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Abstract—Coordinating the microgrids (MGs) in the distribu-
tion network is a critical task for the distribution system operator
(DSO), which could be achieved by setting prices as incentive
signals. The high uncertainty of loads and renewable resources
motivates the DSO to adopt real-time prices. The MGs require
reference price sequences for a long time horizon in advance
to make generation plans. However, due to privacy concerns in
practice, the MGs may not provide adequate information for the
DSO to build a closed-form model. This causes challenges to the
implementation of the conventional model-based methods. In this
paper, the framework of the coordination system through real-
time prices is proposed. In this bi-level framework, the DSO sets
real-time reference price sequences as the incentive signals, based
on which the MGs make the generation and charging plan. The
model-free reinforcement learning (RL) is applied to optimize the
pricing policy when the response behavior of the MGs is unknown
to the DSO. To deal with the large action space of this problem,
the reference policy is incorporated into the RL algorithm for
efficiency improvement. The numerical result shows that the min-
imized cost obtained by the developed model-free RL algorithm
is close to the model-based method while the private information
is preserved.

Index Terms—Reinforcement learning, microgrids, distribution
network, energy management.

I. INTRODUCTION

IN A SMART distribution network, the energy management
system is faced with a complex network with distributed

energy resources and energy storage (ES) units [1]. MGs
consist of loads, generators, ES units, and renewable energy
sources such as photovoltaic (PV) units. An MG could be both
an electricity consumer and prosumer [2]. The DSO normally
has the decision authority to solve the energy management
problem for the entire system. Coordinating the resources in
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these MGs is a critical task for the DSO to achieve high
energy efficiency. However, the DSO and MGs are owned
by different organizations, therefore the DSO usually has no
authority to directly command the MGs. An effective way is
to motivate the MGs through pricing signals [3], while the
real-time prices could be applied to handle the high uncer-
tainty of loads and renewable energy sources [4]. Moreover,
the MGs usually require a reference price sequence for a long
time horizon (e.g., 24 hours) divided into multiple time slots
(e.g., 5 minutes) in advance to make the generation plan [5].
Therefore in this paper, the policy to set the real-time reference
price sequence is optimized.

The DSO pricing task could be modeled as a bi-level
optimization problem [3]. At the upper level, the DSO decides
the reference price sequence. At the lower level, the MG
makes its generation plan for the received reference prices.
This bi-level optimization problem could be transformed into
a mixed-integer linear programming (MILP) problem using the
Karush–Kuhn–Tucker (KKT) conditions and solved by com-
mercial solvers [6]. However, in practice, the MGs may not
provide their private information about the response behavior
toward the prices. In this circumstance, the model-based meth-
ods encounter challenges since the closed-form model is hard
to build.

The above problem could be transformed into a Markov
decision process (MDP) problem and solved by the model-
free RL [7] that optimizes the DSO pricing policy by learning
from experience. In recent years, RL has been successfully
applied to power systems [8]. Online pricing algorithms of
demand response and for MGs based on RL are developed
in [4], [5]. However, in this paper, the DSO agent decides the
price sequence for a much longer time horizon at each time
instant. This results in a much larger action space and causes
challenges to the training process.

In this paper, the following contributions are made for
addressing the above problems. (i) The price-based real-time
coordination framework is established and formulated as a
bi-level optimization problem. In this framework, the DSO
transmits prices and collects metering data only once dur-
ing each time slot, and thus is more tolerable for short-term
communication failures. Moreover, the MGs would receive
a reference price sequence to consider the long-term profit
when making plans for the resources. (ii) This problem is
transformed into an MDP that incorporates the responding
behavior of the MGs, which could be solved by the model-
free RL method when the behavior is unknown to the DSO.
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The reference policy-based RL algorithm is developed that
improves the training efficiency, while the state-of-the-art RL
methods fail to significantly improve the policy in finite time
due to the large action space in practice. (iii) Numerical exper-
iment shows that the developed RL algorithm is independent
of the closed-form model at the expense of less than 5%
economic cost compared with the conventional model-based
method.

II. LITERATURE REVIEW

Coordinating the MGs in a distribution network is a hot
topic in the last decade. The smart metering devices enable the
operator to apply efficient dispatch with an accurate demand-
side model [9]. One approach is to manage the power flow
through the distributed scheme [10]. This approach usually
heavily relies on the communication network [11], and the
issues such as packet loss are compensated in [12]. The small-
scale energy resources and load demand at each MG are
modeled and solved by the particle swarm method in [13].
A convex multi-objective optimization problem for multi-MG
is formulated and solved by an online algorithm in [14].
However, these MGs may belong to different owners in
practice, so the DSO couldn’t directly control them. In this
circumstance, prices could be applied as incentive signals to
coordinate the MGs. The pricing task is generally modeled
as a bi-level optimization problem [3]. A hierarchical market
structure is proposed in [15] to guarantee the goals of both
DSO and MGs. A bi-level stochastic model is formulated and
transformed into a MILP problem that could be solved by
commercial solvers to maximize the DSO profit in [6]. This
method is also utilized to coordinate the distributed resources
in the virtual power plants [16], [17].

However, the above methods require the response behavior
of the MGs to build the closed-form model, which is hard
to acquire in practice. The responding behavior of the MGs
could be approximated by a neural network [18], while the
optimization problem is still hard to solve due to the non-
linearity. An alternative method is that the DSO and MGs
bargain through sequentially solving the local optimization
problem [19], [20], which heavily relies on the communica-
tion network. And whether the MGs would participate in this
process is questionable.

Real-time electricity pricing models potentially lead to high
energy efficiency as the stochasticity increases [21]. The real-
time pricing could be applied to cope with the discrepancy in
the actual consumer behavior and the load levels from fore-
cast and planning [22], where the model of demand elasticity
is critical [23]. It is also applied to energy management for
electric vehicles [24].

Model-free RL methods could address this problem by
interacting with the system and learning from experience to
improve the policy. With deep learning showing strong fea-
ture extraction ability in computer vision and natural language
processing [25], RL is empowered to deal with complicated
tasks from games [26] to robotics [27]. To handle the large
state space, parametrized methods are developed to improve
the efficiency [7]. Deep neural networks further improve the

learning ability to defeat humans in hundreds of Atari games
[28] by the strong feature extraction ability. Similarly, the pol-
icy is also parametrized to handle large action space and is
trained with the actor-critic framework [29].

In recent years, RL has been widely applied to power
systems [8]. A consensus transfer Q-learning for decentral-
ized generation command dispatch of automatic generation
control is developed in [30]. The multi-agent RL is applied
to Volt-VAR control in power distribution networks in [31].
An RL-based online optimal control method is developed for
the hybrid ES system in AC–DC MGs in [32]. The problem
of setting the tap positions of load tap changers for volt-
age regulation in power distribution systems is solved by
RL in [33]. Efficient economic dispatch for MGs is achieved
by a cooperative RL algorithm in [34]. A fully distributed
multi-agent RL method for optimal reactive power dispatch
is developed in [35]. An RL-based distributed optimal power
flow algorithm is developed that reduces the computational
complexity of the conventional linear programming approach
while addressing the stochastic nature of the energy resources
and loads in [36]. A hierarchical MG model considering com-
munication uncertainty is developed and solved using RL
in [37].

To solve the pricing problem, the RL algorithm is applied
to solve dynamic pricing and energy consumption schedul-
ing problem in [38]. An RL-based method for online pricing
of demand response is developed in [4]. An RL-based game-
theoretic approach is developed to solve the pricing problem
for networked MGs in [39]. However, these methods gener-
ate the prices for only a short time. In this paper, we deal
with the circumstance where the MGs require a reference price
sequence for a much longer time horizon to make the gener-
ation and charging plan. In this case, the large action space
results in low efficiency in practice. Thus in this paper, a ref-
erence policy-based RL algorithm is developed to address this
problem.

III. NOMENCLATURE

Parameters

N The set of all nodes in the distribution network.
NMG The set of MG nodes.
E The set of distribution network lines.
rij ∈ R The resistance of line (i, j).
xij ∈ R The reactance of line (i, j).
i ∈ N The node index.
t ∈ N The time slot index.
τ ∈ N The time slot index in a sequence.
T ∈ N The number of time slots in a time horizon.
�t ∈ R The time duration of a time slot.
λHV

t ∈ R The actual marginal price for buying electricity
from the high voltage grid at time t.

λ̃HV
t ∈ R

T The predicted marginal price for buying electric-
ity from the high voltage grid at time t for the
horizon from t + 1 to t + T .

P̄G
i ∈ R The maximum active power output of the gener-

ator in the MG at node i.
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Fig. 1. The bi-level operational structure of the distribution network with multiple MGs.

PG
i ∈ R The minimum active power output of the gener-

ator in the MG at node i.
�P̄G

i ∈ R The maximum ramping rate of the generator in
the MG at node i.

P̄S
i ∈ R The maximum charging power of the ES unit in

the MG at node i.
PS

i ∈ R The maximum discharging power of the ES unit
in the MG at node i.

S̄i ∈ R The maximum energy storage of the ES unit in
the MG at node i.

Si ∈ R The minimum energy storage of the ES unit in
the MG at node i.

P̃PV
i,t ∈ R

T The predicted PV active power at node i, time t
for the horizon from t + 1 to t + T .

P̃L
i,t ∈ R

T The predicted load active power at node i, time
t for the horizon from t + 1 to t + T .

Q̃L
i,t ∈ R

T The predicted load reactive power at node i, time
t for the horizon from t + 1 to t + T .

PPV
i,t ∈ R The actual PV active power at node i, time t.

PL
i,t ∈ R The actual active power of the loads at node i,

time t.
QL

i,t ∈ R The actual reactive power of the loads at node i,
time t.

CG
i ∈ R The cost coefficient of the generator connected

in the MG at node i.
V̄i ∈ R The maximum voltage magnitude at node i.
Vi ∈ R The minimum voltage magnitude at node i.
�λ̄ ∈ R The maximum price adjustment between two

continuous time slots.
λ̄MG

i ∈ R The maximum price at node i.
λMG

i ∈ R The minimum price at node i.

Variables

Pi,t ∈ R The active power injection at node i, time t.
P̂i,t ∈ R

T The planned active power injection at node i,
time t for interval from t + 1 to t + T .

Qi,t ∈ R The reactive power injection at node i, time t.
Vi,t ∈ R The voltage magnitude at node i, time t.
V̂i,t ∈ R

T The planned voltage magnitude at node i, time t
for interval from t + 1 to t + T .

Pij,t ∈ R The active power flow from node i to node j
through line at time t.

Qij,t ∈ R The reactive power flow from node i to node j
through line at time t.

PG
i,t ∈ R The active power output of the generator in the

MG connected at node i, time t.
P̂G

i,t ∈ R
T The planned active power output of the generator

in the MG connected at node i, time t for the
horizon from t + 1 to t + T .

PS
i,t ∈ R The (dis)charging power of the ES unit in the

MG connected at node i, time t.
P̂S

i,t ∈ R
T The planned (dis)charging power of the ES unit

in the MG connected at node i, time t for the
horizon from t + 1 to t + T .

Si,t ∈ R The energy stored in the MG at node i, time t.
Ŝi,t ∈ R

T The planned energy stored in the MG at node i,
time t for the horizon from t + 1 to t + T .

λMG
i,t ∈ R The price for the MG at node i, time t.

λ̂MG
i,t ∈ R

T The reference price for the MG at node i, time
t for the horizon from t + 1 to t + T .

IV. PROBLEM FORMULATION

In this section, we first establish the real-time price-based
coordination framework. In this bi-level system, the DSO aims
at minimizing the cost of supplying electricity, and the MGs
aim at maximizing their own profit by making electricity trans-
actions with the DSO. Then, the pricing problem of the DSO
is formulated as an optimization problem in closed form.

A. The Overall Structure

The operational framework of the DSO and MGs in the
distribution network is shown in Fig. 1. Without losing gen-
erality, it is assumed that each MG owns a generator, a PV
unit, an ES unit, and inflexible loads.

At each time t, the DSO and MGs consider the horizon of
the next T time slots of time duration �t. (a) The DSO has
access to the predicted PV generation P̃PV

i,t ∈ R
T at all MGs,

loads P̃L
i,t, Q̃L

i,t ∈ R
T at all nodes, and the price λ̃HV

t ∈ R
T

for buying from the high voltage grid for the next T time
slots. (b) Based on the prediction, the DSO decides the refer-
ence price sequences λ̂MG

i,t ∈ R
T for the next T time slots for

each MG. (c) The MGs make local predictions and receive the
reference price sequences. (d) Each MG solves its local lower-
level problem to plan for its generator output P̂G

i,t ∈ R
T and ES

(dis)charging power P̂S
i,t ∈ R

T for the next T time slots. (e) At
time slot t+1, the first element of λ̂MG

i,t , i.e., λ̂MG
i,t (1), is set as
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the clearing price λMG
i,t+1 = λ̂MG

i,t (1). In our model of the strat-
egy adopted by each MG, similarly, the first elements of P̂G

i,t
and P̂S

i,t are applied, i.e., PG
i,t+1 = P̂G

i,t(1) and PS
i,t+1 = P̂S

i,t(1).
Thus, the transacted electricity at node i ∈ NMG during time
slot t + 1 is

Pi,t+1�t =
(

PG
i,t+1 − PS

i,t+1 + PPV
i,t+1 − PL

i,t+1

)
�t.

In this framework, the DSO transmits the reference prices
and receives the metering data once every �t (several min-
utes). Thus, it is with greater tolerance for packet loss than
the method which requires the DSO and MGs to repeatedly
solve the local problems and transmit variables during each
time slot [19], [20].

B. The DSO Optimization Problem

At the upper level, the DSO agent sets the reference price
sequences λ̂MG

i,t during time slot t. The MGs respond to λ̂MG
i,t

according to their strategies at the lower level. The upper-level
problem P0 is formulated in (1a)-(1n).

min
�0

lim
T→∞

f (�0, T ) (1a)

s.t. f (�0, T ) = 1

T

T∑
t=1

[ ∑
i∈NMG

λMG
i,t Pi,t + λHV

t P0,t

]
, (1b)

Pi,t +
∑

(i,j)∈E
Pij,t = 0, i ∈ N , (1c)

Qi,t +
∑

(i,j)∈E
Qij,t = 0, i ∈ N , (1d)

Vi,t − Vj,t −
(
rijPij,t + xijQij,t

)

V2
0,t

= 0, (i, j) ∈ E, (1e)

Pij,t + Pji,t = 0, (i, j) ∈ E, (1f)

Qij,t + Qji,t = 0, (i, j) ∈ E, (1g)

Vi ≤ Vi,t ≤ V̄i, i ∈ N , (1h)

−�λ̄ ≤ λ̂MG
i,t (τ )− λ̂MG

i,t−1(τ + 1) ≤ �λ̄,

i ∈ NMG, τ = 1, . . . , T − 1, (1i)

λ̄MG
i ≤ λ̂MG

i,t (τ ) ≤ λMG
i , i ∈ NMG, τ = 1, . . . , T, (1j)

Pi,t = −PL
i,t, i ∈ N /(NMG ∪ {0}), (1k)

Qi,t = −QL
i,t, i ∈ N , (1l)

Pi,t ∈ P∗i,t−1

(
λ̂MG

i,t−1

)
, i ∈ NMG, (1m)

λMG
i,t = λ̂MG

i,t−1(1), i ∈ NMG, (1n)

where �0 = ⋃T
t=1{λ̂MG

i,t−1, Pi,t, Qi,t, Pij,t, Qij,t, Vi,t} is the set
of decision variables, P∗i,t(λ̂MG

i,t−1) is the strategy adopted by
the MG which yields Pi,t with respect to the reference price
sequence λ̂MG

i,t−1. Node 0 is connected to the high voltage grid
and set as the voltage balance node. Index τ is the time index
in the horizon of predictions and reference prices at each time
instant t. T is the length of the horizon.

The first term in the objective function (1b) for the DSO
is the cost of buying electricity from the MGs or the income
by selling electricity to the MGs, while the second term is
the cost of buying electricity from the high voltage grid. �t

is omitted since it is constant. We assume that the loads at
i ∈ N /NMG are inflexible and the electric prices at these nodes
are fixed. In this case, the objective function (1b) is equiva-
lent to the profit of the DSO running the distribution network.
Constraints (1c) and (1d) are the active and reactive power
balance at each node. Constraint (1e) is the Distflow equa-
tion [40] which is widely applied to model the optimal power
flow in the distribution network. Constraint (1h) is to guaran-
tee that the voltage level of each node is within a predefined
range for safety. Constraint (1i) guarantees that the variation
of the reference price for the same time slot given at two
continuous time slots does not exceed a certain range. This
constraint is to prevent the DSO from tricking the MGs with
a higher price into improving generator output in advance and
then lowering the price when clearing the transacted elec-
tricity. Constraint (1j) is to limit the prices for the MGs.
Constraints (1k) and (1l) are the power balance equations at
nodes i ∈ N /NMG. Constraint (1m) is the strategy adopted by
the MGs which is unknown to the DSO in practice.

The strategy function P∗i,t−1(λ̂
MG
i,t−1) is usually associated

with the resources and states in the MG. Based on the strategy,
the MG coordinates its generator, PV, and ES to optimize
its objective, such as maximizing its generation profit when
selling electricity to the DSO or minimizing its cost when
buying from the DSO. A model of the strategy is given in the
next subsection.

At the upper level, at time t, the DSO agent decides λ̂MG
i,t

based on the predictions to optimize the upper-level problem
P0. The electricity transacted during time slot t+1 is cleared at
price λMG

i,t+1 = λ̂MG
i,t (1). Then the DSO observes the predictions

at time t + 1 and decides λ̂MG
i,t+1. So and so forth.

Problem P0 is generally non-convex since the objective
function (1b) is with bi-linear terms λMG

i,t Pi,t. Moreover, con-
straint (1m) may also result in a non-convex feasible region
since Pi,t is the solution to the lower-level optimization problem.

C. The MG Optimization Problem

In this subsection, we provide the MG optimization
problem [13] as an instance of the response behaviors. We
note that the developed method in this paper is not limited to
this model, but is suitable for other MG strategies as well.1

The linear programming problem PLP
i,t is formulated for the

MG at node i ∈ NMG in (2a)-(2k). P∗i,t(λ̂MG
i,t ) in (1m) is the

set of solutions of PLP
i,t .

min
�i,t

g
(
�i,t

)
(2a)

s.t. g
(
�i,t

) =
T∑

τ=1

[
− λ̂MG

i,t (τ )P̂i,t(τ )+ CG
i P̂G

i,t(τ )
]
, (2b)

P̂i,t = P̂G
i,t − P̂S

i,t − P̃L
i,t + P̃PV

i,t , (2c)

−�P̄G
i ≤ P̂G

i,t(τ + 1)− P̂G
i,t(τ ) ≤ �P̄G

i , (2d)

τ = 1, . . . , T − 1,

−�P̄G
i ≤ P̂G

i,t(1)− PG
i,t ≤ �P̄G

i , (2e)

1The behavior that considers quadratic cost functions and (dis)charging loss
is tested in Section VI.
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Ŝi,t(τ + 1)− Ŝi,t(τ ) = P̂S
i,t(τ + 1)�t,

τ = 1, . . . , T − 1, (2f)

Ŝi,t(1)− Si,t = P̂S
i,t(1)�t, (2g)

PG
i ≤ P̂G

i,t(τ ) ≤ P̄G
i , τ = 1, . . . , T, (2h)

PS
i ≤ P̂S

i,t(τ ) ≤ P̄S
i , τ = 1, . . . , T, (2i)

Si ≤ Ŝi,t(τ ) ≤ S̄i, τ = 1, . . . , T, (2j)

Pi,t+1 = P̂G
i,t(1)− P̂S

i,t(1)+ PPV
i,t+1 − PL

i,t+1, (2k)

where �i,t = {Pi,t+1, P̂i,t, P̂G
i,t, P̂S

i,t, Ŝi,t} is the set of decision
variables of the MG at node i ∈ NMG.

In objective function (2b), the first term is to minimize the
cost of buying electricity when P̂i,t(τ ) < 0 or to maximize the
profit for selling electricity when P̂i,t(τ ) > 0. Constraint (2c) is
the active power balance of the node where the MG is located.
The active power injection equals the sum of the generator
output, ES unit (dis)charging, PV unit output, and loads. It is
assumed that only the load produces reactive power, and thus
only the active power is the decision variable in this model.
Constraints (2d) and (2e) are to restrict the ramping rate of
the generator. Constraints (2f) and (2g) are the energy bal-
ance of the ES. Constraints (2h), (2i), and (2j) are to restrict
the generator power output, the ES (dis)charging power, and
the stored energy, respectively. Constraint (2k) calculates the
actual active power injection at node i to the distribution
network, which is the feedback to the DSO.

The lower-level problems PLP
i,t of the MGs are a part of the

upper-level problem P0. At each time t, the DSO agent decides
the reference price λ̂MG

i,t to minimize the long-term average
cost. Then, the MGs solve the lower-level problem PLP

i,t to
determine the generation PG

i,t+1 = P̂G
i,t(1) and the (dis)charging

power PS
i,t+1 = P̂S

i,t(1), and thus feed back the power injection
Pi,t+1 to the DSO agent in (1m). So and so forth.

V. THE PROPOSED METHODOLOGY

In this section, we first transform the pricing problem into an
MDP problem. Then, a model-free RL algorithm is developed
to solve this problem without the knowledge of the MGs’
response behavior. To deal with the large state space, a deep
neural network structure is developed to decrease the feature
space. To address the difficulty of low exploration efficiency
caused by the large action space, the reference policy is
incorporated into the algorithm.

A. The MDP Problem

For the DSO, the system described in the previous sec-
tion is modeled as an MDP, which is characterized by a
tuple 〈S,A, P, c〉, where S is the finite state space with
cardinality |S|, A is the finite action space with cardinal-
ity |A| = T · |NMG|, P(s′|s, a) : S × A × S → [0, 1] is
the state transition probability from s ∈ S to s′ ∈ S deter-
mined by action a ∈ A, and c(s, a) : S × A → R is the
cost function received by the agent. The agent executes pol-
icy π(s, a) : S × A→ [0, 1] with

∑
a∈A π(s, a) = 1, where

π(s, a) is the probability of choosing action a at state s. The
physical system is continuous in R, while S is considered to
be finite since the measurement accuracy is limited and the

values are bounded. Action space A is considered to be finite
because the price is also bounded and is quoted in increments
of $0.01 in this paper. Requirement of state and action spaces
to be finite is standard in most studies on MDPs [7], which
makes it convenient to define the MDP and the corresponding
objective function.

At each time t, the DSO agent stays at state st ∈ S ,
where st is {P̃L

i,t, Q̃L
i,t, i ∈ N } ∪ {P̃PV

i,t , i ∈ NMG} ∪ {λ̃HV
t } ∪

{Pi,t, Qi,t, Vi,t, i ∈ N }, i.e., the predictions and current system
state. Then, it takes action at ∼ π(st, a), where at is {λ̂MG

i,t , i ∈
NMG}, i.e., the reference prices. The cost

ct =
∑

i∈NMG

λMG
i,t Pi,t + λHV

t P0,t + Pen(Vt), (3)

will be received by the agent, where Pen(Vt) is a large number
if ∃Vi,t that violates the safe constraint and equals 0 other-
wise. Then the agent steps to state st+1 P(s|st, at), i.e., the
predictions and system state at time t+ 1, where P(s|st, at) is
the state transition probability.

Probability P(s′|s, a) is implicit in the bi-level system
defined in Fig. 1. It is determined by the following factors:
variation of the load, the renewable energy, and the real-time
electric price of the high voltage network; the measurement
and prediction error; the response behavior of the MGs that
determines the power injection by the MGs during the next
time slot; the probability distribution of the facility state which
are unobservable to the DSO such as the generator output
and the state of charge of the ES units. The model-free RL
algorithm does not require the closed-form of transition prob-
ability P. Since the cardinality of the state space is large in
practice, methods that store a distribution over actions for each
state are impractical. Thus, we apply parametrized functions to
generate the distribution of randomized policy πθ with param-
eter θ ∈ � for the agent, where � ⊂ R

m is a convex and
compact set. Normal distribution Normal(μθ ,	) is applied
to represent pricing policy πθ , where μθ : S → R

|A| is the
parametrized function mapping the state space S to the mean
vector. The covariance matrix 	 is a diagonal matrix with
fixed elements. When the DSO agent takes an action, a vector
is sampled from πθ and then rounded to 2 decimal places to
produce at. The probability density of Normal(μθ (s),	) is
taken as πθ (s, a) for computing simplicity.

We then make the following assumption.
Assumption 1: The MDP satisfies
(1.1) ∀s ∈ S, a ∈ A, and ∀θ ∈ �, πθ(s, a) > 0;
(1.2) πθ (s, a) > 0 is continuously differentiable with respect

to θ over �;
(1.3) the Markov chain {st}t≥0 is irreducible and aperiodic

induced by any policy πθ .
Assumption 1 implies that the MDP is with a stationary

distribution dθ (s) induced by policy πθ . The objective of the
agent is to find the optimal policy to minimize the expected
long-term average cost, which is given by

min
θ∈� J(θ) = min

θ∈� lim
T→∞

1

T E

⎡
⎣
T −1∑
t=0

ct+1

⎤
⎦

= min
θ∈�

∑
s∈S

dθ (s)
∑
a∈A

πθ (s, a)c(s, a), (4)
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B. Reference Policy-Based RL Algorithm

Given a policy πθ with parameter θ , the relative action-value
function is defined by

Qθ (s, a) = E

[ ∞∑
t=0

(ct+1 − J(θ))

∣∣∣∣s0 = s, a0 = a, πθ

]
, (5)

and the state-value function is defined by

Vθ (s) =
∑
a∈A

πθ (s, a)Qθ (s, a), (6)

which satisfies the Poisson equation [7]

J(θ)+ Qθ (s, a) = c(s, a)+
∑
s′∈S

P
(
s′|s, a

)
Vθ

(
s′
)
. (7)

To optimize objective (4) over θ , it is needed to calculate the
gradient. The result in [7] shows that the gradient of J(θ) w.r.t.
θ is given by

∇θJ(θ) = Es∼dθ ,a∼πθ
[Qθ (s, a)∇θ ln πθ (s, a)] (8)

when Assumption 1 holds.
This means that the policy gradient could be estimated under

the current stationary distribution of state and action. However,
in practice, Qθ (s, a) is hard to obtain, so a parametrized func-
tion Qφ(s, a) with parameter φ ∈ R

n is utilized to approximate
Qθ (s, a). The update of φ is called the critic step. In the critic
step, it is aimed at minimizing the error of approximating Qθ

induced by parametrization. For each state s and action a, the
residual is defined as

δ(s, a, φ) = c(s, a)+ Es′∼P,a′∼πθ

[
Qφ

(
s′, a′

)]− Qφ(s, a), (9)

The objective function is given by (10)

min
φ

F(φ) = Es∼dθ ,a∼πθ

[
δ(s, a, φ)2

]
. (10)

The update of θ is the step. In the actor step, we replace
Qθ (s, a) in (8) with Qφ(s, a) to estimate the policy gradient,
and push θ in the opposite direction of the policy gradient to
minimize J(θ).

One difficulty in solving this MDP problem is the high
action dimension. In our case study, the price sequences for
4 MGs are generated for the next 24 hours divided into 5 min-
utes, then the cardinality of the action space, |A|, would be
24 × 12 × 4 = 1152, which causes the agent hard to reach
an optimized policy. The experiment shows that if the initial
point of θ is random, the regular RL algorithm will converge
to the policy with poor performance. To address this problem,
we propose to incorporate a reference policy into the regular
RL algorithm as shown in Algorithm 1 and Fig. 2. The ref-
erence policy could assist the agent to generate a reasonable
policy at the beginning of training.

We use deep neural networks to represent function Qφ(s, a)

and μθ(s). It is not suitable to apply a fully connected
layer as the first layer, because the large space of S and
A would result in an extremely large weighting matrix. To
address this problem, we develop the neural network struc-
ture as shown in Fig. 3, where the prediction sequences
{P̃L

i,t, Q̃L
i,t, i ∈ N } ∪ {P̃PV

i,t , i ∈ NMG} (also with the action at,
i.e., {λ̂MG

i,t , i ∈ NMG} in the Qφ(st, at) network) are first fed

Algorithm 1 Reference Policy-Based RL Algorithm
1: t = 0
2: The DSO observes state s0
3: The DSO takes action a0 ∼ πθ0(s0)
4: repeat
5: The DSO observes state st+1
6: The DSO takes action at+1 ∼ πθt (st+1)
7: The DSO receives ct+1
8: \\Critic Step
9: μc

t+1 ← (1− αt)μ
c
t + αtct+1

10: δt ← ct+1 − μc
t + Qφt (st+1, at+1)− Qφt (st, at)

11: φt+1 ← φt + αtδt∇φQφ(st, at)
12: \\Actor Step
13: At ← Qt∇θ ln πθ (st, at)
14: Bt ← 2(μθt (st)− μ̃∗(st))

�∇θμθ (st)
15: θt+1 ← θt − βt(At + γtBt)
16: t← t + 1
17: until Max loop number

Fig. 2. The flowchart of training the DSO agent.

Fig. 3. The neural network structure for Qφ(s, a) and μθ (s). Compared
with μθ (s), the Qφ(s, a) network needs the action as additional input, which
is λ̂MG

i,t .

into the block that consists of 1D convolution layers and max-
pooling layers, which could reduce the feature space. Second,
the extracted feature vectors are flattened and concatenated
with {Pi,t, Qi,t, Vi,t, i ∈ N }. Third, the fully connected layers
are fed with the concatenated vector and generate the final
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Fig. 4. The IEEE 33-bus distribution network with multiple MGs.

Fig. 5. The cost of the DSO during the training process with PLP
i,t as the lower-level problem (the response behavior of the MGs).

output. This deep neural network structure is similar to the
structures in [41], [42], which are applied for the analysis
of the aggregated load power. Detailed information on the 1D
convolution and fully connected layers is omitted in this paper
due to space limitations.

In Algorithm 1, αt and βt are the step sizes. The distri-
bution network system stays at the initial state s0, and the
parameters of the DSO agent are initialized as φ0 and θ0. At
each time t + 1, the DSO agent observes the state st+1 and
takes action at+1 ∼ πθt(st+1) in line 5 and 6. Then the agent
executes the critic step and the actor step. In the critic step,
the estimator, μc

t+1, for J(θt) is updated in line 9. The TD
error, which is the residual value of equation (7), is calculated
in line 10. The parameter of the action-value function, φt, is
updated to minimize the TD error in line 11. In the actor
step, At is the gradient of J(θ) and Bt is the gradient of
(μθt(st)− μ̃∗(st))

�(μθt(st)− μ̃∗(st)). The truncated λ̃HV
i,t , i.e.,

μ̃∗(st)(i, τ ) =

⎧⎪⎨
⎪⎩

λMG
i , λ̃HV

i,t (τ ) < λMG
i

λ̃HV
i,t (τ ), λMG

i ≤ λ̃HV
i,t (τ ) ≤ λ̄MG

i
λ̄MG

i , λ̄MG
i < λ̃HV

i,t (τ )

(11)

is set as the reference policy. This reference policy could be
easily generated when the prediction for the real-time prices
λ̃HV

i,t of the high voltage network is acquired. The policy
parameter is updated to the direction of −βt(At + γtBt) in
line 15, which is a stochastic gradient descent step with γt as
the weighting parameter that decays to 0 as t→∞. The initial
value γ0 balances the convergence to the reference value and
the policy improvement through exploration. Since γt → 0,

a large γ0 would not deteriorate the final optimized policy.
However, if γ0 is too large, the policy will be locked around
the reference policy for a long time, which delays further pol-
icy improvement. In the following experiment, γ0 is set as
100 with a decay coefficient 0.97, i.e., γt+1 = 0.97 · γt.
These values are determined by experimental experience and
the scale of the action-value Q is a critical factor. The entire
training process is repeated until the policy converges or the
user terminates the program.

VI. NUMERICAL RESULTS

A. Experimental Settings

In this section, we apply the developed Algorithm 1 to coor-
dinate the 4 MGs in the IEEE 33-node distribution network
as shown in Fig. 4. Each MG owns inflexible loads, a gener-
ator, an ES unit, and a PV unit. A simulator for this system
is built, where each MG locally solves PLP

i,t at time t to
decide the power output of its generator and ES unit at time
t + 1. The load data, PV data, and real-time electric price
of the high voltage network are downloaded from PJM.2 The
prediction sequences such as P̃L

i,t are simulated by adding an
error vector in which the τ th element obeys Gaussian dis-
tribution N(0, σ e

τ ) to the actual values, where σ e
τ increases

as τ increases. The time horizon of predictions and refer-
ence price sequences is 24 hours and divided into time slots
of 5 minutes. Thus, T = 24 × 12 = 288. The simulator is
built with Python [43] and the power flow is calculated using

2http://dataminer2.pjm.com/
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Fig. 6. The curves of λMG
i,t , PG

i,t , and Si,t of the MGs with PLP
i,t as the lower-level problem.

pandapower [44]. Moreover, to illustrate the convergence of
Algorithm 1, we also add 4 more MGs to the distribution
network at buses i ∈ {4, 17, 25, 28} and test the algorithm.

To further evaluate Algorithm 1, the lower-level problem is
replaced by PQP

i,t , where the cost functions of the generators are
quadratic w.r.t. PG

i,t. Moreover, constraint (2f) is replaced by

Ŝi,t(τ + 1)− Ŝi,t(τ ) =
(
ηc

i P̂c
i,t(τ + 1)+ ηd

i P̂d
i,t(τ + 1)

)
�t,

P̂S
i,t = P̂c

i,t + P̂d
i,t,

where ηc
i and ηd

i are the charging and discharging efficiency
factors and so is constraint (2g).

To evaluate the trained policy, we set up the baseline solved
by the model-based method. We formulate a finite horizon
bi-level problem P0

t by replacing (1a) with

min
�0

f (�0, T)

and replacing the predictions P̃ and Q̃ in PLP
i,t (PQP

i,t ) with
their actual values. P0

t is solved every T time steps. The
optimal solutions are set as the baseline. This problem could
be transformed into a MILP (MIQP) problem and solved by
commercial solvers. The outline is as follows and the whole
process is similar to [6]. First, the optimal solution of each
problem PLP

i,t (PQP
i,t ) is represented by the KKT conditions

since the problem is linear and the strong duality holds. In
this way, the constraint (1m) could be replaced by these
KKT conditions. Second, the complementary slackness con-
ditions, which include bi-linear terms, are transformed into
mixed-integer linear constraints. Third, the bi-linear term of
λMG

i,t Pi,t in the objective function is transformed into a linear

term w.r.t. the dual function of PLP
i,t (PQP

i,t ) since the strong
duality holds. Thus, P0

t is transformed into a MILP problem.
Gurobi [45] is implemented to the global optimal solution. In
addition, TD3 [46] and SAC [47], which are state-of-the-art
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Fig. 7. The curves of λMG
i,t , PG

i,t , and Si,t of the MGs with PQP
i,t as the lower-level problem.

RL methods, are directly applied to solve this MDP problem,
while they both fail to significantly reduce the cost in finite
time.3

This baseline is hard to achieve since the DSO does not
know PLP

i,t (λ̂MG
i,t ) (PQP

i,t (λ̂MG
i,t )) in practice. Algorithm 1 is

intended to manage this situation by iteratively evaluating and
improving the current policy. In the following subsection, we
show the experimental results.

B. Experimental Results

We first show the results with PLP
i,t as the lower-level

problem. The costs of the DSO during the training process are

3This result is not exhibited since it is not the main contribution.

shown in Fig. 5 as the solid lines and the baseline is shown
as the dashed lines. It could be found that Algorithm 1 finally
converges to a locally optimal policy.

The comparison of the pricing policies is shown in
TABLE I, where “Initial policy” is the policy with randomized
θ0 and “Reference policy” is μ̃∗ defined in (11). It is shown
that the initial randomized policy is improved from the aver-
age cost of $400.06/5min to $323.32/5min in the 4-MG system
and $404.04/5min to $240.35/5min in the 8-MG system, while
the baseline is $317.13/5min and $228.14/5min, respectively.
The result shows that Algorithm 1 could generate an optimized
pricing policy which is close to the model-based method under
incomplete information. It could be also found that the num-
ber of MGs affects the convergence of Algorithm 1 since the
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TABLE I
COMPARISON OF COSTS (U.S. $/5 MINUTES) OF THE DSO

WITH PLP
i,t AS THE LOWER-LEVEL PROBLEM

TABLE II
COMPARISON OF COSTS (U.S. $/5 MINUTES) OF THE DSO

WITH PQP
i,t AS THE LOWER-LEVEL PROBLEM

action and state space of the system grows larger as the MG
number increases.

In Fig. 6, the states of the coordinated facilities in each MG
are shown. In general, when the value of λHV

t is high, the DSO
would raise the price to motivate the MG to generate more
active power. The resulting output of the generators and E.S.
units also increases as λHV

t does. Moreover, the DSO agent
is adapted to the local cost CG

i . In the setting of the system,
CG

20 < CG
24 < CG

30 < CG
12. The DSO agent sets the local price

λMG
i,t around CG

i to maximize its benefit. This results in the
divergence of the behaviors of different MGs. For example,
the generator at node 20 (orange line) works at its maximum
for the longest time, while the one at node 12 (green line) is
for the shortest time. This is compatible with the intuition that
the generator with the highest cost should be the last choice
to generate active power.

The costs with PQP
i,t as the lower-level problem are shown

in TABLE II. The results show that Algorithm 1 is also effec-
tive for the response behavior that the MG considers quadratic
cost functions and (dis)charging loss. Compared with the ini-
tial policy and the reference policy, the optimized costs by
Algorithm 1 are closer to the baselines which is optimized by
the model-based method in both systems with 4 and 8 MGs.

The states of the coordinated facilities in each MG are
shown in Fig. 7. According to the results, the quadratic cost
functions of the MGs lead to more variable λMG

i,t . This is
because, without the quadratic term, the MGs would maximize
the generator output for any positive return, i.e., λMG

i,t >

CG
i . The quadratic cost also leads to more fluctuations in PG

i,t
since the optimal output continuously varies as λMG

i,t changes.
In addition, the (dis)charging loss causes the energy storage
more stable since these operations result in energy loss.

During each time slot, the DSO agent only spends around
0.002 seconds computing the reference price sequences for
all MGs, which is much smaller than �t = 5 minutes. This is
because the DSO agent only needs to perform a forward prop-
agation of the neural network at each time. Thus, Algorithm 1
is suitable for online dispatch.

VII. CONCLUSION

This paper studies the optimization problem of the pricing
policy to coordinate multiple MGs in the distribution network.

In practice, the MGs may not provide their response behav-
ior for the DSO due to privacy concerns. Thus, this bi-level
system is transformed into an MDP, where the DSO is the
agent. The pricing policy is optimized by the developed model-
free RL algorithm. The numerical result shows that the policy
optimized by our algorithm performs almost as well as the
conventional model-based method, while the former is more
practical by privacy preservation for the MGs. The number of
MGs affects the convergence. And the optimized pricing pol-
icy encourages the generator with lower cost to generate more
power. Moreover, it shows that the developed algorithm is also
effective when the MGs consider quadratic cost functions and
(dis)charging loss.
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