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Selection of Feedback Signals for Controlling
Dynamics in Future Power Transmission
Networks

Linash P. Kunjumuhammed, Member, IEEE, and Bikash C. Pal, Fellow, IEEE

Abstract—This paper deals with the selection of feedback
signal(s) that retain the modal behavior of power system elec-
tromechanical dynamics under varying operating circumstances.
The approach seeks signals that have relatively large magni-
tude of residue, less variation of the magnitude and phase angle,
sufficient gap between the critical pole-zeros, and least sensi-
tive to other modes. The methodology is tested in a 16-machine
interconnected power system model with multiple wind farms.

Index Terms—Damping, interarea oscillation, signal selection,
small signal stability.

I. INTRODUCTION

HE STABILITY of interconnected power system under

widely varying operating scenarios has always been a
challenge. In view of increasing generation from the renew-
ables, the operation of the system is going to be far more
challenging. Traditionally, the electromechanical dynamics in
power system have been controlled through power system
stabilizer (PSS) and flexible ac transmission system devices-
based power oscillation damping (POD) controllers [1].
Flexible alternating current transmission systems (FACTS)
devices have been installed in specific locations of the net-
work mainly from the consideration of voltage support and
power-flow control. The number of FACTS controllers is
growing to alleviate congestion in critical power transfer path.
The congestion is primarily anticipated to transport the power
from renewable rich area in the system. It has also been
reported that stability and control contribution from the wind
farm to the overall interconnected dynamic response of the
system is also potentially attractive [2].

The selection of feedback control signal so far has been
dominated by the modal observability of the signal. In view
of more FACTS devices in the system and also the deploy-
ment of phasor measurement unit technology into the network,
there is an opportunity to choose control device and feedback
signal that produce larger modal controllability and observ-
ability. Given the widely varying operating scenarios—the
selection of effective signal is now far more difficult requiring
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a very systematic and robust approach. This paper proposes
a procedure to select feedback signal for PSS and POD con-
trollers considering large number of operating conditions. The
proposed approach simplifies controller design and ensures
robust damping performance over a widely varying operating
conditions.

This paper is organized as follows. Various methods pro-
posed in the literature for signal selection is discussed in
Section II. Following main concepts from the discussion, a
set of signal selection criteria and an algorithm for signal
selection are presented in Section III. The method is validated
through simulation results performed on a 16-machine test sys-
tem with about 12% of the total generation from the wind. The
test system and various operating conditions are described in
Section IV. Section V provides results of modal analysis under
all selected operating conditions. The effectiveness of the con-
trol through the selected signal is demonstrated in Section VI.

II. SIGNAL SELECTION METHODS

The dynamics of power system in linearized form is repre-
sented as

x = Ax+ Bu, y=Cx+ Du. (D)

A, B, C are state, input, and output matrices respectively.
D directly connects input (u) with output (y). The electrome-
chanical modes are obtained from some complex eigenvalues

of A {A; = o; jo}l. fi = wi/2n and ¢ = —0i/\/0? + &}
represent frequency in Hz and damping ratio of the ith

mode, respectively. The transfer function representation of (1)
between jth input and kth output is written as

i=n

Ge = Z s fi)\

i=1

_ k(s—z)(s—22) ... (s — zZm)
i (=pD)—p2)...(s —pn)

2

where R; = Cy¢;¥iB; is modal residue corresponding to A;.
Symbols ¢; and ; are right and left eigenvectors correspond-
ing to A;, respectively. Also, p; and z; are poles and zeros of
the transfer function, respectively.

The residue is a complex variable with magnitude (|R;|)
and angle (ZR;). Suppose a controller is designed with transfer
function KH (s) to improve the damping of ith mode A;, where
K is the controller gain and the angle ZH(A;) = —ZR;. The
sensitivity of the eigenvalue to the gain is given by [3], [4]

AAj = AKR;H(X;). 3)
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Equation (3) implies that a signal-actuator pair with largest
|R;| is the best to provide required eigenvalue shift with
least control effort. Many literatures have used this concept
to select location of actuator and feedback signal [1], [3]-[8].
However, as the operating condition changes, the residue varies.
Wang [9] proposes two additional constraints for signal selec-
tion. For m operating conditions and n potential signal-actuator
combinations, the selection is based on the following.

1) mr?x[n}&n |R;j(n, m)|], which means the most effective

combination is selected at the operating condition where
the stabilizer is least effective.
2) min[max |R;(n, m)| —min |R;(n, m)|], such that the vari-
n m m

ation in damping contribution is minimum across all
considered operating conditions.

Fan and Feliachi [10] further extended the work in [9] to
obtain the selection such that the sensitivity of the controller
to closely located modes are very small. This is ensured by
selecting signals having less variation in |R| corresponding
to those modes. Kunjumuhammed et al. [11] and [12]
demonstrated that by choosing signals with least variation
in magnitude and angle of residue adequate damp-
ing could be provided to interarea oscillation modes.
Fan and Feliachi [13] and Ray er al. [14] put forward a
constraint that the residue phase of oscillation modes at close
frequencies are to be bundled together within narrow angle
(< 90°). This is because of the fact that the required phase
angle variation is difficult to achieve within a narrow frequency
range using low-order controllers and closeness in angles of
the residue will shield other modes from negative influence.

While the residues indicate the movement of eigenval-
ues (poles) for small gain, the large gain behavior is deter-
mined by location of the zeros. A good separation between
the critical poles and zeros is required in order to ensure a
required eigenvalue movement toward left half of eigen-plane.
Reference [15] addresses the issue of zeros in the selection
of actuator-signal combination for damping controller design.
A suitable zero placement can be achieved by modifying the
local signals [15] or changing the dynamics of other parts
of the system [16]-[18]. A combination of minimum singular
value, right half-plane zeros, relative gain array, and Hankel
singular values are proposed in [19] to determine the best sig-
nal for a single input single output (SISO) and multiple input
multiple output (MIMO) controller.

A geometric interpretation of the residue is used in
many literature to select the feedback signals for damping
controller design [20], [21]. A joint modal controllability-
observability measure is defined as, mco; = meimyi, Where
mei = cos(L (Y, b)) and m,; = cos(Z(¢j, c)). The mg; is
modal controllability measure which is equal to the cosine of
the acute angle between i and input vector b; m,; is modal
observability measure which is equal to the cosine of the acute
angle between ¢ and output vector c.

The methods discussed so far are shown to provide good
results considering few critical operating conditions. However,
the difficulty arises when the operating conditions become
dependent on nondispatchable generation such as wind and
solar, and the number of potential signal-actuator pair to pick
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from are several. In the next section, a signal selection approach
is developed considering large variation in operating conditions.

III. APPROACH OF SIGNAL SELECTION

Based on the discussions so far, an effective feedback signal
must meet the following criteria.

C1: The best signal-actuator combination is the one having
highest |R;| for all operating conditions.
In order to have a uniform damping contribution, the
variation in |R;| and ZR; should be minimum.
C3: The sensitivity of the controller to closely situated
modes should be positive or if negative, it should be
appreciably small.
A good separation is required between the critical poles
and zeros to ensure adequate eigenvalue movement.

Let us assume that a potential actuator is selected or decided
a priori, the objective is to find the suitable feedback signal(s).
Let |R;-"k| and 01-’”]‘ be the magnitude and angle of the residue
with respect to mth operating scenario corresponding to the kth
signal, respectively, of the ith mode. The following three cri-
teria are formulated based on the attributes already described.

C2:

C4:

A. Criteria-1: Control Effectiveness

Criteria-1 is formulated to satisfy residue characteristics C1.
As the operating condition of the system changes, the
residue magnitude changes. For a large number of operat-

ing conditions, the average magnitude of the residue |Rﬁ.‘ | =
1/N Z%zl IR is a good indicator of control effectiveness.

The signals having |R{~‘ | > Lmt; can be collected for further
analysis where Lmt; will be decided by the designer. In this
paper, the signals within top 70% in order of decreasing mag-
nitude are selected. However, the usage of average value over
a large number of operating conditions should be carried out
with caution as a higher magnitude of the residue for some
operating conditions cannot compensate for very low value of
residue for other operating conditions. This can be ensured
by selecting a signal with less variation in magnitude of the
residue. Criteria-2 presented below automatically takes care of
this factor.

B. Criteria-2: Robustness Aspect

This criteria is developed to comply with the attribute C2
to ensure a robust performance under all operating conditions.
The essence of the criteria is to find a signal with least varia-
tion in magnitude and angle of the residue under all operating
conditions [11], [12]. For this, a concept of relative residue
error covariance matrix (PEeLk) is used. In theory, the variation
in the residue can be related to the size of (P;el’k) [22]. (Pfel’k)
is computed for each signal (k) over a N operating condi-
tions. For a given signal, P?el’k can be represented by an ellipse
in 2-D plane [22]. The smaller the area of the error ellipse,
lesser is the variation in corresponding residue. Area(Plr.el’k ) X

T4/ det(Plr.el’k ); thus in principle, the signal having a least value

of det(PEel’k) is the one having least variation in the residue.
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TABLE I
CRITERIA 3: INFLUENCE OF NEAR-BY-MODE ON SIGNAL SELECTION
Case| Angle criteria Magnitude criteria | Remark
A | LZRE—ZRF < 90° | |RE| > Lmty pass
B TR’;—A—Rf < 90° | |RK, @ > Lmit; pass
C | ZRF—Z/RF>90° | |RE|/|RF] > Limty | fail
D A—Rfj—é—ng > 90° @/|R’(j| < Lmtsy pass
C. Criteria-3: Reduction of Influence on Closely
Situated Modes
Often large power systems have more than one

electromechanical modes which are located very -close
to each other. Since electromechanical modes fall in a narrow
frequency range, typically less than 2 Hz, it is difficult to
design a controller for one mode while minimizing its impact
on the other. This is the case when magnitude of the residues
corresponding to the modes are high. The actual impact will
depend upon the angle of the residue corresponding to each
mode. If all of the modes located in close proximity have
residue angles within a narrow range, they will be shifted
almost in the same direction and vice versa. The feedback
signal must be selected such that, a signal selected for one
mode does not contribute to negative damping to the other by
moving that modes toward the right half of the eigen-plane.
This is particularly important when designing multiinput
controllers where each signal is selected to influence one or
more mode and therefore, two signals should not be having
opposing damping contribution to a particular mode. This
criteria is developed to reduce such interactions.

It is summarized in Table I. Consider a power system with
two closely located electromechanical modes, mode-a and
mode-b. The objective is to find a feedback signal to improve
the damping of mode-a. |RK| and |R][§| are average magni-
tude of the residue corresponding to signal k£ for mode-a and

mode-b, respectively. Similarly, /R and AR’; represent aver-
age angle of the residues corresponding to signal k for mode-a
and mode-b, respectively. The following four cases are pos-
sible. The cases are valid when variation in the residue i.e.,
det(P"K) is small.

Case-A: LRk — /RX < 90° and |Rk| > Lmt;: This case
ensures that the angle of the residue for both the modes are in
the same angle quadrant and the signal is effective to mode-a.
A fixed parameter controller designed for mode-a will not
cause poor damping to mode-b, as it will also shift the mode
with additional positive damping. The signal can be selected
to improve the damping of mode-a.

Case-B: ZR% — ZRY < 90° and |Rk|, |RY| > Lmt): This is
special case of Case-A, where the signal is effective for both
the modes. In this case, one signal is enough to damp both

the modes, if required. For better results, ZR’; and ZR’; must
be within narrow range with less variation of the angle of the
residve. .

Case-C: /RK — /R > 90° and |RE|/|Rk| > Lmt: In this
case, Lmt; is chosen based on the designers’ judgment. In this
paper, Lmt; = 0.33. ZRK — ARIg => 90° means that the angle
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Fig. 1. Sixteen machine five-area test system.

of the residue for both the modes are not in the same quadrant.
Also, IRIZ‘)I /IRX| > Lmt, suggests that the signal is effective for
both of the modes. A fixed parameter controller improving the
damping of mode-a is likely to reduce the damping of mode-b.
Hence, such signals should not be selected.

Case-D: ZR% — /R > 90° and |RY|/|RK| < Lmt: In this
case, the angle of the residue for both the modes are not in the
same quadrant. However, the control impact of the signal to
mode-b is small compared to mode-a. A fixed parameter con-
troller improving the damping of mode-a cannot significantly
reduce the damping of mode-b. Hence, this signal can be used
to improve the damping of mode-a.

If all other conditions are satisfied and the variation in the
residue is not small, the designer’s judgment based on the
magnitude and angle of the residue is important. For example,
a signal falls under Case-A but the variation in the residue
of mode-b is high. The signal can be selected, if the control
impact of that signal to mode-b is appreciably small.

A large number of potential feedback signals can be selected
for a given actuator to start with signal selection. But this will
make the modal analysis for large number of operating con-
ditions a cumbersome task. A designer can narrow down the
locations of the potential feedback signals: 1) to areas close
to the participating generator in the case of a local mode; and
2) in the corridor between participating generators in case of
interarea mode, as the corresponding |R| will be higher in sig-
nals in these areas. The designer’s judgment is also important
for application of the criteria presented. While all the char-
acteristics are very important, appropriate priorities has to be
decided by the designer through choice of Lmt; and Lmit,.

IV. TEST SYSTEM AND OPERATING CONDITIONS

The proposed signal selection procedure is validated through
simulation studies using a 16-machine, five-area test system
model shown in Fig. 1. It is a modified version of NETS-NYPS
model [23]. The first five synchronous generators, machines
GI1-GS5, in the original system are replaced by wind farm of
similar capacity. A thyristor controlled series capacitor (TCSC)
is present in the line connecting buses #18 and #50 with 50%
compensation under nominal operating condition.

A. Operating Conditions

The selection of an effective feedback signal that ensures
robust damping control depends on the set of operating
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Fig. 2. Histogram showing variation in generation for different operating
conditions.
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Fig. 3. Small signal dynamic model of PSS.

conditions used. It is important to generate the set which can
adequately describe all possible scenarios in the power system.
We have produced 800 operating scenarios in which 300 are
generated without contingency. For all operating conditions,
synchronous generator output, load, and wind velocity are
varied.

1) Output of Synchronous Generator and Load: The uncer-
tainty associated with both synchronous generator outputs and
loads are modeled as Gaussian distribution [24]. The nomi-
nal operating condition (generation and load) is taken to be
the mean (u;) of this distribution and the other operating sce-
narios are generated by considering a certain percentage of
uncertainty around the mean. The standard deviation of the
distribution 0; = u; x %uncertainty/(3 x 100), where N (0, 1)
is standard normal distribution with zero mean and unit vari-
ance. In this paper, the uncertainty in synchronous generation
and load (%uncertainty) is considered to be 40%. However,
this value is system specific.

2) Output of Wind Generator: Unlike synchronous gener-
ators, a wind farm output is the sum of several wind turbine
outputs. The output is not demand driven but depends on
the availability of wind. The Weibull distribution is used for
the wind generator output that reflects annual wind speed
distribution for many sites [25], [26].

3) Contingency: Generator contingencies are applied on
generators G6—G16, except G13 which is a slack generator.
Fifty operating conditions are simulated for each contingency.
For contingency on generators G14-G16, the generator output
is reduced to 50% of nominal value representing collective
generation of an area. The wind generator contingency is not
considered separately, as its output will become zero during
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Fig. 4. Small signal dynamic model of TCSC.
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Fig. 5.  Electromechanical modes of the 16-machine system for all the

operating conditions. The modes at nominal operating condition is highlighted.

low wind speed periods. For each of the cases, the power-flow
analysis is carried out.

1) Bus voltages are within 0.95 p.u. and 1.05 p.u.

2) Wind generator power factor is within 0.95 and unity.

3) Power factor of synchronous generators ranges from

0.9 lag and 0.85 lead.

4) Slack bus generation is < 1.2 times its nominal gener-

ation.

The limits are imposed to generate reasonably realistic
operating conditions of the system.

We believe 800 cases representing a wide range of operat-
ing conditions of the system are adequate to demonstrate the
proposed signal selection method. In practice, further possible
changes of power system such as line outages must be explored
to obtain more possible operating conditions of the system.

B. Scenario Representation

Fig. 2 is histograms of the outputs from all 16 gener-
ation sites. The two peaks in Gen-1-Gen-5 represent zero
output and rated output of wind generators. The histograms
Gen-6—-Gen-16 show normal distribution except a peak at zero
which represents generator contingency.

V. DETAILED MODAL ANALYSIS OF THE SYSTEM

The test system is modeled in MATLAB/Simulink platform
using transient model for synchronous machine and generic
Type-3 model for wind farms. Fig. 3 shows block diagram rep-
resentation of PSS. A simplified model of TCSC [23] shown in
Fig. 4 is used where k. = X /X, represents percentage com-
pensation. The loads are assumed as static. The state space
representation and the eigenvalues of the system are obtained
using MATLAB commands linmod and eig, respectively.

The oscillatory modes of the system in the local and
interarea mode frequency range are plotted in Fig. 5. The
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TABLE 1T
CRITICAL EIGENVALUE AND DOMINANT STATES OF 16-MACHINE
SYSTEM AT NOMINAL OPERATING CONDITION

Mode Eigenvalue Dominant states
L6 —0.51+10.3¢ w,d of G11
L5 —0.61 + 8.4¢ w, 0 of G7, G6
L4 —0.84+ 7.7 w, 0 of G§, G9
L3 —0.24 £ 7.44 w, 0 of G10
L2 —0.07 £ 6.52 w,d of G9, G6, G7, G8
L1 —0.29 £ 6.41 w,d of G12, G13
1A4 —0.08+4.3¢ | w,d of G6, G7,G8, G9, G13
1A3 —0.25 +4.5¢ w, 0 of G14, G15,G16
1A2 —0.14+3.2¢ w, 0 of G14, G16
IA1 —0.09+2.5¢ | w,d of G12, G13,G14, G15

modes corresponding to the nominal operating condition are
highlighted. The system has four interarea modes (IA1-1A4)
and six local modes (L1-L6). A significant variation can be
observed for the local and interarea modes under the operating
conditions. At several operating conditions negative damping
is observed for L2, L3, and the interarea modes. Participation
factor analysis [1] is performed for the local and the interarea
modes to find the states participating in the modes. Table II
shows the modes and states participating in them.

The local modes L3 and L6 have participation from the
states of only one generator and they are absent when cor-
responding generator is taken out of the service. The other
local modes are found to have participation from more than
one generator. Hence, they are found to be present even
when one of the generators is taken out of the service. Also
note that the interarea modes involve synchronous generators
located at different locations of the system. The information
in the table offers a clue for the likely locations in power
system where the oscillations due to an individual mode is
visible. For example, the oscillations due to the mode L6
which has participation from the generator G11 located in
Area-2 will not be visible in the measurements taken in
the other areas. Similarly, the oscillations due to A2, IA3,
and IA4 which have participation from generators in Area-2,
Area-3, and Area-4, could not be observed in measurements
from Area-1.

In the present system, it is important to improve the damping
of local mode L2 and interarea modes to ensure stability under
various possible operating conditions. Since L2 has higher
participation from the states of generator G2, a PSS at G2
will improve the damping of L2. For interarea mode damping
improvement, a supplementary damping controller using the
TCSC is proposed.

A. Computation of Residue

Having selected the actuators, a PSS at G2 and POD in
TCSC, the next step is to select feedback signals for both
the controllers. Measurements such as active power, reac-
tive power, and current through all transmission lines in the
network, and synchronous generator speed are selected as
potential feedback signals. For clarity of presentation, the
signals are denoted as follows.
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1) Ppy, Opg» and I, are active power flow, reactive power
flow and current, respectively through transmission line
connecting bus #p and bus #q.

2) w, speed of generator at bus #p.

B. Controller Design Approach

In this paper, PSS and POD controllers are designed to val-
idate the proposed signal selection approach using a simple
residue-based approach [4]. Let shift in eigenvalue with incre-
mental change in controller gain is given by (3). A controller
transfer function H(s) is obtained such that Z(H(};)) = —ZR;.
When multiple operating conditions are considered, a prelim-
inary controller design is obtained considering average value
of ZR; under various operating conditions and a further tun-
ing of the controller is carried out using robust pole placement
approach [23].

The proposed method assumes that feedback signals are
readily available to the controller without delay. However, in
practical scenario, each signal will be associated with its own
time delay. Various controller design methodologies proposed
in [27]-[29] could be used to tackle the problem caused by
the time delay uncertainties. Since the objective of this paper
is to demonstrate signal selection methodology, the simple
residue-based controller design method is used in this paper.

VI. SIGNAL SELECTION

Fig. 6 shows the histograms for the magnitude and angle of
the residue corresponding to IA1 for transfer function between
the TCSC reference input and few selected feedback signals.
The signal is labeled in the title of each sub-plot. It is evident
from the histograms that both the magnitude and angle of
the residues have large variation. The degree of variation is
different for each signal. The variation is observed for other
modes. The selection of feedback signals for PSS and TCSC
controllers are made in accordance with the criteria set out in
Section III.

A. Feedback Signal for PSS

The function of the proposed PSS at the generator G9 is to
improve the damping of L2. However, both L4 and IA4 have
participation from the states of generator G9 which indicates
that the PSS will influence the damping of these modes as
well. Criteria-3 is crucial in this situation to avoid possible
negative effect on L4 and [A4.

Since the main focus is on L2, the location of potential feed-
back signals is narrowed down to areas around generator G9.
Table III lists nine potential feedback signals. The table also
contains |R¥|, ZR¥, and P;el’k corresponding to modes i =
L2,L4, and IA4. A comparison could be made against Pge]’k.
The associated error ellipses are displayed in Fig. 7.

The best feedback signal according to Criteria-1 is Ipg—9
which has the largest residue magnitude. However, the sig-
nal is ranked third in residue variation as evident from the
error ellipse and det(szl’k). The second best choice according
to Criteria-1 is wgg. Incidently, it appears to have the least
variation of residue as well. The location of open-loop zero
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TABLE 111
CHARACTERISTICS OF POSSIBLE PSS FEEDBACK SIGNALS

Signal det(P}9") det(P7) det(P7")
Name ||Rra|| *100 |ZRps|||Rras|l| *100 | ZRpas|||Rral| %100  |ZRp4
Pog 99 |27.32] 0.0114 -69 4.05 0.0105 81 7.36 0.003 2
(QQ28-29(26.90| 0.0107 -67 4.07 0.0102 80 7.24 0.003 0
Iog o9 | 7.63 0.0336 -67 1.46 0.1551 -64 2.36 0.087 -140
Pos_29| 3.80 0.0129 -46 0.93 0.1840 -54 1.51 0.0007 -119
Q26_29|25.15| 0.0589 -89 3.45 0.1143 -73 6.78 60.55 180
Iog_09 [27.52| 0.0441 -88 4.05 0.1183 -72 7.42 0.048 -21
Pyg_29| 7.86 0.0437 35 9.00 0.0889 -40 1.68 0.076 -82
Qo9—29| 2.13 0.0178 60 2.39 0.0343 76 0.62 0.0045 -93
Too_29 |54.75| 0.0440 -88 8.17 0.1196 =72 ||14.76| 0.0484 -23
wage |36.51| 0.0058 -8 8.22 0.0096 -1 8.49 0.0011 -82
oz Qs oo oo O TABLE 1V
: : : : : POTENTIAL FEEDBACK SIGNALS
[RSUERSREIGIERCRERQ
S ENS U | A U " S S A . < Signal | |Rja1] det Signal | |Rya1] det
Name (P7%3r,) | Name (P7onn)
! ! ! ! ! Pi7_14 1.05 0.0189 Py1-14 0.54 0.0299
- Q - O Q Q - © Pyo_15 045 0.012 Psg_17] 0.75 0.0152
e r o E oy e E e Ps1_30 0.42 0.0118 Ps5_34 0.41 0.0239
Fig. 7. Error ellipses corresponding to various feedback signals of PSS. Ps4_36 0.50 0.0232 Ps1_3¢ 0.41 0.0118
Py1_40 0.46 0.012 Py 40| 0.44 0.0127
1ol Pig_49 0.57 0.0229 Ps5_45 0.42 0.0239
Ps3_47 0.52 0.0109 Py7_44 0.49 0.011
8- Py5_51 0.62 0.0229 Pso_51 0.59 0.0228
> I7-13| 0.94 0.0233 I41-14] 0.58 0.0271
s 6k Iy5_15| 045 0.0104 I36-17| 0.64 0.0535
2 I35_34| 0.39 0.3016 I34_36| 0.52 0.0649
E 4 Ig1—36| 0.39 0.0216 I41 40| 0.36 0.0122
L I4g 40| 0.40 0.0226 Ts 49| 041 0.1235
2r I35_45| 0.39 0.3016 I47_48] 043 0.0518
I45-51| 0.54 0.0419 I50-51| 0.64 0.0236
—02 -15 -1 -0.5 0 0.5
Real in the modal residue corresponding to L4 and A4 is small.
Fig. 8. Eigenvalues of the 16-machine system with and without PSS for all ZRpp and ZRjp4 are very close which indicate a positive

the operating conditions.

showed no adverse effect. Hence, the signal wgy is ideal to
improve the damping of mode L2. But it should not have a
negative effect on the damping of L4 and IA4. The variation

contribution to L4 by the PSS using wgy as feedback signal.
ZRp> and ZRja4 are in the acceptable range as well. Also note
that, |Rja4] is 25% of |R;2|, which suggests that the effect of
PSS on IA4 is much less compared to that on L2 and the differ-
ence between ZRy> and ZRjaa will not produce appreciably
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TABLE V
RESIDUE CHARACTERISTICS OF SIGNAL P17_13, Pg1—30, AND P13_16
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Pi7_13 Ps1-30 Pis_16

Mode || |R| | ZR | det(P"¢!) || |R| | ZR | det(P™!) || |R| | ZR | det(P"¢)

IA1 1.05 | 185 0.0189 0.42 | 187 0.0118 0.16 | 206 | 2.0122

IA2 || 8.46 | 101 0.0029 0.74 | 110 | 0.0360 19.30 | 97 0.0008

IA3 1.96 | -72 0.0177 0.76 | 117 0.0150 4.10 | 83 0.0156

1A4 1.55 | 108 0.0954 0.53 | 187 0.0440 0.71 | 177 0.8019
negative impact. So wgg is selected as feedback signal for POTENTI ALT?,?E]BiZéK SIGNALS
the PSS.

A controller transfer function (4) is obtained for the PSS Signal | |Rya2] det, Signal | |Rya2] det
such that the phase angle of the transfer function at L2 fre- Name (Pﬁj\]} ,) | Name (P;i{z\]j[ ,)
quency is close to —ZR;y> and the gain is tuned to obtain the Pr7_13 8.46 0.0029 | Py _14 11.18 | 0.0009
required damping for the worst operating condition. Fig. 8 Pis_14 1930 | 0.0009 | Pys5_34 7.02 0.0013
shows the critical modes of the system with and without Pyo_ 41| 9.05 0.0010 | Pig_49 9.02 0.0013
PSS for all operating conditions. The plot clearly shows the Pss_45 7.03 0.0013 Pys_51 9.71 0.0013
improvement in damping of modes L2, L4, and IA4 while the Pso_s1| 9.14 0.0012 | I17_13] 7.35 0.0077
damping of other modes remain unchanged Iyp_14| 1140 | 0.0009 | I;s 16| 20.99 | 0.0011

5 Iyo_41] 6.92 0.0340 | Iy5—51| 7.99 0.0314
Kpss = %, @) Iso_51] 999 | 0.0024
TABLE VII
B. Feedback Signal for TCSC POTENTIAL FEEDBACK SIGNALS

In order to improve the damping of interarea modes a sup- - -
plementary controller could be designed using the TCSC [5]. It Signal | |Rras| d?tk Signal | |Rras| de;tk
is decided to find one feedback signal to improve the damping Name (P7hs3) | Name (Pihs)
of each interarea mode. In this paper, active power, reactive Pyi—14 545 0.0188 Pyz 15 8.55 0.0198
power, and current of 83 transmission lines along with gener- Prg_1¢ 4.10 0.0156 Pyz 41 4.82 0.0219
ator speed from 11 synchronous generators are included in the Prg_4sf 3.68 0.0203 Iy1-14) 5.54 0.0187
initial signal set. Altogether 260 potential signals are selected. ly2-15| 8.29 0.0192 lig—16| 4.32 0.0167
Although potential signals could have obtained from the corri- Ta2-41] 3.68 0.0763

dor only, all locations are considered here for a demonstration
purpose.

1) Signal to Improve Damping of IA1: Criteria-1 is applied
on the initial set. A set of 30 signals having normalized
|Ria1] > 0.3 are identified. The selected signals are listed
in Table IV. The table also lists |Rya1|, ZRia1, and the deter-
minant (P;Z]i\];[l). Most of the signals listed in the table have
less variation in the residue which suggests it passed the first
two criteria. The exercise followed the same steps as in the
PSS and two cases are described here.

Table V summarizes the residue characteristics of the signal
P17-13. Although this signal is good for improving damping
of IA1, ZR corresponding to other interarea modes are not
in favor. Especially ZRya3 which is in the other quadrant to
ZRia1. Considering the magnitude and angle of the residues,
the signal comes under Case-C listed in Table I. Hence, this
signal is not selected as a feedback signal.

Pg1-30 is another signal which has passed Criteria-1 and
has less variation in residue corresponding to IAl. The
residue characteristics are listed in Table V. ZRja; and
Z/Riaq are same whereas the angles of other two modes lie
within 90° which satisfy Criteria-3. ZRya; varies around 180°
while ZRia» and ZRya3 are close to 90° and /Ryas varies
around 180°. The variation in ZRja» and ZRya3 are less and

the average magnitude of the residue is close to that of TAI.
Hence, this signal could be considered as an effective feedback
signal. A fixed parameter controller moving IA1 to further left
in the eigen-plane will not impact negatively to the damping
of other modes.

2) Signal to Improve Damping of IA2: Table VI lists the
signals which have passed Criteria-1. All the selected signals
have less variation as evident from the determinant of error
covariance matrix (ECM). P1g_¢ is the signal with least vari-
ation in the residue corresponding to IA2 whose characteristics
are summarized in Table V. ZRja> and ZRja3 have less vari-
ation and their values are around 90°. ZRja; and ZRja4 have
higher variation and their values are around 180°. However,
the values of |Rja1| and |Rja4| are significantly less compared
to |Ria2|. Hence, a controller to primarily improve damping
of IA2 will not influence IA1 or IA4. Since ZRip» and ZRia3
are within a narrow range, the direction of shift of A2 and
TIA3 will be almost in the same direction. This makes Pig_1¢
a good signal to improve the damping of [A2.

3) Signal to Improve Damping of IA3: Table VII lists the
signals which have passed Criteria-1 for IA3. All the selected
signals have less variation as evident from the determinant
of ECM. The signal Pig_1¢ has least variation in the residue
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TABLE VIII
POTENTIAL FEEDBACK SIGNALS
Signal | |R; 4] det Signal | |Ry a4l det
Name (P?ﬁ}\]h) Name (P?Z}\Ijm)
Psg_17 1.61 0.0748 Pi7_14 1.55 0.0954
Ii7_13| 1.55 0.0805 I36_17| 1.42 0.1436
Ig1_36| 1.42 0.0601 Ps1_3¢| 1.41 0.0752
Pyo_150 1.40 1.2296 Iy 15| 1.35 1.2187
Pso—e1| 0.98 0.0576 Ps3_54 0.97 0.0506
12 . . :
Open loop poles
10- ”"m F:Iose loop poles
> oM
g
S 6 |
©
E
Fig. 9. Electromechanical modes of the 16-machine system without

controller, and with PSS and POD.

as evident from determinant of ECM. This is also the signal
selected to improve damping IA2 and it is suitable for IA3 as
well.

4) Signal to Improve Damping of I1A4: From 260 potential
feedback signals, 40 signals passed Criteria-1 for IA4. Few of
those signals are listed in Table VIII. However, a significant
variation is observed in the residue corresponding to 1A4 as
evident from higher determinant of ECM. This is also verified
using visual inspection of the residue. If the TCSC is used to
damp the IA4, it will result in unexpected eigenvalue move-
ment. Hence, it is not advisable to use the TCSC to improve
the damping of IA4. Moreover, the PSS can provide sufficient
damping for IA4 for stable operation.

Influence of both the selected feedback signals on local
modes is also checked to ensure a positive damping action.
The controller design and validation is discussed next.

5) Controller Design: A two-input and single-output con-
troller for the TCSC is designed using the selected feedback
signals. The controller is designed to improve the damping
of TA1, TA2, and TA3 while preserving the damping of other
modes.

Table V lists the residue characteristics of both the feed-
back signals. The signal Pg;_39 with ZRja; equals to 185° is
selected to improve damping of IA1l. This angle will decide
phase of Kj(s) (5). Similarly, Pig—1¢ is selected for 1A2
and TA3 with ZRja2 and ZRja3 equal to 97.5° and 83.46°,
respectively, which decides phase of Kj(s)

1 52—
K=| k| = 551057 | 00005t 1045 |- ©
K> 252 +10.25 + 1 | 0.0004s~ 4 0.4s
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Fig. 10. Time domain results obtained without controller (dashed lines) and
with controller (solid lines). (a) IA1. (b) IA2. (c¢) IA3. (d) TA4.

Fig. 9 shows the closed loop and open loop poles of the
system with and without damping controllers, respectively.
The blue shade indicates the open-loop poles for all oper-
ating conditions and the red shade displays closed loop poles
obtained using the PSS and the TCSC damping controllers. It
is clear from the plot that, all the modes have obtained posi-
tive improvement in damping ratio. Importantly, the proposed
signal selection approach helps to design a controller with
very simple structure using simple methods and it inherently
ensures robust controller performance over a large number of
operating conditions.

In order to validate the feedback signal selection and perfor-
mance of the controller design, time domain simulation studies
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are performed on the system. A balanced short circuit fault is
applied at bus 30 at time 7 = 5 s. The fault is cleared at the end
of three cycles. Fig. 10 shows rotor angle difference between
selected synchronous generators in the system with and with-
out using damping controllers. The results are obtained for
nominal operating conditions. It is evident from the figures
that the controllers offer improved damping for the system
oscillatory modes.

VII. CONCLUSION

This paper presents a set of criteria for feedback signal
selection for power system damping controller design. The
criteria are based on previously well understood control sys-
tem tools and suitable for power systems with large variation
in operating conditions. This paper sets guidelines for the cor-
rect application of the criteria. The feedback signals selected
based on the proposed approach allows one to apply simple
controller design methods and inherently ensures robust damp-
ing for large number of operating conditions. The proposed
approach is validated using simulation studies performed on
a modified model NETS-NYPS test system with about 12%
wind penetration.
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