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Abstract—Automatic generation control (AGC) is an essen-
tial functionality for ensuring the stability of power systems,
and its secure operation is thus of utmost importance to power
system operators. In this paper, we investigate the vulnerability
of AGC to false data injection attacks that could remain unde-
tected by traditional detection methods based on the area control
error (ACE) and the recently proposed unknown input observer
(UIO). We formulate the problem of computing undetectable
attacks as a multi-objective partially observable Markov deci-
sion process. We propose a flexible reward function that allows
to explore the trade-off between attack impact and detectability,
and use the proximal policy optimization (PPO) algorithm for
learning efficient attack policies. Through extensive simulations
of a 3-area power system, we show that the proposed attacks
can drive the frequency beyond critical limits, while remaining
undetectable by state-of-the-art algorithms employed for fault
and attack detection in AGC. Our results also show that detec-
tors trained using supervised and unsupervised machine learning
can both significantly outperform existing detectors.

Index Terms—Automatic generation control, reinforcement
learning, false data injection attack, power system security,
unknown input observer, partially observable Markov decision
process.

I. INTRODUCTION

MAINTAINING the balance between electric power gen-
eration and demand is one of the main objectives in

power system operation. An imbalance between generation
and demand can cause the grid frequency to deviate sig-
nificantly, which can cause physical damage to generators,
trigger remedial actions such as load shedding, or even lead
to nation-wide blackouts. To mitigate these effects, automatic
generation control (AGC) [1], [2] is a control loop that is
used by operators to set the generation output of generators
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in a power system, based on power and frequency measure-
ments taken across the interconnected power system. In AGC,
the power system is typically divided into several areas, and
a separate AGC controller is deployed for each area. The
AGC controller attempts to minimize the deviation of the
measured power flows across certain transmission lines and
the grid frequency from their expected values. This is typ-
ically achieved by minimizing the area control error (ACE)
metric, which is a weighted sum of the two aforementioned
quantities.

The operation of AGC is dependent on the accuracy and
integrity of the deployed sensor measurements. Nevertheless,
since modern power systems usually utilize insecure public
communication networks, the AGC control loop is vulnerable
to a wide range of cyber-attacks. One of the most stud-
ied attacks is the false data injection attack (FDIA) [3], in
which the attacker uses the communication network to inject
false measurements and transmit them to the control center,
where the AGC controller typically resides. The false mea-
surements could cause the AGC controller to issue incorrect
dispatch commands to the generators, potentially leading to
catastrophic consequences in the power system. Therefore,
extensive surveillance of the AGC control loop (including the
sensor measurements) is an important aspect of the security
of any power system.

Conventional solutions for detecting FDIAs against AGC
systems depend on simply monitoring the ACE value at each
area [1]. However, these methods do not utilize information
from the AGC system model. Therefore, a recent promis-
ing approach for FDIA detection is utilizing the unknown
input observer (UIO) [4], which can accurately estimate the
unknown system states affecting AGC operation given (1) the
observed sensor measurements and (2) accurate knowledge of
the power system topology and parameters. An attack or a fault
in AGC operation will usually lead to high estimation resid-
uals, which causes an alarm to be raised. This approach has
shown great potential in detecting naively computed FDIAs,
such as the scaling, ramp, and random attacks. Nevertheless,
the vulnerability of UIOs to targeted FDIAs has not yet been
fully explored.

In this paper we investigate the vulnerability of state-of-
the-art FDIA detection methods in AGC systems using the
framework of reinforcement learning (RL). The contributions
of this paper are as follows.
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1) We model the problem of finding stealthy FDIAs against
AGC from the perspective of the attacker as a multi-
objective partially observable Markov decision process
(MO-POMDP) [5].

2) We develop a flexible reward function that allows the
RL-based attack to maximize the attack impact, while
keeping the detection metrics low.

3) We use extensive simulations to evaluate the proposed
RL-based attacks and showcase their superiority over
several baseline attacks in terms of attack impact and in
terms of undetectability.

To the best of our knowledge, this is the first work that
considers computing FDIAs that bypass state-of-the-art AGC
attack detectors such as the UIO, and the first work that uses
RL to compute such attacks against AGC.

The rest of this paper is organized as follows. Section II
discusses previous work on attacks against AGC as well
as their countermeasures. Section III presents our model of
the AGC system, and the capabilities of the attacker. The
problem of computing FDIAs is formulated as a MO-POMDP
in Section IV. Section V evaluates the performance of the
proposed attacks in terms of stability, impact detectability, as
well as sensitivity to model inaccuracy. Finally, Section VI
concludes the paper.

II. RELATED WORK

Several recent works have investigated the security of AGC
and its vulnerability to attacks. One of these attacks is the
time delay attack (TDA), which delays the transmission of
measurements sent from the sensors to the control center, or
the control commands from the control center to the gener-
ators. Recent works have shown that TDAs can degrade the
performance of AGC or even disable it [6], [7]. Nonetheless,
the most studied attack is by far the false data injection attack
(FDIA) where the attacker can compromise the measurements
(e.g., power flows or frequency measurements), thus leading
the AGC controller to send incorrect dispatch commands to
the generators [8]. Such FDIAs have been shown to pose a
severe threat to the system frequency [9].

A different line of work has developed improvements to
FDIAs against AGC systems. A “mild” version of FDIA that
gradually changes the measurements was proposed in [10],
and it was shown that these attacks could still cause sig-
nificant deviations in the system frequency. Authors in [11]
developed an FDIA that maximizes the system frequency devi-
ation, while keeping measurement perturbations within limits.
Authors in [3] proposed an FDIA against AGC based on a
model of the AGC system that minimizes the time until initi-
ating remedial actions by the system operator. Notably, the
proposed attack is able to bypass state-of-the-art bad data
detection (BDD) methods used in power system state esti-
mation. Another attack that can bypass BDD methods was
proposed in [12]. In the first phase of the FDIA, the false
measurements are designed to look like un-attacked cases,
while the second phase finally drives the frequency beyond the
safe range. More recently, [13] designed an attack that mini-
mizes both the attack magnitude and the time until frequency

violation, while keeping the attacked measurements and the
ACE values within normal limits.

In response to the rising threat of FDIAs against AGC,
their detection and mitigation have recently attracted signif-
icant research interest. The traditional approach is to monitor
the ACE of each area [1], since an increase in the ACE could
be a strong indicator of a system fault or an attack. Building
on this simple intuition, other approaches utilized the ACE
signals for attack detection in more complicated ways. Most
notably, [9] proposed an anomaly detector that monitors the
ACE values and compares them with predicted values based on
load forecasts. Similarly, [14] used load forecasts to predict a
range of normal ACE values, which can be used to both detect
and compensate for FDIAs. Moreover, [15] used pattern recog-
nition and supervised classification to predict whether the ACE
signal is normal or attacked. Besides, [16] proposed two meth-
ods based on long short-term memory (LSTM) and discrete
Fourier transform (DFT) to detect abnormalities in ACE time
series. A multilayer perceptron (MLP) combined with feature
selection was trained in [17] to distinguish between attacked
and non-attacked ACE signals. Recently, [18] proposed a com-
bination of fuzzy logic and neural networks for the detection
of FDIAs, where the input data consisted of the ACE values
as well as other measurements.

In contrast to the above ACE-dependent approaches, another
common approach is the use of a mathematical model of
AGC to detect FDIAs. The most commonly used models
are the unknown input observers (UIOs) [19], [20]. In these
works, a mathematical model of AGC is formulated and is
used to perform a delayed estimation of the system states
by observing the sensor measurements. By comparing the
received measurements with the measurements expected based
on the estimated state, faults and attacks against AGC could
be detected. Developing on the basic idea of the UIO, [21]
includes the attack as a part of the UIO model (i.e., as
an unknown input) so that the model learns to estimate the
system state as well as the attack, which allows for correct-
ing corrupted measurements. Similarly, [22] designed a UIO
for FDIA detection and combined it with a robust adaptive
observer and the H∞ technique to estimate and correct the
attacks. A similar idea was developed in [23] for detecting
attacks in a decentralized manner by building smaller models
that utilize only state variables from a single area.

Several works considered other model-based approaches
for detecting FDIAs in AGC systems. The approach in [24]
combined state and attack estimation with attack compen-
sation using observer-based output feedback control design.
Authors in [25] considered the slightly different AGC problem
in hybrid AC/HVDC grids, and designed a residual gen-
erator based on the system model to detect and recover
attacks. A recent approach is proposed in [26], where the
authors designed a set of sliding mode observers (SMOs) and
Luenberger observers to detect FDIAs and identify the location
of the attacks. Another model-based approach is investigated
in [27], where the Kalman filter is proposed for FDIA detec-
tion in AGC systems. Moreover, [28] used the Kalman filter
to estimate and correct the effect of the attack. Finally, con-
trary to most works which consider a linearized AGC system
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model, [29] took system non-linearities into consideration and
proposed using a particle filter to detect FDIAs.

Other approaches for detecting FDIAs in AGC systems
include [30], which applies dynamic watermarking to measure-
ments fed to the AGC system to detect attacks. More recently,
an ensemble method based on supervised machine learning
applied to area-level features has been proposed for detect-
ing FDIAs in a decentralized manner [31]. Similarly, authors
in [32] proposed detecting FDIAs by training an unsuper-
vised generative adversarial network (GAN) using historical
measurement and load data. Another unsupervised technique
is presented in [33], where FDIAs are detected using an
autoencoder neural network with LSTM structured neurons.

Apart from the FDIA detection problem, many works
focused on the problem of fault-tolerant control in AGC
systems. Authors in [34] proposed FDIA-resilient control in
AGC systems combining a Luenberger observer, an artifi-
cial neural network (ANN), and an extended Kalman filter.
Moreover, [35] proposed an H∞ controller for event-triggered
AGC to control the system frequency under DoS attacks
and FDIAs. Besides, an LSTM-based regression model was
developed in [36] to predict and compensate for the FDIA
signals in AGC. Finally, several research works used a game-
theoretic approach to model the interaction between the system
operator and the attacker. In the game formulated in [37], the
attacker chooses between manipulating either half or all of
the samples, and the operator chooses between two differ-
ent configurations of a FDIA detector. In the game proposed
in [38], the attacker could either attack both power and
frequency measurements or only the frequency, while the
defender could switch between two different FDIA detec-
tors, namely support vector machine (SVM) and k-nearest
neighbours (KNN).

A significant limitation of most of the aforementioned works
studying AGC security is that they considered weak attack
models. Simple FDIAs such as ramp, pulse, step, scaling,
sine, random, and replay attacks [9], [10], [14], [17], [19],
[23], [27], [28], [31] have been commonly utilized either
(1) to quantify the impact of FDIAs on AGC systems, or
(2) to evaluate FDIA detection approaches. However, several
works proposed attacks that included a notion of stealthi-
ness. FDIAs constructed in [11], [13], [25], [33] satisfied
simple constraints, e.g., upper and lower bound constraints
on the attacked measurements. The above naive attacks do
not exploit any knowledge about the attacked AGC system
model, nor about the detectors deployed by the system oper-
ator. Therefore, available detection methods in the literature
could very effectively detect these naive FDIAs. However, it is
unclear whether state-of-the-art detection methods could detect
more intelligent attacks that can leverage insider information
about the AGC system and the employed detectors. Therefore,
a thorough study of the security of AGC w.r.t. to a strong attack
model is highly needed.

It is also worth to note that very few works [3], [12]
proposed attacks that can bypass bad data detection (BDD)
techniques typically employed with power system state esti-
mation. Nevertheless, these attacks are agnostic of any AGC-
specific FDIA detectors, and should thus be detectable by

those. Besides, although [32] considered attacks that are
stealthy w.r.t. the AGC system model, computing those attacks
requires access to the unknown inputs (e.g., loads) and the
authors do not provide a clear FDIA computation procedure.

Going beyond the above works, constructing intelligent
FDIAs against AGC systems could be regarded as an optimal
sequential decision making problem, with the objective of
maximizing the attack impact and stealthiness. To this end,
we utilize the framework of reinforcement learning (RL) to
compute FDIAs because (1) computing optimal attacks using
traditional mathematical optimization tools could be infeasible
for large and highly dynamic AGC systems, and (2) the RL
approach only requires the availability of a system model and
historical data, and the attack procedure could in principle be
applied against other cyber-physical control systems.

Moreover, RL has been extensively used in various power
systems optimization tasks. Several works have proposed AGC
controllers using RL or multi-agent RL (MARL) instead of the
widely used PI-controller [1], [2]. One of the first RL-based
AGC controllers was proposed in [39], where the authors used
the Q-learning algorithm [40] based on discretized actions
(generation set points) and observations of either (1) the ACE
values, or (2) the power-flow and frequency measurements.
More recently, [41] treated AGC as a decentralized multi-
agent problem (i.e., each area controller is considered as one
agent) and utilized state and action discretization to use the
double deep Q-network (DDQN) [42] algorithm with action
discovery. MARL has also been used to solve the problem
of automatic voltage control (AVC) [43], using the multi-
agent deep deterministic policy gradient (MADDPG) [44]
algorithm, which leverages centralized training and decentral-
ized execution, and is able to deal with continuous actions
and observations. Similarly, a multi-agent actor critic RL algo-
rithm was proposed in [45] to solve the problem of voltage
and frequency control in inverter-based microgrids. Finally, Q-
learning has been proposed to compute FDIAs against power
system state estimation [46]. Nevertheless, to the best of our
knowledge, our work is the first work to consider RL-based
attacks against AGC, including the question of detectability
using state-of-the-art detectors.

III. SYSTEM MODEL

A. Automatic Generation Control

We consider an interconnected power system consisting of
N areas, connected by power transmission lines called tie lines.
We denote by Psch

i,j the scheduled (planned) power flow from
area i to area j across their corresponding tie line(s), by Ptie

i,j
the actual power flow from area i to area j, and by �Ptie

i,j =
Ptie

i,j −Psch
i,j the deviation from the scheduled values. We denote

by fi the AC frequency of area i, and its deviation from the
nominal grid frequency (e.g., f0 = 60 Hz) by �ωi = fi−f0

f0
.

Each area has one or more electric power generators whose
generation levels are controlled by the AGC in order to keep
the deviations of both the frequency and the tie line power
flows close to zero, despite changes �PL in the electrical loads
in each area.
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At time instant t, the evolution of the frequency deviation
�ωi is given by the differential equation

�ω̇i(t) = 1

2Hi

(
�Pm

i (t) − �Ptie
i (t) − �PL

i (t) − Di�ωi(t)
)
,

(1)

where Hi is the inertia constant of generator i, �Pm
i is the

deviation in the mechanical power output of generator i,
�Ptie

i (t) = ∑N
j=1 �Ptie

i,j (t), and Di is the damping coeffi-
cient of generator i. The power flow on a tie line can be
approximated by

˙�Ptie
i,j (t) = Ps

ij

(
�ωi(t) − �ωj(t)

)
, (2)

where Ps
ij is the synchronizing power coefficient between areas

i and j [2].
To drive the power and frequency deviations back to zero,

each area’s generator governor adjusts the position of the
turbine’s steam valve Pv

i based on the differential equation

�Ṗv
i (t) = − 1

τ
g
i

(
1

Ri
�ωi(t) + �Pv

i (t) − �Pref
i (t)

)
, (3)

where τ
g
i is the time constant of the governor in area i, Ri is

the speed regulation (droop) coefficient of the generator, and
�Pref

i is the input reference power generation of area i sup-
plied by AGC. Changing �Pv will in turn control the output
mechanical power �Pm as

�Ṗm
i (t) = − 1

τ t
i

(
�Pm

i (t) − �Pv
i (t)

)
, (4)

where τ t
i is the turbine time constant of area i.

To regulate the frequency and the tie line power flows, the
AGC controller is typically implemented as a PI-controller that
controls �Pref using

�Ṗref
i (t) = −kiACEi(t), (5)

where ki is the integrator gain of the PI-controller, and ACEi

is the area control error in area i, computed as

ACEi(t) = �Ptie
i (t) + βi�ωi(t), (6)

where βi is the frequency bias of area i computed as

βi = Di + 1

Ri
. (7)

A block diagram of the above equations for two areas is
shown in Figure 1, where the transfer function of each block
is given in the Laplace domain.

The above equations can be converted into the state space
model

ẋi(t) = Ac
iixi(t) + Bc

i ui(t) +
N∑

j=1

Aijxj(t), (8)

where

xi =
[
�Ptie

i , �ωi, �Pm
i , �Pv

i , �Pref
i

]T
, ui = �PL

i ,

Fig. 1. Block diagram of automatic generation control of a 2-area power
system using ACE, including the locations of FDIAs.

Ac
ii =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0
∑N

j=1 Ps
ij 0 0 0

−1
2Hi

−Di
2Hi

1
2Hi

0 0
0 0 −1

τ t
i

1
τ t

i
0

0 −1
Riτ

g
i

0 −1
τ

g
i

1
τ

g
i−ki − kiβi 0 0 0

⎤

⎥⎥⎥
⎥⎥⎥
⎦

,

Bc
i =

[
0,

−1

2Hi
, 0, 0, 0

]T

,

and Ac
ij, i �= j is a 5 × 5 matrix whose only non-zero element

is –Ps
ij in the first row and the second column.

Combining the equations for all areas we obtain

ẋ(t) = Acx(t) + Bcu(t), (9)

where x ∈ R
5N, u ∈ R

N, A ∈ R
5N×5N, B ∈ R

5N×N s.t.

x = [
xT

1 , . . . , xT
N

]T
, u = [

uT
1 , . . . , uT

N

]T
,

Ac =
⎡

⎢
⎣

Ac
11 . . . Ac

1N
...

. . .
...

Ac
N1 . . . Ac

NN

⎤

⎥
⎦, Bc =

⎡

⎢
⎢⎢
⎣

Bc
1 0 . . . 0

0 Bc
2 . . . 0

...
...

. . .
...

0 0 . . . Bc
N

⎤

⎥
⎥⎥
⎦

.

The above continuous time model can be converted to discrete
time with a discretization time step Ts using the zero-order
hold (ZOH) method [47] to obtain

x[t + 1] = Ax[t] + Bu[t], (10)

where A and B are obtained by the ZOH discretization of Ac

and Bc respectively.

B. Fault and Attack Detection in AGC

As mentioned in Section II, the most commonly used meth-
ods for fault and attack detection in AGC are (1) monitoring
the ACE values, which is a model-free method, and (2) devel-
oping unknown input observers, which is model-based.

1) Area Control Error: The ACE can be computed for each
area as in (6), based on the received power-flow and frequency
measurements. Since the main objective of AGC is to keep the
ACE values small, an increase in ACE could be a strong indi-
cator for a system fault or malicious activity [9]. The simplest
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ACE-based detector would then monitor the ACE values, and
raise an alarm if

max
i

|ACEi[t]| > ρa, (11)

where ρa is a predefined detection threshold. In what follows,
we refer to the detector based on (11) as the ACE detector.

2) Unknown Input Observer: Another commonly used
method for fault and attack detection for AGC is based on
the idea of the delayed unknown input observer (UIO) for
discrete-time linear systems [4], [19]. The UIO is based on
the discrete-time state space model of the system,

x[t + 1] = Ax[t] + Bu[t]

y[t] = Cx[t], (12)

where y ∈ R
3N, C ∈ R

3N×5N s.t.

y = [
y1, . . . , yN

]T
, C =

⎡

⎢⎢⎢
⎣

C1 0 . . . 0
0 C2 . . . 0
...

...
. . .

...

0 0 . . . CN

⎤

⎥⎥⎥
⎦

,

yi =
[
�Ptie

i , �ωi, �Pref
i

]
, Ci =

⎡

⎣
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎤

⎦.

Note that the output y includes only the variables that could be
measured by the operator. For ease of notation we let n = 5N,
m = N, p = 3N denote the total number of states, inputs,
and outputs of the system, respectively. Assuming knowledge
of the initial state of the system (i.e., x[0]), a UIO with a
detection delay α can be used to estimate the system state at
time t after observing the system measurements y from time
t to t + α, making use of the relation

y[t : t + α] = �αx[t] + Mαu[t : t + α], (13)

where y[t : t + α] ∈ R
p(α+1), u[t : t + α] ∈ R

m(α+1),�α ∈
R

p(α+1)×n, Mα ∈ R
p(α+1)×m(α+1) s.t.

y[t : t + α] = [
y[t]T , y[t + 1]T , . . . , y[t + α]T]T

,

u[t : t + α] = [
u[t]T , u[t + 1]T , . . . , u[t + α]T]T

,

�α =
[
CT , (CA)T , . . . ,

(
CAα

)T
]T

,

Mα =

⎡

⎢⎢⎢
⎣

0 0 . . . 0
CB 0 . . . 0
...

...
. . .

...

CAα−1B CAα−2B . . . 0

⎤

⎥⎥⎥
⎦

,

The estimated system state x̂[t] by the UIO can then be
given by

x̂[t + 1] = Ax̂[t] + L
(
y[t : t + α] − �α x̂[t]

)
, (14)

where L ∈ R
n×p(α+1) is the UIO gain matrix that should be

designed in order to ensure the accuracy and stability of the
UIO. It has been shown [19], [48] that for α ≥ 2, the accuracy
and stability of the UIO can be ensured when the following
procedure is followed [4], [19]:

1) Choose α s.t. rank(Mα) − rank(Mα−1) = N
2) Find the matrix Q ∈ R

αm×(α+1)p that satisfies

QMα =
[

0 0
Im 0

]

3) Compute [ST
1 ST

2 ]T = Q�α s.t. S1 ∈ R
(α−1)m×n and

S2 ∈ R
m×n

4) Find L1 ∈ R
n×(α−1)m s.t. the eigenvalues of (A−BS2)−

L1S1 are stable (i.e., ∈ [ − 1, 1])
5) Compute L = [L1 B] × Q
After estimating the system state x̂ using (14), the residual

can be computed as

r[t] = y[t] − Cx̂[t], (15)

and an alarm is raised if

‖r[t]‖2 > ρr, (16)

where ρr is a predefined detection threshold. Recall that
despite being the residual of the estimated state for time t, r[t]
cannot be computed by the UIO before time t+α. Furthermore,
observe that the knowledge of the load changes (i.e., u[t]) is
not required to compute r[t]. In what follows we refer to the
detector based on (16) as the UIO detector.

C. Attack Model

We consider an attacker that has knowledge of the system
matrices A, B, and C. This means that the attacker either
knows or can accurately estimate the parameters of each
area (i.e., Hi, Di, Ri, βi, τ

g
i , τ t

i , Ps
ij). Furthermore, the attacker

is able to eavesdrop on the system measurements (i.e., y[t]) at
each AGC cycle. We assume that the attacker knows whether
the system operator is using an ACE detector, a UIO detec-
tor, none, or both. If the operator is using a UIO, the attacker
knows the parameters α and L of the UIO, and can thus predict
the effect of its attack on the UIO residual r.

We consider that the attacker can inject false measurements
of the tie-line power flows as well as the area frequencies, and
can thus manipulate �Ptie and �ω as

�Ptie
i,a[t] = �Ptie

i [t] + aP
i [t],

�ωi,a[t] = �ωi[t] + aω
i [t], (17)

where aP
i and aω

i represent the perturbation (attack) of the
tie-line power flows and frequency in area i. Observe that
in practice, manipulating the frequency measurements might
be harder than manipulating power flow measurements since
(1) power flow measurements are typically greater in number
than frequency measurements, and are thus harder to secure,
and (2) the grid frequency is a variable that can be veri-
fied by the system operator from neighbouring buses in the
same area [3]. The attacked power-flow and frequency mea-
surements would then affect the ACE computation in (6), and
thus the output of the PI-controller in (5).

In practice, the attacker could eavesdrop and inject false
measurements through network intrusion. The attack could
directly manipulate messages transmitted using communica-
tion protocols such as Modbus, DNP3 or IEC 61850 [49], [50],
as these protocols do not mandate either authentication or
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encryption of messages. Although security recommendations
exist for these protocols [51], their use is not mandatory. Even
if message authentication is used, eavesdropping and injection
of measurements would be feasible through the compromise of
end devices. An end device (e.g., a remote terminal unit (RTU)
or a phasor measurement unit (PMU)) could be compromised
by stealing cryptographic credentials or by exploiting software
or hardware vulnerabilities, and state estimates based on PMU
measurements could also be compromised by time synchro-
nization attacks [52]. Finally, information regarding the system
parameters and the used detectors could be obtained by insid-
ers, or could be estimated by an adversary that can eavesdrop
the measurements during an extended period of time.

Overall, the advantage of such a strong attack model is that
it allows us to consider the worst case attacks and their poten-
tial impact on the system’s performance. Such a strong model
is not uncommon in the security literature, given the recent
success of cyber attacks with high level of attacker knowl-
edge, e.g., Stuxnet [53] and FDIAs against power system state
estimation [54], [55]. We further assume that the attack is
constrained by

∣∣�Ptie
i,a[t]

∣∣ ≤ aP+,
∣∣�ωi,a[t]

∣∣ ≤ aω+, (18)

where aP+ and aω+ denote the respective maximum allowed
attack magnitudes. The reason for constraint (18) is that an
attack that sets the power-flow or frequency measurements
too far from their expected values should be easily detectable.
Moreover, the attacker is constrained by that

∑N
i=1 �Ptie

i,a and
∑N

i=1 aP
i must be kept close to zero for any attack. As a result

of the attack, the state-space model becomes [20]

x′[t + 1] = Ax′[t] + Bu[t] + Ea[t], (19)

y′[t] = Cx′[t] + Fa[t], (20)

where a ∈ R
2N . E ∈ R

n×2N, F ∈ R
p×2N s.t.

a = [
aP

1 , aω
1 , . . . , aP

N, aω
N

]T
, (21)

E =

⎡

⎢⎢⎢
⎣

E1 0 . . . 0
0 E2 . . . 0
...

...
. . .

...

0 0 . . . EN

⎤

⎥⎥⎥
⎦

,

F =

⎡

⎢⎢⎢
⎣

F1 0 . . . 0
0 F2 . . . 0
...

...
. . .

...

0 0 . . . FN

⎤

⎥⎥⎥
⎦

, Ei =

⎡

⎢⎢⎢⎢
⎣

0 0
0 0
0 0
0 0

−ki − kiβi

⎤

⎥⎥⎥⎥
⎦

,

Fi =
⎡

⎣
1 0
0 1
0 0

⎤

⎦.

Observe that the only state variable that is directly affected by
the attack is �Pref , due to the manipulated ACE value. The
considered attack model is illustrated in Figure 2.

The attacker’s goal is to maximize the deviation of the
frequency from its nominal value f0 in a certain target area i∗.
Ideally, the attacker would like to cause the frequency to drift

Fig. 2. Block diagram of the AGC system, including the physical power
system, the communication network, the control center, and the attacker.

beyond its secure limit, which might cause load shedding
schemes to take effect, or in the worst case cause blackouts.

We consider that the adversary aims to find a sequence
π = (a[1], a[2], . . . , a[T]) for some time horizon T that max-
imizes the frequency deviation without being detected by
either the UIO or the ACE. This corresponds to solving the
optimization problem

max
π

1

T

T∑

t=1

|�ωi∗[t]|,

s.t. ‖r[t]‖2 ≤ ρr, t = 1, 2, . . . , T

max
i

|ACEi[t]| ≤ ρa, t = 1, 2, . . . , T. (22)

An important feature of this seemingly simple problem is that
the attacker has limited information about the system at every
time step and has no knowledge of the future evolution of the
system. Thus, (22) is essentially a sequential decision problem
under uncertainty, and hence we propose to adopt a multi-
objective POMDP formulation.

IV. RL-BASED ATTACKS ON AGC

In what follows we formulate the problem of computing
attacks against AGC that are undetectable w.r.t. the UIO and
the ACE as a multi-objective partially observable Markov
decision process (MO-POMDP) [5], and propose to use rein-
forcement learning for obtaining an attack policy. Although we
present a solution that specifically targets the two detectors dis-
cussed in Section III-B, the proposed approach can easily be
extended to target any other model-based or model-free fault
and attack detection method that is based on a hypothesis test
in the form (11) or (16).

A. Multi-Objective POMDP Formulation

We formulate the problem by first introducing a tuple M and
then showing that it is a POMDP. Let M � (S,A, R,P,O, γ ),
where:

• S is the state space, and s[t] ∈ S is the state at time
step t. For our problem, this includes the state of the AGC
system, the load demand, the current estimated state by
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the UIO, as well as the delayed measurements needed for
estimating the next state. Therefore,

s[t] � (x
[
t], u[t], x̂[t − α], y′[t − α − 1 : t − 1]

)
. (23)

• A is the set of the attacker’s possible actions, and a[t] ∈
A denotes the action at time step t as defined in (21).

• R[t] is the reward function. We propose a reward function
that rewards an increase of the frequency deviation at
the target area and at the same time includes punishment
terms for the UIO residual and the ACE. Particularly, we
use a weighted sum of the frequency deviation, the norm
of the residual, and the maximum of the ACE values
among different areas as the reward,

R[t] � |�ωi∗[t + 1]|
− λr‖r[t − α + 1]‖2 − λa max

i
|ACEi[t]|, (24)

where λr and λa are regularization coefficients (note that
�ωi∗[t + 1], r[t − α + 1], and ACEi[t] are the result-
ing frequency deviation, residual, and ACE, when the
transition (s[t], a[t]) → s[t + 1] occurs). The values
of (λr, λa) can be used for setting the relative impor-
tance of the impact (�ωi∗) and (un)detectability (r and
ACE). Observe that the reward function essentially con-
verts three objectives into a scalar objective, which is a
widely used approach for dealing with MO-POMDPs.

• P(s[t + 1]|s[t], a[t]) represents the conditional transition
probability between states.

• O denotes the attacker’s observation space. At each time
step t the attacker obtains the observation o[t] ∈ O about
the state. We define this observation as

o[t] � (y
[
t], y′[t − α − 1 : t − 1]

)
. (25)

Note that we assumed that the vector y is observable by
the attacker, and y′ is the result of the attacker’s actions
on y and accordingly, is observable by the attacker.

• γ ∈ [0, 1) is a discount factor.
Proposition 1: The tuple M with the definitions

in (23), (24), and (25) is a POMDP.
Proof: To prove this, we need to show that
(i) s[t] as defined in (23) is indeed Markovian.

(ii) The transition (s[t], a[t]) → s[t + 1] contains all
information needed for computing the reward.

In order to prove (i), we need to show that s[t + 1] only
depends on s[t] and a[t] and not the entire history, i.e., we
have to verify that

p
(
s[t + 1]

∣∣ s[t], a[t]
)

= p
(
s[t + 1]

∣∣ s[t], s[t − 1], . . . , s[0], a[t]
)
. (26)

Equations (14), (19), and (20) show that x̂[t −α +1], x[t + 1],
and y′[t] (and accordingly, y′[t − α : t]) are independent of
s[t − 1], . . . , s[0] given s[t] and a[t]. Assuming that u[t] has
the Markov property (e.g., a random walk), then the state s[t]
has the Markov property as well.

Regarding (ii), notice that the term �ωi∗[t+1] is an entry of
x[t+1], which itself is a part of s[t+1]. In addition, r[t−α+1]
can be obtained as

r[t − α + 1] = y′[t − α + 1] − Cx̂[t − α + 1],

and both y′[t −α +1] and x̂[t −α +1] are included in s[t +1].
Finally, ACEi[t] is computed based on y′[t] using (6), and
y′[t] is determined by s[t] and a[t]. Hence, writing the reward
in (24) as R[t] = R(s[t], a[t], s[t + 1]) is well-justified.

B. Attacker’s Policy

To solve the above-mentioned POMDP, the attacker seeks
to find a policy π : O → A that maximizes the expected
discounted average reward. That is, the attacker’s objective is
finding the solution to the following problem:

arg maxπ E

[ ∞∑

t=0

γ tR[t]

]

(27)

Note that maximizing the objective in (27) corresponds to
solving the following optimization problem:

max
π

E

[ ∞∑

t=0

γ tR[t]

]

= max
π

E

[ ∞∑

t=0

γ t(|�ωi∗[t + 1]| − λr‖r[t − α + 1]‖2

− λa max
i

|ACEi[t]|
)]

= max
π

E

[ ∞∑

t=0

γ t|�ωi∗[t + 1]|
]

− λrE

[ ∞∑

t=0

γ t‖r[t − α + 1]‖2

]

− λaE

[ ∞∑

t=0

γ t max
i

|ACEi[t]|
]

,

which can be regarded as a relaxed approximation of the
problem in (22). This justifies our definition of the reward
function in (24).

Finding the optimal policy is an RL problem with continu-
ous state and action spaces. We thus propose to use deep RL
for finding good policies. In what follows we refer to the attack
based on this policy as the deep RL attack DRLA(λr, λa).

V. NUMERICAL RESULTS

In this section we evaluate the proposed RL-based attacks
and compare them to state-of-the-art FDIAs against AGC. All
experiments were carried out on a server with AMD 7543P
CPU with 32 cores @ 2.8 GHz and 64 GB of RAM.

A. Simulation Methodology

We simulated an N = 3-area power system operating at
a nominal frequency of 60 Hz. The parameters for areas 1
and 2 are the same as for the examples in [2, Ch. 12] and the
parameters for area 3 were obtained by slightly perturbing the
values for area 1, as shown in Table I. Each area is connected
to the other two areas through a tie line. Although seemingly
simplistic, the simulated 3-area system can model a wide-range
of practical systems, since each area does in reality include
many generator and load buses. To simulate the dynamics of
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TABLE I
PARAMETERS OF THE CONSIDERED THREE-AREA POWER SYSTEM

the system, we assumed a discretization time step of Ts = 2
seconds, which is a reasonable value considering the AGC
cycle [2]. The load for each area is assumed to follow a random
walk given by

�PL
i [t + 1] = �PL

i [t] + vL
i [t], (28)

where vL
i follows a zero-mean Gaussian distribution with a

standard deviation σ L
i = 0.02 p.u. for all areas. Furthermore,

state noise and measurement noise are added to (12) according
to zero-mean Gaussian distributions with a standard deviation
of 0.03 Hz for frequency variables and

√
0.03 MW for power

variables [19], [56]. The above three factors (i.e., load fluctua-
tion, state and measurement noise) are thus the main sources of
randomness in our experiments. For the evaluation we imple-
mented a UIO with an estimation delay of α = 2, which is the
smallest value that ensures the accuracy and stability of the
UIO [48]. To choose the UIO gain matrix L, the eigenvalues
of the matrix (A − BS2) − L1S1 were chosen to be equidis-
tant values in the range [ − 0.5, 0.5], which was observed to
improve the UIO accuracy.

Next, to compute DRLAs, we considered that the max-
imum allowed deviation of the power-flow is aP+ = 0.3
p.u. = 300 MW, and the maximum allowed deviation of the
frequency (in the case frequency measurements are attacked)
is aω+ = 0.006 p.u. = 0.36 Hz, as in (18). The aforemen-
tioned values were chosen based on preliminary experiments
s.t. the deviations in attacked measurements are large enough
to affect the AGC system, but not too large to raise alarms and
initiate remedial actions by the operator. The attack objective
was to maximize the frequency deviation in area 1, i.e., i∗ = 1.
Since the states and actions are continuous, popular discrete-
space RL algorithms such as deep Q-network (DQN) [57]
could not be used. Instead, the RL attacks were trained by
the proximal policy optimization (PPO) algorithm [58]. PPO
was chosen based on the results of preliminary experiments
comparing its performance to other state-of-the-art continuous-
space RL algorithms such as deep deterministic policy gradient
(DDPG) [59], and soft actor-critic (SAC) [60]. Due to its
simplicity, ease of tuning, and state-of-the-art performance in
various RL tasks, PPO is currently one of the most used RL
algorithms. It belongs to the class of actor-critic policy gradi-
ent algorithms. The PPO algorithm consists of two interacting
neural networks: an actor network which learns to produce
actions based on observations, and a critic network which
learns to evaluate the actions generated by the actor network.
The actions produced by the actor NN are optimized by max-
imizing the clipped value of the advantage function, which

quantifies the advantage of taking an action compared to the
average behavior. The optimization objective could possibly
include minimizing the KL-divergence [61] between the poli-
cies followed in subsequent optimization steps. In our PPO
implementation, we used the default PPO parameters from
the RL-lib Python library [62]. The discount factor used was
γ = 0.99. The advantage function was estimated using gener-
alized advantage estimation (GAE) [63] with λGAE = 1. The
KL-divergence was included in the objective with a coefficient
of 0.2 and a target of 0.01. The PPO clip parameter used
was ε = 0.3. The actor and critic NNs were implemented
in the Tensorflow Python library [64], and each network
included 2 hidden layers with 256 neurons, and tanh acti-
vation functions. The NNs were optimized using stochastic
gradient descent (SGD) [65] with 30 epochs of training per
batch, and a mini-batch size of 128 samples. The number of
episodes needed to train each RL agent was 80,000. Each
episode’s length was 150 AGC cycles (i.e., 300 seconds given
Ts = 2s), and the attacks started at the 51st cycle, resulting
in Te = 100 attacked AGC cycles per episode. The initial
50 unattacked cycles were simulated to avoid any undesired
interaction between the attack and the initial transient behav-
ior of the UIO. We used three attack schemes as baselines for
comparison.

a) Random Attack: At each time step, the attack is
randomly chosen according to a uniform distribu-
tion, i.e., �Ptie

i,a ∼ U(−aP+, aP+) and �ωi,a ∼
U(−aω+, aω+).

b) Regression Attack: proposed in [3], the attacker devel-
ops a linear regression model of the attack impact
(i.e., |�ω1|) as a function of the change in the area
loads �PL[t], and the attacker’s action a[t]. The optimal
attack can then be computed based on the learned
model.

c) DRLA (0, 0): the attacker attempts to maximize the
impact, without taking neither the UIO residual nor the
ACE into consideration, and uses RL for this purpose.
This is achieved by setting λr = λa = 0 in (24).

For each attack scenario, the simulation procedure is as
follows at each time step:

1) Compute the attack a[t] according to the attack policy.
2) Compute the attacked measurements y′[t] as in (20).
3) Compute the UIO residuals r based on y′[t].
4) Simulate the state-space model of the AGC system

according to (19).
5) Compute the un-attacked measurements y[t + 1]

from (12), which will be part of the observation o[t +1]
for the attacker.

B. Attack Impact and Detectability

In what follows we present the results of the evaluation of
our proposed DRLA s against AGC. Figure 3(left) and (right)
shows the attack impact measured as the maximum frequency
deviation in the target area (i.e., Area 1) during an episode vs.
the maximum �2-norm of the UIO residual over one episode,
and the attack impact vs. the maximum maxi |ACEi| over
one episode, respectively, when attacking only the power-flow
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Fig. 3. Trade-off between attack impact and detection metrics for DRLAs and baselines, when only power-flow measurements are attacked.

Fig. 4. Trade-off between attack impact and detection metrics for DRLAs and baselines, when both power-flow and frequency measurements are attacked.

measurements with (aP+ = 0.3). Figure 4 shows correspond-
ing results for the case when attacking both power-flow and
frequency measurements with (aP+ = 0.3, aω+ = 0.006).
Each point in the figures represents one episode and a total
of 1000 episodes were simulated per scenario. We identi-
fied non-zero λr and λa values by numerically exploring the
Pareto frontier, and then choosing parameter pairs with sig-
nificant impact while retaining undetectability. Focusing on
Figure 3, we can first observe that the baselines can typi-
cally achieve slightly higher impact compared to the proposed
DRLA s. For example, the maximum impact achieved by the
baselines is around 0.5 Hz, compared to slightly over 0.4 Hz
for DRLA s. However, DRLA s (with non-zero regularization
coefficients) can greatly reduce the values of the detection
metrics compared to baselines (e.g., by around two orders
of magnitude for the UIO residual and around one order
of magnitude for the ACE), and bring the detection metrics
close to their values in the no-attack scenario. Furthermore, as
expected, DRLA(0.0145, 0) which penalizes high UIO resid-
uals succeeds in achieving a good balance between impact and
UIO residuals. However, it clearly fails in keeping the ACE

values low (similar to the baselines). The exact opposite is
observed for DRLA(0, 0.02736). Comparing the two afore-
mentioned attacks, it can be observed that attacking the UIO
residual seems to be easier than attacking the ACE, which
indicates that the ACE might be a better metric for detecting
attacks than the UIO residuals in this case. On the contrary,
DRLA(0.0052, 0.022) succeeds in keeping both detection
metrics low, at the cost of lower attack impact.

Comparing the above results with Figure 4, we can observe
that attacking the frequency measurements can allow the
attacker to slightly increase both the attack impact and stealth-
iness. For example, DRLA(0.018, 0) can have an impact
reaching 0.6 Hz, which is above the security limit of many
applications. Furthermore, the same attack yields UIO resid-
uals that are on average much lower than the corresponding
attack in Figure 3. Note the discrepancy between the values
of (λr, λa) in Figures 3 and 4, since these values were chosen
empirically. The vertical line in the figures shows the detection
threshold corresponding to a false positive rate (FPR) of 0.1%.
The FPR is defined as the fraction of non-attacked episodes
for which the detector raises an alarm, and can be controlled
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Fig. 5. Reward curves during training.

by changing the detection threshold, and FPR=0.1% corre-
sponds to a time between false alarms TBFA = TeTs/FPR =
100 × 2/0.001 = 200, 000 seconds (< 0.5 false alarms
per day). Figure 4 shows that the UIO detector can detect
27.6% of the DRLA(0.005, 0.022) attacks and 28.2% of the
DRLA (0.018, 0) attacks. For the same FPR, the ACE detec-
tor can detect only 1.1% of the DRLA(0.005, 0.022) attacks
and 8.3% of the DRLA(0, 0.029) attacks. This suggests that
the UIO detector is better than the ACE detector for this
case. In general, Figure 4 confirms the earlier observation that
DRLA is successful in terms of impact and (un)detectability.
We have also evaluated the performance of an additional detec-
tor based the cumulative sum (CUSUM) [66] of the UIO
residuals. The results, shown in the Appendix, suggest that
CUSUM does not provide a significant improvement over the
above detectors, especially for the case when both power-flow
and frequency measurements are attacked.

C. Training Stability

To assess the stability of DRLA, we further trained 10 sep-
arate agents for each (λr, λa) tuple, excluding the baseline
DRLA(0, 0), and computed the minimum, mean, and max-
imum reward per episode over the 10 agents as the training
progresses. Figure 5 shows the so-called reward curves for the
trained agents, with and without attacking frequency measure-
ments. To facilitate the comparison, the rewards were scaled
over the 10 trained agents using min-max scaling. The figure
shows that most agents do converge with very low variance
after around 10,000 episodes of training, with the only excep-
tion being DRLA(0, 0.029) (when attacking both �Ptie and
�ω), which indicates that the agents might need further train-
ing. To conclude, the trained agents show in general very stable
performance.

D. Immediate Response

We further consider the hypothetical scenario that the oper-
ator immediately reacts to the attacks detected by either the
UIO or the ACE detectors (e.g., through neglecting suspected

measurements, or initiating load shedding schemes). For this
case, it is reasonable to evaluate the attacks in terms of
the highest impact caused until detection, instead of the
highest impact over the whole episode. For brevity, all upcom-
ing results concern the scenario where both power-flow and
frequency measurements are attacked (i.e., aP+ = 0.3, aω+ =
0.006), unless otherwise stated. Figure 6 shows the relation
between the attack impact before detection, and the average
TBFA. Every point is computed by using a different value
for the detection thresholds (ρr or ρa). The figure shows that
the effective impact of the baseline attacks is always negligi-
ble irrespective of the chosen TBFA, since those attacks are
always detected at the beginning of an episode, before they
can achieve any significant impact. Interestingly, this is also
the case for DRLA s targeting the wrong detection metrics,
e.g., DRLA s with λr = 0 have negligible effective impact
when the UIO detector is used, and vice versa. Among DRLA
s, the effective impact of the attacks with non-zero regulariza-
tion coefficients increases with the TBFA until it approaches
the average impact shown in Figure 4. The results in this fig-
ure and the previous figures emphasize the importance of the
attacker’s knowledge of the detector employed by the defender.
They also show that even if the operator decides to use both
detection metrics, DRLA s with λr > 0 and λa > 0 are
expected to be undetected, even if somewhat less impactful.

E. Data-Driven Detectors

To further investigate the detectability of the proposed
DRLA s, we examine the use of two machine learning (ML)
based detection approaches: (1) an unsupervised autoencoder
(AE) neural network, and (2) a supervised deep neural network
(DNN) classifier. For both approaches, we consider that the
input features at each timestep are: (a) the measurements
y[t], (b) the UIO residuals r[t − α], (c) the norm of the
UIO residuals ‖r[t − α]‖2, and (d) the ACE in all areas.
Thus, for our 3-area system this corresponds to a total of
nf = 9 + 9 + 1 + 3 = 22 features. The dimensions of
the AE layers were nf ∗ [1, 0.7, 0.5, 0.7, 1] (i.e., three
hidden layers), and the dimensions of the DNN layers were
nf ∗ [1, 4, 0.5, 1] (i.e., two hidden layers). Both approaches
used ReLU as the activation function for the neurons, used the
Adam optimization algorithm, and were implemented using
PyTorch. To evaluate the data-driven detectors, we used the
same simulation data described in Section V-B. The data (7
attack scenarios × 1000 episodes × 100 time steps) were
split into 800 training episodes and 200 test episodes. The
unsupervised AE was trained on non-attacked training data
only, while the supervised DNN was trained using the whole
labelled training data. The detection was then done on the test
data using a hypothesis test similar to (11) and (16), where
the test statistics for AE and DNN were the MSE of the AE
reconstruction error (the difference between input and output
layers), and the scalar output of the DNN, respectively.

To compare the performance of the ML detectors to the
UIO and ACE detectors, we utilize the receiver operating char-
acteristic (ROC) curves. The ROC curve shows the trade-off
between the fraction of attacked episodes for which a detector
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Fig. 6. Trade-off between the highest achieved attack impact before detection and the time between false alarms.

TABLE II
COMPARISON OF THE ATTACKS W.R.T. THEIR IMPACT AND

CORRESPONDING AUC SCORES BY THE DIFFERENT DETECTORS

raises an alarm (true positive rate, or TPR) on the vertical axis,
and the FPR on the horizontal axis, and is obtained by varying
the detection threshold (e.g., ρr in (16) for the UIO detector).
The area under the ROC curve is a commonly-used evalua-
tion metric that summarizes the performance of the detector.
An ideal detector would have AUC = 1, while a detector with
AUC = 0.5 would correspond to a performance that is as good
as random guessing.

Table II shows the AUC achieved by each of the detec-
tors, as well as the mean impact of each attack. Observe that
the impact was defined as the maximum observed frequency
deviation in area 1, and hence the no-attack scenario has non-
zero impact. From the table, we can generally see that the
ML detectors (especially the DNN) have significantly higher
AUC values than the UIO and ACE detectors. Nonetheless, the
unsupervised AE performs surprisingly poor against DRLA
(0.005, 0.022), even though the attack was not specifi-
cally trained to bypass it. This result interestingly indicates
the potential generalization power of DRLA against unseen
detectors. Finally, it is worth noting that although the super-
vised DNN can effectively detect all considered attacks, the
performance of supervised ML typically degrades against
unseen and zero-day attacks [67], [68]. Moreover, the acqui-
sition of accurately labelled data in real scenarios might not
always be feasible [69], [70].

F. Impact of Parameter Misestimation

We now consider the case when the operator’s model of
the AGC system (i.e., H, D, τ t, τ g, R) is slightly inaccurate.

TABLE III
COMPARISON OF THE ATTACK IMPACTS AND CORRESPONDING AUC

SCORES, IN THE PRESENCE OF 20% PARAMETER MISESTIMATION

Model inaccuracy would affect the control accuracy of the PI-
controllers and the UIO residuals, making an attack potentially
more difficult to detect. To simulate this scenario, we consider
that the real system parameters are 20% higher than those in
Table I, and are used for evaluating the attack and the detec-
tion schemes. We consider the case of symmetric information
availability, i.e., the operator and the attacker have access to
the same inaccurate parameters. The parameters available are
the ones shown in Table I, and are used for computing the
UIO matrices, the residuals, for training DRLA s. There is thus
20% estimation error, which would not drastically increase the
frequency deviations or UIO residuals without an attack, but
is large enough to affect detectability.

Table III presents the attack impact and the AUC achieved
by the detectors in this scenario. Surprisingly, even though
the attacker uses the same inaccurate parameters as the oper-
ator, the attack impact is significantly increased for DRLA
s compared to Table II, while remaining completely unde-
tectable w.r.t. most detectors. Observe that the AUC for the
UIO and ACE detectors are significantly smaller than 0.5 for
some attacks. This means that DRLA learns to yield UIO
residuals and ACE values that are on average smaller than
the no-attack case.

Overall, our results indicate that DRLA s are powerful w.r.t.
both the inflicted impact to the power grid, and the stealthiness
against a wide range of detectors. However, the results also
suggest potential methods to enhance the security of AGC,
including (1) obtaining more accurate system models and
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information, (2) utilizing supervised ML detectors with rich
training data, and (3) securing measurements from physical
and network intrusions, by, e.g., utilizing redundant frequency
measurements.

VI. CONCLUSION

In this paper we investigated the vulnerability of state-of-
the-art AGC to attacks against power and frequency mea-
surements. We formulated the problem of attacking an AGC
system equipped with multiple fault and attack detection meth-
ods as a POMDP. We proposed an RL solution based on
the proximal policy optimization algorithm to compute the
attacked sensor measurements. Our results show the superi-
ority of the proposed RL-based attacks compared to several
baseline attacks in terms of stealthiness and attack impact, and
show that sophisticated attacks could bypass existing detection
schemes and could lead the grid frequency to critical trajec-
tories. One direction for future work could be to analyze the
practical feasibility of the proposed attack when considering
weaker attack models, e.g., attackers without knowledge of
the system parameters, or those manipulating measurements
in only one area.

APPENDIX

A. FDIA Detection using UIO and CUSUM

In what follows we consider that the system operator
is using a combination of the UIO detector and CUSUM
(i.e., referred to as the CUSUM(UIO) detector). The detection
metric for the CUSUM(UIO) detector is computed as [66]

Sr[t] = max (0, Sr[t − 1] + ‖r[t]‖2 − br), (29)

where ‖r[t]‖2 is the �2-norm of the UIO residual at time t, br

is the bias term chosen to be equal to the mean UIO residual
in the normal (unattacked) case, and Sr[0] = 0. An alarm is
then raised by the detector if

Sr[t] > ρc, (30)

where ρc is a predefined detection threshold.
Using the same simulated data described in Section V-B,

we evaluated the CUSUM(UIO) detector against the base-
line FDIAs and our proposed DRLAs, and the results are
shown in Figure 7 and Figure 8. The figures show the trade-
off between the attack impact, and the maximum CUSUM
detection metric (Sr) during an episode. For the case when
only power measurements are attacked, Figure 7 shows that
using CUSUM can improve the separability of the attacked
and the non-attacked measurements, compared to the UIO-
detector which directly uses the raw residuals (c.f., Figure 3).
To the contrary, when both power and frequency measurements
are attacked, Figure 8 shows that the CUSUM(UIO) detector
did not bring any performance improvement compared to the
UIO detector (c.f., Figure 4). Observe that in the former case,
the attacked UIO residuals were on average higher than the
non-attacked ones. Using CUSUM in that case allows this dif-
ference to accumulate over time, and thus boosts the detection
performance. On the other hand, the attacked UIO residuals

Fig. 7. Trade-off between attack impact and the CUSUM detection metric
for DRLAs and baselines, when only power-flow measurements are attacked.

Fig. 8. Trade-off between attack impact and the CUSUM detection metric for
DRLAs and baselines, when both power-flow and frequency measurements
are attacked.

were on average less than or equal to the non-attacked resid-
uals in the latter case. Thus, using CUSUM makes little to no
difference in the detection performance.

Note that the DRLAs in Figure 8 were capable of bypass-
ing the CUSUM(UIO) detector despite the fact that they were
trained to minimize ‖r[t]‖2 and not Sr[t]. Training DRLAs that
target Sr[t] should yield even stealthier attacks. Furthermore,
one could also implement a CUSUM(ACE) detector, but
our results suggest that such a detector would provide little
improvement in detection performance, especially for the case
when both power and frequency measurements are attacked.

REFERENCES

[1] P. P. Kundur, Power System Stability and Control. New York, NY, USA:
McGraw-Hill, 1994.

[2] H. Sadat, Power System Analysis. New York, NY, USA: McGraw-Hill,
2004.

[3] R. Tan et al., “Modeling and mitigating impact of false data injection
attacks on automatic generation control,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 7, pp. 1609–1624, Jul. 2017.



SHEREEN et al.: REINFORCEMENT LEARNING APPROACH TO UNDETECTABLE ATTACKS AGAINST AGC 971

[4] S. Sundaram and C. N. Hadjicostis, “Delayed observers for linear
systems with unknown inputs,” IEEE Trans. Autom. Control, vol. 52,
no. 2, pp. 334–339, Feb. 2007.

[5] H. Soh and Y. Demiris, “Evolving policies for multi-reward partially
observable Markov decision processes (MR-POMDPs),” in Proc. Ann.
Conf. Genet. Evol. Comput., 2011, pp. 713–720.

[6] K. Rahimi, A. Parchure, V. Centeno, and R. Broadwater, “Effect of
communication time-delay attacks on the performance of automatic
generation control,” in Proc. North Amer. Power Symp. (NAPS), 2015,
pp. 1–6.

[7] X. Lou et al., “Assessing and mitigating impact of time delay attack:
Case studies for power grid controls,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 1, pp. 141–155, Jan. 2020.

[8] S. Sridhar and G. Manimaran, “Data integrity attacks and their impacts
on SCADA control system,” in Proc. IEEE PES Gen. Meeting, 2010,
pp. 1–6.

[9] S. Sridhar and M. Govindarasu, “Model-based attack detection and miti-
gation for automatic generation control,” IEEE Trans. Smart Grid, vol. 5,
no. 2, pp. 580–591, Mar. 2014.

[10] C. Chen, X. Zhang, M. Cui, K. Zhang, J. Zhao, and F. Li, “Stability
assessment of secondary frequency control system with dynamic false
data injection attacks,” IEEE Trans. Ind. Informat., vol. 18, no. 5,
pp. 3224–3234, May 2022.

[11] C. Chen, M. Cui, X. Wang, K. Zhang, and S. Yin, “An investigation
of coordinated attack on load frequency control,” IEEE Access, vol. 6,
pp. 30414–30423, 2018.

[12] W. Yan et al., “A stealthier false data injection attack against the power
grid,” in Proc. IEEE Int. Conf. Commun. Control Comput. Technol.
Smart Grids (SmartGridComm), 2021, pp. 108–114.

[13] M. Jafari, M. A. Rahman, and S. Paudyal, “Optimal false data injection
attacks against power system frequency stability,” IEEE Trans. Smart
Grid, vol. 14, no. 2, pp. 1276–1288, Mar. 2023.

[14] S. D. Roy and S. Debbarma, “Detection and mitigation of cyber-attacks
on AGC systems of low inertia power grid,” IEEE Syst. J., vol. 14, no. 2,
pp. 2023–2031, Jun. 2020.

[15] X. He, X. Liu, and P. Li, “Coordinated false data injection attacks
in AGC system and its countermeasure,” IEEE Access, vol. 8,
pp. 194640–194651, 2020.

[16] F. Zhang and Q. Li, “Deep learning-based data forgery detection in auto-
matic generation control,” in Proc. IEEE Conf. Commun. Netw. Security
(CNS), 2017, pp. 400–404.

[17] C. Chen, K. Zhang, K. Yuan, L. Zhu, and M. Qian, “Novel detection
scheme design considering cyber attacks on load frequency control,”
IEEE Trans. Ind. Informat., vol. 14, no. 5, pp. 1932–1941, Sep. 2019.

[18] Z. Chen, J. Zhu, S. Li, Y. Liu, and T. Luo, “Detection of false data injec-
tion attacks on load frequency control system with renewable energy
based on fuzzy logic and neural networks,” J. Mod. Power Syst. Clean
Energy, vol. 10, no. 6, pp. 1576–1587, 2022.

[19] A. Ameli, A. Hooshyar, E. F. El-Saadany, and A. M. Youssef, “Attack
detection and identification for automatic generation control systems,”
IEEE Trans. Power Syst., vol. 33, no. 5, pp. 4760–4774, Sep. 2018.

[20] A. Ameli, A. Hooshyar, A. H. Yazdavar, E. F. El-Saadany, and
A. Youssef, “Attack detection for load frequency control systems
using stochastic unknown input estimators,” IEEE Trans. Inf. Forensics
Security, vol. 13, no. 10, pp. 2575–2590, Oct. 2018.

[21] M. Khalaf, A. Youssef, and E. El-Saadany, “Joint detection and mitiga-
tion of false data injection attacks in AGC systems,” IEEE Trans. Smart
Grid, vol. 10, no. 5, pp. 4985–4995, Sep. 2019.

[22] J. Ye and X. Yu, “Detection and estimation of false data injection attacks
for load frequency control systems,” J. Mod. Power Syst. Clean Energy,
vol. 10, no. 4, pp. 861–870, 2022.

[23] K. Xiahou, Y. Liu, and Q. H. Wu, “Decentralized detection and mitiga-
tion of multiple false data injection attacks in multiarea power systems,”
IEEE J. Emerg. Sel. Topics Ind. Electron., vol. 3, no. 1, pp. 101–112,
Jan. 2022.

[24] X. Chen, S. Hu, Y. Li, D. Yue, C. Dou, and L. Ding, “Co-estimation
of state and FDI attacks and attack compensation control for multi-
area load frequency control systems under FDI and DoS attacks,” IEEE
Trans. Smart Grid, vol. 13, no. 3, pp. 2357–2368, May 2022.

[25] K. Pan, E. Rakhshani, and P. Palensky, “False data injection
attacks on hybrid AC/HVDC interconnected systems with virtual
inertia—Vulnerability, impact and detection,” IEEE Access, vol. 8,
pp. 141932–141945, 2020.

[26] A. D. Syrmakesis, H. H. Alhelou, and N. D. Hatziargyriou, “Novel
SMO-based detection and isolation of false data injection attacks against
frequency control systems,” IEEE Trans. Power Syst., early access,
Feb. 3, 2023, doi: 10.1109/TPWRS.2023.3242015.

[27] M. Khalaf, A. Youssef, and E. El-Saadany, “Detection of false data
injection in automatic generation control systems using Kalman filter,”
in Proc. IEEE Elect. Power Energy Conf. (EPEC), 2017, pp. 1–6.

[28] A. S. L. V. Tummala and R. K. Inapakurthi, “A two-stage Kalman filter
for cyber-attack detection in automatic generation control system,” J.
Mod. Power Syst. Clean Energy, vol. 10, no. 1, pp. 50–59, 2022.

[29] M. Khalaf, A. Youssef, and E. El-Saadany, “A particle filter-based
approach for the detection of false data injection attacks on automatic
generation control systems,” in Proc. IEEE Elect. Power Energy Conf.
(EPEC), 2018, pp. 1–6.

[30] T. Huang, B. Satchidanandan, P. R. Kumar, and L. Xie, “An online
detection framework for cyber attacks on automatic generation control,”
IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6816–6827, Nov. 2018.

[31] S. D. Roy, S. Debbarma, and A. Iqbal, “A decentralized intrusion detec-
tion system for security of generation control,” IEEE Internet Things J.,
vol. 9, no. 19, pp. 18924–18933, Oct. 2022.

[32] Y. Li, R. Huang, and L. Ma, “False data injection attack and defense
method on load frequency control,” IEEE Internet Things J., vol. 8,
no. 4, pp. 2910–2919, Feb. 2021.

[33] A. S. Musleh, G. Chen, Z. Y. Dong, C. Wang, and S. Chen, “Attack
detection in automatic generation control systems using LSTM-based
stacked autoencoders,” IEEE Trans. Ind. Informat., vol. 19, no. 1,
pp. 153–165, Jan. 2023.

[34] A. Abbaspour, A. Sargolzaei, P. Forouzannezhad, K. K. Yen, and
A. I. Sarwat, “Resilient control design for load frequency control system
under false data injection attacks,” IEEE Trans. Ind. Electron., vol. 67,
no. 9, pp. 7951–7962, Sep. 2020.

[35] J. Wang, D. Wang, L. Su, J. H. Park, and H. Shen, “Dynamic event-
triggered H∞ load frequency control for multi-area power systems
subject to hybrid Cyber attacks,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 52, no. 12, pp. 7787–7798, Dec. 2022.

[36] C. Chen, Y. Chen, J. Zhao, K. Zhang, M. Ni, and B. Ren, “Data-
driven resilient automatic generation control against false data injection
attacks,” IEEE Trans. Ind. Informat., vol. 17, no. 12, pp. 8092–8101,
Dec. 2021.

[37] Y. W. Law, T. Alpcan, and M. Palaniswami, “Security games for risk
minimization in automatic generation control,” IEEE Trans. Power Syst.,
vol. 30, no. 1, pp. 223–232, Jan. 2015.

[38] Z. Zhang, J. Hu, J. Lu, J. Cao, and F. E. Alsaadi, “Preventing false data
injection attacks in LFC system via the attack-detection evolutionary
game model and KF algorithm,” IEEE Trans. Netw. Sci. Eng., vol. 9,
no. 6, pp. 4349–4362, Nov./Dec. 2022.

[39] T. Imthias Ahamed, P. Nagendra Rao, and P. Sastry, “A reinforcement
learning approach to automatic generation control,” Elect. Power Syst.
Res., vol. 63, no. 1, pp. 9–26, 2002.

[40] C. Watkins and P. Dayan, “Technical note: Q-learning,” Mach. Learn.,
vol. 8, pp. 279–292, May 1992.

[41] L. Xi, L. Yu, Y. Xu, S. Wang, and X. Chen, “A novel multi-agent DDQN-
AD method-based distributed strategy for automatic generation control
of integrated energy systems,” IEEE Trans. Sustain. Energy, vol. 11,
no. 4, pp. 2417–2426, Oct. 2020.

[42] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI, 2016, pp. 2094–2100.

[43] S. Wang et al., “A data-driven multi-agent autonomous voltage control
framework using deep reinforcement learning,” IEEE Trans. Power Syst.,
vol. 35, no. 6, pp. 4644–4654, Nov. 2020.

[44] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor–critic for mixed cooperative-competitive environments,” in
Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS), 2017, pp. 6382–6393.

[45] D. Chen et al., “PowerNet: Multi-agent deep reinforcement learning for
scalable powergrid control,” IEEE Trans. Power Syst., vol. 37, no. 2,
pp. 1007–1017, Mar. 2022.

[46] Y. Chen, S. Huang, F. Liu, Z. Wang, and X. Sun, “Evaluation of
reinforcement learning-based false data injection attack to automatic
voltage control,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2158–2169,
Mar. 2019.

[47] I. D. Landau, G. Zito, Digital Control Systems: Design, Identification
and Implementation. London, U.K.: Springer, 2006.

[48] M. Sain and J. Massey, “Invertibility of linear time-invariant dynamical
systems,” IEEE Trans. Autom. Control, vol. AC-14, no. 2, pp. 141–149,
Apr. 1969.

[49] I. N. Fovino, A. Carcano, T. De Lacheze Murel, A. Trombetta, and
M. Masera, “Modbus/DNP3 state-based intrusion detection system,” in
Proc. IEEE Int. Conf. Adv. Inf. Netw. Appl., 2010, pp. 729–736.

[50] C. Brunner, “IEC 61850 for power system communication,” in Proc.
IEEE/PES Transm. Distrib. Conf. Expo., 2008, pp. 1–6.

http://dx.doi.org/10.1109/TPWRS.2023.3242015


972 IEEE TRANSACTIONS ON SMART GRID, VOL. 15, NO. 1, JANUARY 2024

[51] S. M. S. Hussain, T. S. Ustun, and A. Kalam, “A review of IEC
62351 security mechanisms for IEC 61850 message exchanges,” IEEE
Trans. Ind. Informat., vol. 16, no. 9, pp. 5643–5654, Sep. 2020.

[52] E. Shereen, M. Delcourt, S. Barreto, G. Dán, J.-Y. Le Boudec, and
M. Paolone, “Feasibility of time-synchronization attacks against PMU-
based state estimation,” IEEE Trans. Instrum. Meas., vol. 69, no. 6,
pp. 3412–3427, Jun. 2020.

[53] D. Kushner, “The real story of Stuxnet,” IEEE Spectr., vol. 50, no. 3,
pp. 48–53, May 2013.

[54] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” in Proc. ACM CCS, 2009,
pp. 21–32.

[55] G. Dán and H. Sandberg, “Stealth attacks and protection schemes for
state estimators in power systems,” in Proc. IEEE Int. Conf. Smart Grid
Commun., 2010, pp. 214–219.
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