODEL

A. Canonical Model

To be able to design the control system of the converter,
it is necessary to model its dynamic behavior. Typically, this
includes how the variations of the input voltage, the load cur-
rent, and the duty cycle affect the output voltage. As converters
are nonlinear components due to the switching behavior, state
space averaging is often used to generate small signal models.
By using this method, equivalent circuit models of dc–dc con-
verters can be synthesized and, consequently, the canonical
circuit model in Fig. 1 can be used to represent the physical
properties of pulse width modulated (PWM) dc–dc convert-
ers in continuous conduction mode (CCM) [28], [29]. In this
paper, v̂in and v̂out corresponds to the small signal perturbation
in the input and output voltage. The small signal perturbation
in the duty cycle is represented by d̂, while îLo1 represents the
load current variation.

Canonical model parameters for the ideal buck, boost, and
buck-boost converter are listed in Table I. As the representa-
tion in Fig. 1 is a general one, it can be used for all three
models by changing the values of M(D), Le, e(s), j(s) and,
therefore, describes the behavior of the selected converter. The
transformer being used in this paper is an ideal dc transformer
with the turns ratio of 1:M (D) , which is a function of the duty
cycle D, where D′ = 1 − D. The term e(s)d̂(s) and j(s)d̂(s)
represent perturbations in the duty cycle which are usually
caused by a control circuit.

B. Mathematical Representation of the Canonical Model

The canonical circuit model of Fig. 1 can be solved using
conventional linear circuit analysis techniques. It is then possi-
ble to derive the transfer functions for a converter operating in
open-loop. The quantities of interest are: 1) control-to-output

TABLE I
CANONICAL MODEL PARAMETERS FOR CONVERTERS IN CCM

transfer function Gvd(s); 2) converter line-to-output trans-
fer function Gvg(s); 3) converter output impedance Zout(s);
4) converter input impedance Zin(s); 5) the control-to-inductor
current transfer function Gid (s); and 6) the line-to-inductor
current transfer function Gig(s). The formalism for transform-
ing the canonical model to a mathematical model is given
in [28] and [29] and the exact definitions of the transfer
functions are the following:

Gvd (s) = v̂out1(s)

d̂(s)

∣
∣
∣
∣
v̂in,îLo1=0

= M(D)e(s)

C1Les2 + Le
Z s + 1

(1)

Gvg (s) = v̂out1(s)

v̂in(s)

∣
∣
∣
∣

d̂,îLo1=0
= M(D)

C1Les2 + Le
Z s + 1

(2)

Zout (s) = v̂out1(s)

−îLo1(s)

∣
∣
∣
∣

d̂,v̂in=0
= Les

C1Les2 + Le
Z s + 1

(3)

Gid (s) = îL(s)

d̂(s)

∣
∣
∣
∣
∣
v̂in,îLo1=0

= M(D)e(s)( 1
Z + C1s)

C1Les2 + Le
Z s + 1

(4)

Gig (s) = îL(s)

v̂in(s)

∣
∣
∣
∣
∣

d̂,îLo1=0

= M(D)( 1
Z + C1s)

C1Les2 + Le
Z s + 1

(5)

Zin (s) = v̂in(s)

îin(s)

∣
∣
∣
∣

d̂,îLo1=0
= 1

M (D) Gig(s)
. (6)

This approach leads to the following mathematical repre-
sentation of the converter:

(
v̂out1

îL

)

=
(−Zout Gvg Gvd

Zout
sLe

Gig Gid

)
⎛

⎝

îLo1
v̂in

d̂

⎞

⎠. (7)

This matrix is depicted in a control block representation of
Fig. 2, where the open loop small signal model can be derived
by setting d̂(s) equal to zero.

C. Closed-Loop Transfer Functions

As the goal of this paper is to derive a cascaded closed-loop
converter system, the small-signal-closed loop transfer func-
tions are also required. Those transfer functions are needed
for the closed-loop input and output impedance Zin_CL, Zout_CL

and the transfer function representing the closed-loop input to
output voltage perturbation Gvg_CL [30].

In order to show the concept, we assume one of the most
common control system operations for a dc–dc converter
which is the voltage mode control (VMC) [29]. The
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Fig. 2. Mathematical representation of small-signal converter.

Fig. 3. Block diagram of VMC of converter.

corresponding schematic is depicted in Fig. 3. The changes
from Figs. 2 and 3 are as follows.

1) v̂ref(s) is the perturbation in the reference voltage.
2) The term H (s) is the transfer function of the sensing

network, which often can be considered as a pure gain.
3) Gc (s) is the compensator transfer function. Commonly

used compensators are proportional-integral (PI),
proportional-derrivative (PD), or proportional-integral-
derivative (PID).

The PWM gain is equal to (1/Vm), where Vm corresponds
to the amplitude of the dc bus.

1) Feedback: The solution of Fig. 3 according to [29] yields
for (8) the voltage output variation, where T(s) is defined in
general as the product of gains around the forward and feed-
back paths of the loop. This equation shows how the addition
of a feedback loop modifies the transfer function of the system

v̂out1 = v̂ref
1

H(s)

T(s)

1 + T(s)
+ v̂in

Gvg

1 + T(s)
− îLo1

Zout

1 + T(s)
(8)

T (s) = H(s)Gc (s) Gvd (s)
1

Vm
(9)

Gvg_CL (s) = v̂out1(s)

v̂in(s)

∣
∣
∣
∣
v̂ref,îLo1=0

= Gvg

1 + T(s)
(10)

Zout_CL (s) = v̂out1(s)

−îLo1(s)

∣
∣
∣
∣

v̂ref,îLo1=0
= Zout

1 + T(s)
. (11)

It can be seen that through the feedback the closed-loop
transfer function and the output impedances are reduced by
the factor of 1/(1 + T (s)).

2) Closed-Loop Input Impedance: The definition of the
closed loop input impedance is the ratio of perturbations in

the input voltage v̂in to the perturbations in the input current
îL(s), while the perturbations in the load current îLo1 are zero

ZIN_CL (s) = v̂in(s)

îIn1(s)

∣
∣
∣
∣
v̂ref,îLo1=0

. (12)

Analyzing Fig. 3 and setting v̂ref and îLo1 to zero the fol-
lowing equations is obtained. The last equation, which gives
the relationship between input current perturbation îIn1 and
inductor current perturbation îL(s), is obtained by examining
the circuit in Fig. 1

d̂ (s) = −v̂out1H(s)Gc (s)
1

Vm
(13)

v̂out1 = d̂ (s) Gvd (s) + v̂in(s) Gvg (s) (14)

îL (s) = d̂ (s) Gid (s) + v̂in(s)Gig (s) (15)

îIn1 = j (s) d̂ (s) + M(D) îL (s). (16)

After solving this system of equations, we get the following
relationship for the closed-loop input impedance. This relation-
ship will be used in the cascaded converter model in the next
section

ZIN_CL (s) = v̂in(s)

îIn1(s)

∣
∣
∣
∣
v̂ref,îLo1=0

= ZIN (s)

⎛

⎝
1 + T

1 − T j(s)
e(s)M(D)Gig(s)

⎞

⎠. (17)

Solving (17) for a closed-loop converter loaded with a
generic impedance load Z holds

ZINCL (s)= (ZC1Les2 + Les + Z)Vm + ZH(s)Gc (s) M(D)e(s))

Vm(M(D))2(1 + ZC1s) − j (s) ZH(s)Gc (s) M(D)
.

(18)

IV. CASCADED CONVERTER MODEL

Cascading two dc–dc converters means that the down-
stream converter now referred to as converter 2 or point of
load converter (POL) acts as load of the upstream converter
now labeled as converter 1 or also called line regulating
converter (LRC). Using the previously mentioned canonical
model, this leads to the topology depicted in Fig. 4. Cascading
also means that the output voltage of LRC is equal to the
input voltage of POL and the input current of the POL equals
the output current of the LRC. This correspondence can be
extended for the small-signal values of the perturbations of
the voltages and currents.

Therefore, it follows that the small-signal current drawn
from the LRC îLo1 depends on the dynamics of the POL con-
verter, which has to be equal to the input current îin2 of the
POL. The same conclusion can be made for the output voltage
perturbation of the LRC v̂out1, which has to be equal to the
input voltage perturbation of the POL v̂in2. We assume that in
cascading two converters the LRC is only supplying one POL:
therefore the load impedance Z, which appears in Fig. 1, is
eliminated and instead the small-signal model of the converter
in Fig. 1 is used again.

The output filter capacitor (CoF) and input filter capaci-
tor (CiF) are represented by the equivalent capacitor C1 in
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Fig. 4. Canonical cascaded system.

Fig. 5. Cascaded control blocks.

Fig. 4. The same approach as in the previous section can be
used, which leads to the mathematical representation of the
cascaded system. When assuming that the POL converter acts
as load to the LRC converter, the small-signal current drawn
from LRC îLo1 can be expressed by means of the Thevenins
theorem, where POL converter is an impedance element which
corresponds to the closed loop input impedances ZIN_CL2. This
relation is depicted in Fig. 5

îLo1 = v̂out1

ZIN_CL2
. (19)

Combining (8) and (19) leads to the following expres-
sion for the voltage of the dc bus capacitor in a cascaded
system:

v̂out1 = v̂ref
1

H

T

1 + T
+ v̂in

1

H(s)

Gvg

1 + T
− v̂out1

ZIN_CL2

Zout1

1 + T
.

(20)

Normally, a cascaded converter architecture is designed in
such a way that it delivers a defined voltage v̂out2 to the load
under the assumption of a predefined reference voltage v̂ref1.
For the initial loop design, the effect of possible perturba-
tions in the input voltage of the cascaded system v̂in1 and
the load current îLo2 are neglected. When further inspect-
ing Fig. 5, it becomes clear that for the path v̂ref1 to v̂out2
(marked in red) it is not necessary to consider the inductor
currents (îL1,̂ iL2). The positive feedback loop containing the
block −Zout1/ZINCL2 can be condensed to 1/(1 + Zout1/ZINCL2)

which makes it possible to write the reference to output voltage

transfer function for the first converter

v̂out1(s)

v̂ref1(s)
=

1
Vm1

G
C1

Gvd1
1

1+ Zout1
ZIN_CL2

1 + H1
Vm1

G
C1

Gvd1
1

1+ Zout1
ZIN_CL2

. (21)

Inspecting the second converter loop yields the following
equation:

v̂out2 (s) = (

v̂ref2 (s) − H2v̂out2
) 1

Vm2
GC2Gvd2 + Gvg2v̂out1.

(22)

From (17), (21), and (22), it can be clearly seen that there
exists an interdependence on how the selection of parameters
of the controllers GC1 and GC2 influence each other. It also can
be seen how the dynamics of the load supplied by the second
converter influences the voltage of the dc bus. This interde-
pendence poses some interesting questions on the nontrivial
design process but this is not the scope of this paper.

V. CPL MODEL

Due to the integration in dc grids of LRC and POL con-
verters the efficiency of the network is increased and due
to the control algorithm implemented in the converters these
grids are able to handle a wide variation in either load or
source [31].

As an example, a buck POL converter with a resistive load
is shown in Fig. 6, where ZL (s) = R. Power converters such
as a buck converter are used because of their tight output volt-
age control capability, which enables them to respond almost
immediately to system changes.
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Fig. 6. Buck converter loaded with a resistive load.

On the other hand, under these conditions, the converter
tends to operate as a CPL. When averaging the states and
applying the canonical model with the parameters of Table I
and (1), the linearized impedance model of the buck converter
systems for a given operating point is given in (23). As all
denominator coefficients are positive and not zero the per-
turbation transfer function for a single POL converter which
is supplied by an ideal voltage source satisfies the Hurwitz
criteria for stability

v̂out(s)

d̂(s)
=

Vc
D

CLs2 + L
R s + 1

= vin
1

LC

s2 + 1
RC s + 1

LC 1
(23)

ZINCL (s) = (C1Les2Z + Les + Z)Vm + ZH(s)Gc (s) Vout1
D

VmD2(1 + ZC1s) − H(s)Gc (s) Vout1D
(24)

Gc (s) = KD

s

(

s2 + KP

KD
s + KI

KD

)

. (25)

We assume now a constant sensor gain and PWM gain
of 1 and also assume a general PID controller (25) with
proportional gain KP, integral gain KI , and derivative gain
KD for regulating the closed-loop converters which yields
the following generalized expression (26) as shown at the
bottom of the page.

By assuming that ZL (s) = R, the numerators are defined as
n3 = RC1L; n2 = L+RKDvin; n1 = R+RKPvin1; n0 = RKIvin
while the denominators are defined as

d2 = RC1D2 − KDD2vin, d1 = D2 − KPD2vin1,

d0 = −KID
2vin1.

The steady-state error for a step input can be calculated with
the final value theorem and corresponds to the dc gain which
will yield for ZL (s) = R

ess = lim
s→0

s
1

s
Z

INCL

(s) = n0

d0
= − R

D2
. (27)

This behaves like a negative destabilizing resistance.
Rivetta et al. [15] and Zamierczuk et al. [32] state that the
closed-loop input resistance ZINCL of a POL is approximately
−ZINopen . The negative resistance of (27) pushes an open-loop
pole into the right half plane and destabilizes the transfer func-
tion of (23). Therefore, often in literature the approximation of

a complex load is performed, which exhibits constant power
behavior

ZLoad (s) = v̂l(s)

îl(s)
= v2

c

PL
; PL = const. (28)

What has to be noted is that by using (28) instead
of (26) it is assumed that no dynamic interactions will take
place between the converters, which is a very optimistic
assumption, particularly when considering that the POL con-
verters are operating at a higher switching frequency than the
LRC [27].

VI. DESTABILIZING LOAD MODELS

A generalized load impedance model was described under
the assumption that the closed-loop buck converter is
PI-regulated [33]. We will extend the proposed destabilizing
load forms, which were proposed by LeSage et al. [33], to
match a PID regulator. Those load forms represent destabi-
lizing characteristics under certain parameter variations and
dynamic conditions which exhibit a different dynamic behav-
ior in contrast to the CPL assumption.

A. First-Order Lag

In this case, the first-order lag function replaces the constant
resistance where R is the dc gain of the load and τ is the
time constant [33]. This type of load corresponds to a parallel
circuit of a resistive and a capacitive load

ZLoad (s) = R

τ s + 1
; τ ∈ R

+ (29)

ZINCL (s) = n3s3 + n2s2 + n1s + n0

d3s3 + d2s2 + d1s + d0
(30)

where the numerator and denominator coefficients in (29)
n3 = (RC1 + τ) L, n2 = L + RKDvin, n1 = R (1 + KPvin1) ,

n0 = RKIvin, d3 = −KDD2vinτ, d2 = D2((RC1 − KDvin1) +
(1 − KPvin1) τ ), d1 = D2+D2vin1(KP+KIτ), d0 =−KID2vin1.

If τ = 0, we are consequentially back at the CPL case as
it is assumed that the load responds instantaneously.

B. First-Order Unstable

Replacing the load in (26) by an unstable impedance
function yields a ZINCL equal to

ZLoad (s) = − b

s − a
; a, b ∈ R

+ (31)

ZINCL (s) = n3s3 + n2s2 + n1s + n0

d3s3 + d2s2 + d1s + d0
(32)

where the numerator and denominator coefficients in (32)
n3 = 1−bC1, n2 = −(bKDvin + La), n1 = −(b + bKPvin1),

n0 = −bKIvin, d3 = −KDD2vin, d2 = D2(1 − KPvin1 −
bC1+aKDvin1), d1 = D2(aKPvin1−a−KIvin1), d0 = KID2vin1.

As in this case, the Hurwitz necessary conditions of stability
are not met: we observe instability in ZINCL . It has to be noted

ZINCL (s) = ZC1Ls3 + (L + ZKDvin) s2 + (Z + ZKPvin1) s + ZKIvin
(

ZC1D2 − KDD2vin
)

s2 + (

D2 − KPD2vin1
)

s − KID2vin1
= n3s3 + n2s2 + n1s + n0

d2s2 + d1s + d0
. (26)
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that while instability can be observed its cause is different
from the CPL case.

C. Nonminimum Phase

Nonminimum phase systems are quite seldom found as time
continuous systems, but they merit a consideration due to the
wide implementation of digital controllers, where the mini-
mum phase property can be lost due to the sampling. Their
response to changes in the input signal are typically in oppo-
site directions, i.e., when the input signal increases, the system
output drops briefly before rising again, in contrast to sys-
tems with negative reinforcement. Due to the presence of zeros
in the right complex half plane, a high feedback system will
exhibit instability. We assume now a first-order nonminimum
phase load described

ZLoad (s) = − s − b

s + a
; a, b ∈ R

+ (33)

ZINCL (s) = n4s4 + n3s3 + n2s2 + n1s + n0

d3s3 + d2s2 + d1s + d0
(34)

where in (34)
n4 = −C1L, n3 = L+bC1L − KDvin, n2 = La + bKDvin − 1 −
vin1KP, n1 = b + bvin1KP−KIvin, n0 = bKIvin, d3 = −C1D2 −
KDD2vin1, d2 = D2(bC1−aKDvin1+1−KPvin1)s2, d1 = aD2+
D2vin1(KI − aKP), d0 = −aKID2vin1.

With the previously performed analysis, we have shown
that a stability analysis has to include assumptions about
the dynamic behavior on top of the CPL assumption. Load
impedances which have either zeros or poles in the right half
plane will exhibit a drastically different behavior than the
nondynamic CPL assumption.

D. Generalized Load

When using generalized impedance loads which follow the
polynomial structure given in (35), it is possible to derive
with (18) a generalized load input impedance of a closed loop
buck converter [see (35) and (36)] at the bottom of the page.

Where in (36)
n3 = C1L, n2 = KDvin, n1 = (1 + KPvin1), n0 = KIvin, nd2 =
L, dn2 = C1D2, d2 = −KDDVout1, d1 = D2 − KPD2vin1, d0 =
−KID2vin1

We can see how the distribution of the poles and zeros of
ZINCL is influenced by the location of the poles and zeros of
the generalized load, as right-handed poles and zeros of the
load can lead to power system instability that are not obvious
while analyzing a stable load converter.

VII. SIMULATION ENVIRONMENT AND TEST CASE

A small-scale dc power system, consisting of one gener-
ating unit connected with one detailed CPL, based on the
setup of Fig. 4, has been simulated. As this is a canonical

TABLE II
COMPONENT PARAMETERS

TABLE III
PID CONTROLLER PARAMETERS FOR POL CONVERTER

model, we selected for the POL and LRC converter in our
test case the buck type. Firstly, a small signal analysis is
performed in Simulink, based on the averaged model to ver-
ify the plausibility of the assumption made in the theoretical
part. A large-signal analysis is implemented both in Simulink
(averaged model) and real time digital simulator (RTDS)
(switching model). On one hand, it helps validating the equiv-
alent impedance modeling method, introduced in Section V
with respect to the switching model performance; on the other
hand, it helps understanding whether conclusions from small
signal analysis have value in a large signal context. The LRC
converter was operated in all cases with a switching frequency
of 1 kHz. For the POL converter, two switching frequen-
cies were implemented (1 and 3 kHz). The parameters of the
corresponding input and output filters were sized as in Table II.

A. CPL

As shown in Fig. 6, a good example of CPL behavior is
a tightly regulated buck converter connected to a resistor. A
PID controller is designed as in Table III with the goal to
cancel the poles of the open-loop transfer function (23) to
match a desired bandwidth. According to [29], the output RLC
filter parameters of 15 MW POL buck converter are designed
with the criteria of 3% voltage ripple and 30% current ripple,
meanwhile, in order to attenuate the switching harmonics and
protect the converter and its load from transients that appears
in the input voltage Vout1, the input filter parameter Cif is
settled as in Table II. Because of the significantly different

ZL (s) =
∑m

i=0 bisi
∑n

j=0 ajsj
, aj, bi ∈ R (35)

ZINCL (s) = n3
∑m

i=0 bisi+3 + n2
∑m

i=0 bisi+2 + n1
∑m

i=0 bisi+1 + n0
∑m

i=0 bisi + nd2
∑n

j=0 ajsj+2

dn2
∑m

i=0 bisi+2 + d2
∑n

j=0 ajsj+2 + d1
∑n

j=0 ajsj+1 + d0
∑n

j=0 ajsj
. (36)
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TABLE IV
LINEARIZING STATE FEEDBACK CONTROL PARAMETERS

resonant frequency of 1 and 3 kHz POL buck converters, the
input filters are also sized differently.

B. Generation Side

The output filter parameters of 20 MW LRC buck con-
verter are designed as shown in Table II. As a tightly regulated
buck converter exhibits CPL behavior, which is nonlinear, a
linearizing state feedback control strategy [11], [12], is imple-
mented to linearize the overall system behavior, so that the
theoretical assumption of Section IV is valid. It has to be
noticed that, due to the different input filter Cif of the 1 and
3 kHz detailed CPL, the equivalent dc system parameter Ci2
is changed. The control parameters are also updated accord-
ingly to obtain the same dominant poles with the natural
angular frequency 1256 rad/s and damping factor (0.6) as
shown in Table IV.

C. Averaged Model Simulink

Small load connection and disconnection is a common sit-
uation in dc power systems. Therefore, a small perturbation
in dc system is simulated as a first step to analyze whether
the theoretical analysis based on small signal is valid. The
dc system, which is based on the buck realization of Fig. 4,
is modeled according to the average model via Simulink, Z2
is equivalent to 15 resistances each with the same value in
parallel, which can be switched on and switch off. At the
beginning the generating unit supplies 14 MW to the system,
at t = 0.01 s, a resistance (1 MW) in parallel is connected,
consequently the total power becomes 15 MW, which corre-
sponds to the rated power of the POL buck converter. In order
to compare the different CPL modeling methods, a CPL is
represented as an ideal one according to (27) in the first case,
and as a detailed one according to (26) in the second case.
Both models are connected to the same averaged generating
unit regulated by the linearizing state feedback control [12].
In Fig. 7(a), it can be observed that the voltage drop in the
case of an ideal CPL model is higher than in the case of 1 kHz
detailed CPL model. The reason for this lies in the bandwidth
of the ideal CPL, which corresponds to the bandwidth of the
overall system Vout1 (≈ 1256rad/s). This one is much higher
than the one of the 1 kHz detailed CPL (which is defined by
the PID controller, ≈ 690rad/s).

Likewise, in Fig. 7(b), due to the fact that the bandwidth of
the 3 kHz detailed CPL (≈ 2072rad/s) is much higher than
ideal CPL, the observed voltage drop is higher.

In Fig. 7(c), it is evident that the transient characteristic of
bus voltage in case of 1 and 3 kHz detailed CPL is significantly
different because of the largely different bandwidth, making
clear that using equivalent impedance method to model CPL
reflects better the actual behavior.

TABLE V
CIRCUIT PARAMETERS

D. Switched Model

In order to verify the accuracy of the equivalent impedance
modeling method and test the validity of the theory designed
based on small-signal model, the same dc system is imple-
mented with switched components in RTDS and with average
model in Simulink separately. Instead of using a small pertur-
bation now a large perturbation is set to appear at t = 0.02 s
where the load changes from 7.5 to 15 MW.

The corresponding results are plotted in Fig. 8. The tran-
sient characteristics in the switching model match the one
of the averaged model. The steady-state performance of bus
voltages and generator currents fits the 5% and 30% ripple
constraint.

In addition, Figs. 8(c) and 9(c) represent an apparent differ-
ent time constant (nearly three times) on the sub-bus voltage
Vout2 due to the different switching frequency, which leads to
different bandwidths via PID controller. This different band-
width causes the relative different transient performance on the
main-bus voltage and current. Also in this case, the proposed
new CPL modeling method considering the time constant
(switching frequency and control design) appears to be more
realistic than the previous modeling assumption.

VIII. DYNAMIC INTERACTION IN

MULTIMACHINE SYSTEM

A small-scale MVDC microgrid according to the IEEE
1709 Standard [7] with radial topology was implemented in
RTDS, consisting of two gas turbines, which are interfaced
through a diode bridge and a buck converter to a dc bus, and
four dc load centers where each one is connected via a buck
converter. All microgrid loads are fed through buck POL con-
verters, loaded with a resistance and operated in VMC. This
configuration exhibits a CPL behavior [15].

The total installed electrical power of 50 MW is provided
by the two 25 MW (30 MVA) gas turbine generators. The
voltage of the MVDC bus is ±6 kV and the voltage is stepped
down to low-voltage dc (±1 kV) in load centers 1 through
4 via dc/dc converters. The main parameters of the scheme
are shown in Table V.

Each main generation system includes: 1) a gas turbine
with speed governor; and 2) a three-phase 25 MW (30 MVA)
synchronous machine and excitation system (automatic volt-
age regulator). The load sharing among the two generators
is achieved by droop control. The setting of the synchronous
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Fig. 7. Small signal [power level from 14 to 15 (rated power of CPL)]. (a) 1 kHz. (b) 3 kHz. (c) Comparison of 1 and 3 kHz.

Fig. 8. Large signal analysis (power level from 7.5 to 15 MW)—1 kHz CPL. (a) Vout1. (b) IL1. (c) Vout2.

Fig. 9. Large signal analysis (power level from 7.5 to 15 MW)—3 kHz CPL. (a) Vout1. (b) IL1. (c) Vout2.

Fig. 10. Control block of the dc voltage regulator.

generator was done according to [34] and the excitation system
of type ST1 was set according to [35]. The topology chosen
for the generation side interfacing converter (LRC) is a diode
rectifier coupled to a buck dc–dc converter. The bus voltage
control method of the LRCs is the same as in Section VII-
B, where a linearizing state feedback control strategy [11],
[12] is implemented to linearize the overall system behav-
ior, so that the theoretical assumption of Section IV remains
valid. Fig. 10 summarizes the control scheme where “state1”
is the sum of linearization function and state feedback function

Fig. 11. Closed-loop bode diagram of dc zone load—voltage control—
bandwidth 5300ω.

for each generator interface converter and “m1” is the current
feedback loop for load sharing.

Considering that the derivative in the feedback function
may exasperate noise in the control loop, the derivative of
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Fig. 12. Variation of generation-side bandwidth.

Fig. 13. Variation of POL bandwidth.

TABLE VI
LINEARIZING STATE FEEDBACK CONTROL PARAMETERS—LRC

TABLE VII
PID CONTROLLER PARAMETERS FOR EACH POL CONVERTER

the bus voltage (which is one of the feedback state variables)
is substituted by the current of capacitor branches in the output
filters of the generator interface converters.

The buck converter output low-pass filter is designed
according to the same specifications as in Section VII-A
and provided in Table V. A PID controller is used for the
load center with the parameters provided in Table VII. An
anti-windup [36] is added to avoid the saturation of the inte-
gral, which may happen at the moment the load is connected to
the bus. The resulting close-loop bode diagram of the system
is depicted in Fig. 11.

A load increase of 12.5 MW is performed during the sim-
ulation. We performed simulation runs for different control
parameters of the generation side and the load side. The vari-
ation was done on the proportional part of the controller to
increase the bandwidth of the LRC or the POL converter. The
coefficients are stated in Tables VI and VII.

The simulation results are presented in Figs. 12 and 13. It
can be observed in Fig. 12 that the voltage drop in the case of
the detailed CPL model is higher than in the case of an ideal
CPL when the bandwidth of the detailed CPL (influenced by

the POL converter PID control) is higher than the ideal CPL
(determined by bus voltage).

As Kpg increases, the bandwidth of the system increases,
therefore, the observed system behavior while loaded with a
detailed CPL approximates the one of an ideal CPL. It can be
seen in Fig. 13 that when Kpl, which is the control parameter of
the POL converter’s PID controller, increases, the bandwidth
of the detailed CPL and approximates the behavior of the ideal
CPL. The simulation shows that increasing the control band-
width of the 3 kHz CPL, the observed voltage drop on the
bus is also increasing in comparison with the ideal CPL. The
simulation also reveals that when increasing the bandwidth of
the LRC converters the simulated system behavior approaches
the one of the ideal CPL. Additionally, it is observed an inter-
dependency between the control bandwidth of the LRC and
POL converters and that the theory introduced Sections III–V
are not only valid in a single LRC single CPL system but also
for multimachine systems.

IX. CONCLUSION

This paper has focused on the derivation of the small signal
transfer functions of voltage mode regulated converters for a
cascaded system. Main goal is to achieve a realistic model
of the so-called CPL behavior. Result of the analysis is an
impedance-based model that appears to be a more realistic
approximation.

Focus is placed on how the load through the POL converter
interacts with the generating unit and LRC converter.

With the help of small and large-signal simulations, the ana-
lytical hypothesis is verified. The comparison was extended to
include the dynamic interaction among different converters and
loads, where the observation is consistent with the theoretical
background.

Moreover, it was shown that CPL assumption is dynamic
wise not always the worst-case condition. The transient influ-
ence of the other load types were also analytically presented
via an equivalent impedance modeling method.
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