
1188 IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 2, MARCH 2023

A Deep Learning Game Theoretic Model for
Defending Against Large Scale

Smart Grid Attacks
James D. Cunningham, Alexander Aved , Senior Member, IEEE, David Ferris,

Philip Morrone, and Conrad S. Tucker

Abstract—Power grids that are interdependent with commu-
nication networks create more possible modes of failure (e.g.,
cyberattacks) as well as more complex propagation of failure
through the coupled networks. To ensure robust defense of smart
grids, it is important to model both attacker and defender as intel-
ligent, a scenario that the framework of game theory provides
methods to analyze. However, prior works in applying game the-
oretic models to smart grid security limit the problem space to a
small number targets under threat due to the inability of state-of-
the-art methods to scale to large networks. Our method scales to
large networks by combining neural networks that use featurized
action representations with an approximation of large combina-
torial actions to generalize knowledge about the best targets to
attack/defend across graphs of various topologies and sizes. Our
model’s invariance to the size of the input graph allows us to
transfer knowledge from games played on small graphs during
training to large graphs during evaluation. Our experiments show
that our method can learn Nash equilibrium strategies on small
networks, and demonstrate low exploitability when generalized
to large networks, especially compared to the common heuristics
currently used to simulate attacks on large graphs.

Index Terms—Deep learning, game theory, cybersecurity,
smart grid security.

I. INTRODUCTION

THE MODERNIZATION of electric grids are bringing
increased efficiency and new functionalities to consumers

via two-way communication between various components of
the network [1]. However, by adding more sophisticated com-
munication to the grid, numerous cybersecurity vulnerabilities

Manuscript received 5 December 2021; revised 29 March 2022 and 27
June 2022; accepted 10 August 2022. Date of publication 17 August 2022;
date of current version 20 February 2023. This work was supported
in part by the Griffith Institute and Air Force Research Lab under
Contract SA1003202012030. Paper no. TSG-01928-2021. (Corresponding
author: Conrad S. Tucker.)

James D. Cunningham is with the Department of Mechanical
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(e-mail: jamescun@andrew.cmu.edu).

Alexander Aved, David Ferris, and Philip Morrone are with the
Information Exploitation Division, Air Force Research Laboratory, Rome,
NY 13441 USA (e-mail: alexander.aved@us.af.mil; david.ferris.3@us.af.mil;
phili.morrone.6@us.af.mil).

Conrad S. Tucker is with the Department of Mechanical Engineering
and the Machine Learning, Robotics, and Biomedical Engineering
Departments, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
conradt@andrew.cmu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSG.2022.3199187.

Digital Object Identifier 10.1109/TSG.2022.3199187

are introduced [2], [3], [4]. Moreover, the propagation of fail-
ure through the coupled grids becomes more complex, as
failing communication nodes have an impact on surrounding
power grid nodes and vice versa [5]. These vulnerabilities can
create cascading failures through a grid, and were exploited
in the 2015 cyber attack on the Ukrainian grid that left
a quarter million without power [6]. This demonstrates a
need for methods that can analyze the complex topologies of
these systems and determine an effective strategy to distribute
limited defense resources across many possible adversarial
targets.

Many works in modeling cascading failures study the effects
of, and mitigation strategies for, a set of initiating element fail-
ures such as power lines or substations [5], [7], [8], [9]. When
studying cascading failures, these works consider a maxi-
mum initiating failure size of anywhere from 10% to 35% of
grid elements out of hundreds or thousands. These targets are
selected either randomly or via a deterministic heuristic [5],
[7]. However, an adversary will usually not behave randomly,
but instead seek to cause maximum damage given their limited
resources [10]. On the other hand, the deterministic heuristics
assume that the attacker will only ever attack the targets that
have the largest impact in terms of cascading failure, making
these strategies very predictable. However, if an attack strategy
is very predictable, an intelligent defender would take extra
measures to defend this target, typically in the form of human
resources such as physical security or active monitoring [10],
[11], [12]. In this case, the attacker must balance the impor-
tance of the targets chosen with the unpredictability of their
strategy.

The game theoretic framework of a security game accounts
for both the value and predictability aspects of the scenario by
assuming that an attacker and defender simultaneously make
decisions about targets to protect or attack. The attacker max-
imizes its payoff by choosing the highest impact target that
the defender leaves unprotected. The defender has the oppo-
site incentive, to protect the target the attacker will choose to
attack, especially high impact targets. Consider the example
of a security game in which there are n targets that an adver-
sary may choose to attack and that a defender may choose
to protect, and the payoffs for the attacker and defender are
determined by the target selected by each player. Also assume
that each player may play a mixed strategy that defines a
probability distribution over the n possible targets. This is a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7015-7359
https://orcid.org/0000-0001-5365-0240

CUNNINGHAM et al.: DEEP LEARNING GAME THEORETIC MODEL 1189

normal form game with a finite number of possible actions,
thus there must exist a Nash equilibrium of mixed strategies
for each player such that neither player has an incentive to
deviate from their strategy [13]. In this sense, these strategies
belonging to a Nash equilibrium can be considered the optimal
strategies for each player. Calculating this Nash equilibrium
directly is possible given that the payoff matrix is known for
all combinations of attack and defense actions.

There exist prior works that have modeled smart grid
defense scenarios as a two player security game, and either
directly solve for the Nash equilibrium or apply tabular
Reinforcement Learning (RL) to learn approximate optimal
strategies [10], [11], [12], [14], [15]. However, these methods
are only applied at the scale of selecting a single target at a
time from a set of no more than 50. This is due to the fact
that the methods used in these works do not scale to large
networks. Consider for example a security game with a 100-
node network. Let us assume that an adversary can attack 5
nodes on this graph simultaneously, and that a defender can
likewise protect 5 nodes on the graph. Once the node selections
have been made, a cascading failure simulator is used to deter-
mine the payoffs for the attacker and defender. In this case,
the attacker and defender each have

(100
5

) ≈ 7.5×107 possible
combinations of 5 nodes they could choose, each resulting in a
potentially different payoff for each player. The corresponding
payoff matrix would be of size (7.5×107)2 ≈ 5.7×1015, mak-
ing tabular approaches to finding optimal strategies intractable.
In this work, we generate security game strategies for the
attack and defense of 50 nodes in a coupled power and com-
munication grid model based off of the topology of the Polish
power grid with 2383 nodes.

Towards learning to play a security game on a large-scale
graph, this work makes the following contributions:

• We propose a neural network model that is invariant to
the size of the input graph to predict the payoff for a set
of attacker and defender target selections.

• We also introduce the Reduced Combinatorial Rollout
(RCR) sampling trick for RL to approximate a large
combinatorial action as a set of smaller combinatorial
actions.

• We demonstrate through experiments that by combining
the first two contributions, effective security game strate-
gies can be generated for large-scale coupled power and
communication network test cases, including a topology
based on the Polish grid.

The rest of this paper is organized as follows: Section II
reviews the most relevant literature to this problem and
Section III presents the details of the two-player game scenario
and method for learning it. Section IV details the simulation
model used and the experimental results. Finally, Section V
gives concluding remarks and possible directions of future
work.

II. LITERATURE REVIEW

A. Coupled Power and Communication Network Models

As communication and power networks have trended
towards interdependence, there have been several works that

have investigated modeling failure propagation between them.
Sturaro et al. [7] introduce a heterogeneous model of cascad-
ing failure in interconnected communication and power grids
that captures some of the complex and realistic interdependen-
cies between the two network domains on networks as large
as 1022 nodes. They show that under both random attacks and
targeted attacks (based on a node degree heuristic) of up to
15% of nodes that simpler models tend to underestimate the
cascading effect of failures in the coupled network.

Cai et al. [8] study the effects of different coupled network
topologies on cascading failure, and find that a “double-star”
structure is the most resilient. Korkali et al. [5] study the
effects that the degree of coupling between the two network
domains has on the propagation of failure through the cou-
pled network. They find that for a topology based on the
Polish power grid with 2383 nodes under a set of random
initial node failures of up to 35%, a higher degree of cou-
pling improves resilience to cascading failure on a realistic
network topology based on the Polish power grid nodes.
Cordova-Garcia et al. [9] propose a coupled network model
that accounts for communication delay between nodes, which
affect both the collection of information and the timing of
control signals sent to generators. They also provide a control
algorithm that accounts for this delay to perform optimal load
shedding to mitigate the cascading failure after a random 10%
of power lines initially fail in a network with a maximum of
186 lines.

While these works provide quality models for the coupled
power and communication networks at realistic scale, they
all lack a model of an intelligent attacker with respect to a
defender who can take preventative measures, and instead test
against random node failures or a deterministic heuristic such
as attacking nodes with the highest degree. In this work, we
introduce a method to apply game theoretic models to a cou-
pled power and communication network simulation of realistic
scale.

B. Security Games Applied to Smart Grids

The modeling of intelligent adversarial agents is the domain
of game theory, and the scenario of smart grid attacks are
well modeled as a security game. Yan et al. [14] use tabular
Q-learning to learn a sequential topology attack on a power grid.
By using this approach, critical sequences to create cascading
failures were identified. However, this work only models the
adversary, and not the defender side of the two player game.

Wei et al. [11] model both the attacker and defender of a
power grid in a two-player game and solve for a Nash equilib-
rium. However, on a test case with 177 targets in which each
player can select 2 (a natural action space of ≈ 15, 000), the
authors assume only 40 of these actions need to be consid-
ered based on the structure of the network. Each of these 40
attack actions are simulated in a cascading failure simulator
with a built in load shedding controller, and only the 9 actions
that give positive utility to the attacker are used in the final
security game model. In these ways, this work circumvents the
large combinatorial action space problem by manually pruning
actions until the action space is small enough for RL.

1190 IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 2, MARCH 2023

TABLE I
COMPARISON OF THE FEATURES OF THIS WORK TO THOSE OF THE MOST CLOSELY RELATED LITERATURE

Paul et al. [10] and Guo et al. [12] both implement a
Minimax Q learning approach to find the Nash equilibrium
strategies for a graph with a total of 46 targets of which each
player can select a single target at a time. Both of these works
also manually prune the action space from 46 for each player
down to 10 and 6 respectively. Minimax Q learning is a well-
known method for finding Nash equilibriums in two-player
zero sum games that are too large to directly solve for the Nash
equilibrium. Nonetheless, it still suffers from an inability to
scale to large action spaces and, as these works demonstrate,
requires manual pruning of the action space for large problems.

Each of the aforementioned methods use tabular RL, in
which the payoff associated with each combination of state
and player actions is stored in a table and updated from expe-
riences of interaction with the environment. A drawback of this
approach is that it not possible to generalize to arbitrary graph
topologies. This is because it is impossible to create a table
large enough to store payoffs for every possible graph topology
for even small scale problems. For example, a 10 node graph
with homogeneous undirected edges and no loops (edges from
a node to itself) has 245 possible discrete topologies. Assuming
each value in the Q-table holds a 4 byte floating point value,
the table would require at least 140 TB of memory. Even
worse, this memory requirement scales exponentially with the
size of the network. As this example demonstrates, tabular
methods are severely limited by state space complexity due to
their reliance on discrete states.

However, outside of the smart grid domain, Deep RL (DRL)
methods that leverage neural networks have demonstrated suc-
cess in domains of multi-player games with very large state
spaces, including the board games Go, Chess, and Shogie [16],
[17], as well as competitive video games such as DOTA2 [18]
and StarCraft2 [19]. These approaches use featurized state
representations and neural networks to automatically learn to
generalize knowledge about good action selections from states
encountered during training to unseen states. While DRL has
proven effective in domains with large state spaces, large
action spaces still pose a challenge. This is due to the fact
that an agent cannot infer information about the performance
of an action it hasn’t seen from actions it has seen the same
way it does with states, and instead needs to execute all of
its actions many times in different states to learn an effec-
tive strategy. For reference, the game of Go has at most 361
discrete actions available on a given turn.

We bridge this gap in the setting of combinatorial action
spaces over graphs by featurizing both the state space and
action space using continuous node embeddings in such a man-
ner that they are invariant to the size of the network. We train
this neural network model on small graphs with an action
space of tractable size, and then evaluate the trained model on

large graphs. The key assumption of this approach is that the
features of valuable targets in small networks are similar to
the features of valuable targets in large networks.

One aspect that is present in most of the referenced works
that we choose not to model is sequential decision making.
Depending on the scenario of interest, it can be reasonable
to model the security game as playing out over multiple time
steps or a single time step. Of the four works reviewed in
Section II-A, only Cai et al. [8] chose to model the outages
as occurring sequentially, with the rest choosing to model the
outages as occurring simultaneously. It should be noted that
one could be motivated to model the decisions over multiple
time steps precisely because of the technical limitations of
modeling large combinatorial action spaces. For example, hav-
ing an action space of size N with a time horizon of 10 could
be implemented with standard RL, whereas an action space
size of

(N
10

)
at a single time step cannot. Because this action

space size limitation relates to the number of targets that can
be selected by an agent simultaneously, we choose focus on
a one-step game in this work to address that limitation in the
simplest setting, and leave extensions to sequential decision
domains to future work.

Table I summarizes the advantages of this work relative to
other works reviewed in this section.

III. METHOD

We consider the game theoretic setting of a finite normal
form two-player zero-sum game, where player 1 has action
space A1, player 2 has action space A2, and the players share
the state space S. For a normal form game, we can define
the utility function Q1(s, a1, a2),∀s ∈ S, a1 ∈ A1, a2 ∈ A2
as the payoff for player 1 given any state and pair of player
actions. For any finite normal form game, at least one Nash
equilibrium must exist [13]. Because this is a zero-sum game,
the payoff for player 2 is −Q1(s, a1, a2). Thus, we will use Q
as shorthand for both player’s utility functions.

Each agent i ∈ {1, 2} follows some mixed strategy
πi(s) ∈ ∇(Ai), where ∇(Ai) is the space of probability

distributions over the action space Ai, and πi(s, ai) denotes
the probability of choosing action ai under strategy πi. The
Minimax Q-learning algorithm derives a mixed strategy πi via
the following equation:

πi(s) = max
π ′

i (s)∈∇(Ai)
min

a−i∈A−i

∑

ai∈Ai

π ′
i (s, ai)Qi(s, ai, a−i) (1)

If both players in a two-player zero-sum game know Q and
play their mixed strategies as defined by Equation (1), they
must be at a Nash Equilibrium [22]. Furthermore, Littman
and Szepesvári [23] proved that Minimax Q-learning is guar-
anteed to converge to the true utility function Q given sufficient

CUNNINGHAM et al.: DEEP LEARNING GAME THEORETIC MODEL 1191

exploration. Equation (1) can be solved via the linear program:

max
π ′

i (s),ω
ω

ω ≤
∑

ai∈Ai

π ′
i (s, ai)Qi(s, ai, a−i),∀a−i ∈ A−i

∑

ai∈Ai

π ′
i (s, ai) = 1

π ′
i (s, ai) ≥ 0,∀ai ∈ Ai (2)

where ω is a dummy variable that allows the minimization
term in Equation 1 to be encoded as an inequality constraint
in the linear program [13].

As discussed in Section II, when the state and action spaces
are small and discrete, tabular RL methods can be used to
learn Q via interactions with the game environment. However,
for very large and/or continuous state or action spaces, tabular
methods fail. To overcome these limitations, we propose learn-
ing Q using a neural network with special featurization of the
graph-based representation of the state and action space moti-
vated by the smart-grid defense application. This featurization
is invariant to the size of the graph, and thus can be used
to generalize from small graphs to large graphs, reducing the
computational complexity of training. We also propose a sam-
pling trick that allows us to approximate a large combinatorial
action with a sequence of smaller combinatorial actions.

A. Neural Network Q Model

Inspired by Dai et al.’s [24] method of using deep RL to
learn combinatorial optimization problems over graphs, we
propose a neural network model for Q in our two-player game
setting that uses a similar architecture, but adapted for the
multi-agent setting. This method is specific to graph-based
environments, in which the task can be formulated as choosing
the best node(s) in the graph based on the the overall graph
topology.

For a graph G with nodes V and edges E, let us define a
generic node embedding function

μv = f (v),∀v ∈ V (3)

where μv ∈ R
p, and p is the number of node features. We

can then summarize the state of the entire graph by taking the
mean over all embedded nodes 1

|V|
∑

u∈V μu. For example, if
we take a simple case where the only node feature considered
is the degree (number of edges) of the node, then we would
have p = 1, μv would be the degree of v, and the state of the
graph would be the mean of the degrees of all nodes in the
graph. Note that the dimensionality of this state representation
is p = 1 as well, regardless of the size of the graph. For
example, consider the case where the average node degree in
the entire graph is s = 2.5, the attacker plans on attacking
a node with a degree of a1 = 2, and the defender plans on
defending a node with a degree of a2 = 3. In this example,
the neural network model can be thought of as receiving the
following query: “For a graph with an average node degree
of 2.5, an attacked node with degree 2, and a defended node
with degree 3, what percentage of nodes in the grid will fail

Fig. 1. The neural network model used to represent Q in our proposed
method. Takes the featurized graph state, and the node embeddings of the
attacker’s and defender’s node choices as input and returns the Q-value as
output. Dimensions of each component of the architecture are shown on the
figure, where p is the number of node features and h is the hidden layer size.

after cascading?” In our experiments, we use multiple node
features beyond just node degree.

Considering a scenario where an attacker attacks node v, and
defender defends node w, we can parameterize Q as follows:

Qθ (s, v, w) = θT
1 ReLU

(

θT
2 ReLU

([

θT
3

∑

u∈V

μu, θ
T
4 μv, θ

T
5 μw

])

(4)

where
• θ1 ∈ R

h

• θ2 ∈ R
3h×h

• θ3, θ4, θ5 ∈ R
p×h

• [·, ·] represents concatenation.
Equation (4) can be represented via the neural network archi-
tecture shown in Figure 1. The first hidden layer of this
architecture learns features relevant to how the state and each
agent’s actions relate individually to the Q-value, while the
second hidden layer learns how the relationship between the
state and agent actions impacts the Q-value. Because we are
considering one-step normal form games, we treat learning
the parameters θ as an online supervised learning problem
with respect to the learning experience tuples [s, a1, a2, r] con-
sisting of the state and actions of each player, and reward
generated by the environment. We use the Huber �-1 loss
function defined as:

L(Qθ (s, a1, a2), r) =
{

1/2(Qθ − r)2, |Qθ − r| < 1
|Qθ − r|, otherwise

(5)

to update the parameters θ via gradient ascent.
Note that the size of the neural network model only depends

on of the number of node features p and the hidden layer size
h, which are design choices, and not the size of the graph.
However, in order to get the optimal policy π from the linear
program (2), we still must evaluate Qθ with every combination
of attack and defense actions. In a large combinatorial action
space, this can still be prohibitive. To overcome this limitation
we propose an approximation of the combination of actions
as a set of smaller combinations of actions that share credit
for the result.

1192 IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 2, MARCH 2023

TABLE II
ILLUSTRATIVE EXAMPLE OF THE DIFFERENCE BETWEEN RCR

WITH m = 1 THE FULL ACTION SPACE m = 2

B. Reduced Combinatorial Rollout

In the standard RL paradigm, learning experiences are col-
lected by sampling an action from the strategy π and passing
the chosen action to the environment, which then generates
the reward. The learning experience consisting of the state,
action selected, and reward are stored in an experience buffer.
Periodically the neural network training algorithm samples
experiences from this buffer to perform an optimization step.

We propose the Reduced Combinatorial Rollout (RCR)
method for RL that allows for the selection of k nodes from a
graph with |V| nodes with an action space that is smaller than(|V|

k

)
. Let

(|V|
m

)
be the size of the reduced action space such that

m < k. RCR changes the paradigm of sampling only a single
action from the strategy on a given time step to sampling k/m
times without replacement. This generates k/m experiences, as
opposed to a single experience, that are all stored in the expe-
rience buffer with the same reward. In this way, all actions
share equal credit for their collective performance, and over
a diverse set of node selections the best performing actions
become more represented in experiences with higher rewards.

When m = 1, each node is considered a separate action and
thus can only be evaluated individually. This means that in
the best case scenario, the agent successfully learns to choose
the top n nodes that each individually contribute the most its
utility. However, by increasing m to 2, the agent’s individual
actions correspond to selecting pairs of nodes until k/2 unique
pairs have been chosen. This allows the agent to learn higher
order effects that occur from two nodes that may be dependent
on each other to cause cascading, but when paired with other
nodes are less impactful.

As an illustrative example, consider a graph with 10 nodes
where the learning agent is tasked with selecting two nodes on
the graph to attack/defend. Suppose that in the first episode,
the agent selects nodes 2 and 5, and receives a reward of 0.5.
Second, it selects nodes 2 and 7 and receives a reward of 0.2.
Table II shows how a tabular representation of Q would update
its values with RCR with m = 1 compared to the full action
space (m = 2). While action space with m = 1 is reduced
from

(10
2

)
to 10, we can see that the Q-value of node 2 is

ultimately the average of its performance with node 5 and
node 7. Whereas with m = 2 it can represent the performance
of node 2 paired with node 5 separately from its performance
with node 7 for the trade-off of a larger action space of

(10
2

)
.

While this example was specifically constructed to show
the disparity that can arise from not considering higher order

effects between combinatorial actions, if node 2 performed
similarity regardless of what other node it was paired with,
then the cost of reducing the action space size is small. Thus
the choice of m should match the degree to which the reward
(as dictated by the simulation environment) is nonlinear with
respect to combinations of actions.

This idea can be extended to higher values of m, however the
larger m is the more the original problem curse of dimension-
ality returns. A systematic method for identifying the optimal
choice of m is left for future work. In this work we limit to
considering m = 1 and m = 2.

The main trade-off of RCR comes from the approximation
error of representing an

(n
k

)
problem as a set of smaller

(n
m

)

problems. While unlike manual pruning of possible targets,
RCR allows for any of combination of nodes in the network
to be selected with some probability, there are some mixed
strategies over combinations of nodes in the larger combina-
torial action space that cannot be represented as sequences of
the smaller. However, we expect that this approximation error
will contribute a small enough portion of the overall error
to the Nash equilibrium strategy for large problems that it is
worth the savings in computational complexity. We evaluate
this claim in Section IV.

Another drawback of this approach comes from the need to
store k/m experiences per time step as opposed to only one.
This trade-off creates the need for either a larger buffer size
(which may be constrained by available computer memory),
or results in an experience buffer that fills more quickly
with more temporally correlated experiences. Minh et al. [25]
demonstrated that these correlations can decrease training sta-
bility. However, the memory requirements scale only linearly
with k, whereas the action space complexity in the original
paradigm scales exponentially with k, making this a favorable
trade-off for problems with large k. If computer memory is a
hard constraint, a technique such as reservoir sampling [26]
could be used to reduce correlations in the experience buffer.

IV. APPLICATION

This section details the experiments that were conducted to
evaluate the method we propose. First, we describe the coupled
power and communication network environment that deter-
mines the payoffs for the security game. Then, we describe
the specific experiments conducted and analyze the results.

A. Coupled Networks Environment

The coupled network simulation model used in this work is
adapted from the open-source model by Korkali et al. [5]. Key
features and modifications of this model will be presented in
this section, however the reader is referred to that work for
more details on the coupled network model.

Consider a coupled network model represented as a graph
G(V, E) with nodes V and edges E. Let us define subgraphs
Gc(Vc, Ec) and Gp(Vp, Ep) which are the nodes and edges
of G that exist entirely within the communication and power
domains respectively. All nodes belong to either Vc or Vp,
however there exist edges that connect nodes in Vc to nodes
in Vp. While Korkali et al. investigate a few different models of

CUNNINGHAM et al.: DEEP LEARNING GAME THEORETIC MODEL 1193

failure propagation between network domains, we focus on the
“intermediate” model of dependency that was concluded to be
the most realistic. This model is referred to as “intermediate”
because it strikes a balance between assuming that a failure in
a power node will always cause a failure in a connected com-
munication node and assuming that the same failure will never
cause a communication failure (due to for example a backup
battery in the communication node). Instead, the intermediate
model assumes there is some probability that a power failure
causes a communication failure (that the battery backup will
fail). We also assume, as Korkali et al. did, that the adversary
will only target power nodes.

Within the communication domain itself, it is assumed that
communication is possible between two nodes as long as there
exists a connected path between them in the graph Gc. In Gp,
power failures propagate according to DC power-flow equa-
tions with generator and consumer nodes that place various
generations and loads on the network and transmission lines
that have a fixed capacity. While DC power flow models do not
capture all aspects of cascading failure (e.g., dynamic insta-
bility, voltage collapse, and distance relays [27]), they are
computationally efficient and numerically stable. Moreover,
even highly complex AC models must make some simplify-
ing assumptions, and there is not currently an established AC
power flow model that is publicly available [27]. For these
reasons DC power flow models have been chosen for several
cascading failure studies [5], [27], [28], [29]. Furthermore,
because our RL method in particular represents the environ-
ment as a black box, it can be extended straightforwardly to
any cascading failure model that is not prohibitively compu-
tationally expensive to train with. The DC power flow model
used in this work can be summarized as follows:

G − D = Bθ (6)

Fij = 1

xij
(
θi − θj

) (7)

where G and D are vectors of power generation and load, B is
a weighted Laplacian matrix that encodes the network’s topol-
ogy, θ is a vector of phase voltage angles, Fij is the power
flow from node i to node j, and xij is the normalized induc-
tance of the transmission line. When a component fails, flows
are recomputed according to this model. If the updated flows
exceed the flow capacity of a power line, then it will discon-
nect in an amount of time that is proportional to the overload.
This triggers another recomputation of the power flow. If the
networks separates into islands and there is not a feasible
solution to Equation (6) due to an imbalance between sup-
ply and demand, a combination of generator adjustments and
load reductions are used to arrive at a new feasible solution
to Equation (6).

The simulation model also utilizes an automated load
shedding algorithm that reactively reduces the cascading of
failures through the network based on node failures caused
by the attacker (details provided in [5]). However, this con-
troller relies on the communication network to measure load
injections at various points in the graph, therefore, if commu-
nication nodes fail due to the adversary’s attack, it will reduce
the effectiveness of the load shedding algorithm.

We create Gv using both random graphs generation and
a graph modeled after the Polish power grid [30]. Random
graphs are constructed with the same average number of edges
per node as the Polish grid, regardless of the total number of
nodes in the graph. The graph Gc is then constructed using
the following procedure: First, a copy of Gp is made such that
Vc = Vp. Then 10% of the edges in Gc are rewired, exclud-
ing those rewiring that would result in self-loops or duplicate
edges. Finally, based on a coupling parameter q ∈ [0, 1], a
node in Vc is connected to its corresponding node in Vp with
probability q.

The main modification of the coupled network simulation
environment for this work was to make it compatible with
the agent-environment interface that is standard in RL. In this
paradigm, the environment is a black box from the agents’
perspective. The environment receives actions from the agents,
and generates a reward (and a new environment state in multi-
step environments). In this work, the reward is represented as
the proportion of nodes in the graph that fail after cascading.
For example, if 50% of nodes in the graph go down after
cascading completes, then the attacker agent receives a reward
of 0.5 and the defender receives a reward of −0.5.

The modified environment, as well the learning agent imple-
mentations, can be found on the project’s GitHub repository.1

B. Experimental Results

There are many possible choices of node embedding func-
tions to use in Equation (3). The heuristics of node degree,
betweenness centrality, and harmonic centrality were used as
features for this work. The addition of other heuristic node
features beyond these three had little impact on performance.
The node index is also included as a feature, so that the agent
can tell if two nodes are the same node or different nodes with
identical features, for a total of p = 4 features. As for h, abla-
tions from 16 to 128 had no significant impact on performance.
The results presented in this section use h = 64.

Our method relies on training on small-scale graphs, and
then generalizing to larger graphs. Thus, we conduct our train-
ing on 10-node graphs. We start with the simplest case of
attacking a single node. Because of the small scale, we are
able to calculate the Nash equilibrium directly. We can then
compare the divergence of the learned policy from the true
Nash equilibrium policy as a metric of its closeness to opti-
mality. We can then also compare their performance to the
benchmarks used in the literature.

We evaluate our method under two conditions: 1. training
on a fixed graph topology and then evaluating on that same
topology; 2. training on random topologies and then evaluating
on a testing set of fixed topologies. Condition 1 is similar to
the condition under which tabular RL methods are successful,
such as those used in [10], [11], [12], and thus we bench-
mark against a tabular Minimax Q Learning implementation.
Condition 2 involves generalizing from random topologies dur-
ing training to unseen topologies at test-time. As discussed in
Section II, this is significantly more challenging than condition

1https://github.com/jdc5549/coupled-networks

1194 IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 2, MARCH 2023

Fig. 2. Illustration of Nash equilibrium mixed strategies for the attacker and
defender with respect to a fixed 10 node graph. Node 8 is highlighted as a
critical node that the defender defends most often.

1 and computationally prohibitive to implement in tabular form
even for this 10-node example.

Figure 2 shows one of the fixed networks that we use to
evaluate our method under each of the specified conditions,
as well as the directly calculated Nash equilibrium strategy
for this network. It should be noted that each of the fixed
networks used for training has a unique Nash equilibrium. We
can observe that for this fixed network in Figure 2, node 8 is
clearly the most valuable target in this network, as the defender
defends it with the highest probability, and all others uniform
randomly. Thus, the attacker’s best strategy is to attack this
node with only a small probability and the rest of the time
attack any other node uniform randomly. Figure 3 shows the
Kullback–Leibler (KL) divergence between the agent strate-
gies and nash equilibrium strategies during training. From this
figure, we can observe that under the first training condition,
the divergence converges to near 0 for both our method and the
tabular RL benchmark, and that the tabular RL method reaches
a lower error. This is to be expected at this small scale given
that it uses an exact representation of Q whereas the neu-
ral network approaches uses the approximation Qθ . Under the
second training condition, the KL divergence in Figure 3 con-
verges to a value of less than 1. This larger deviation from
the NashEQ strategy is also expected, as the model is being
evaluated on the much harder problem of generalizing to a
testing set of 10 topologies it was not exposed to during train-
ing, which as discussed in Section II is not scalable even on
this 10 node network using tabular RL, and thus we are not
able to benchmark against these methods.

For strategies that do not achieve a near 0 KL-divergence
to the NashEQ strategies, we can also evaluate them by cal-
culating their approximate exploitability. The exploitability of
a strategy is defined as the expected average payoff of the
best response to that strategy. An exploitability of 2δ yields at
least a δ-Nash equilibrium [31], which means that the Nash
equilibrium has an exploitability of 0 by definition. We can
approximate this best response strategy by training new agents
specifically against the fixed “ego” agent models we wish to

Fig. 3. KL divergence of agent strategies and Nash equilibrium strategies for
10 choose 1 test case. For the condition 1 curves, divergences are calculated
with respect to the single fixed network in Figure 2. For the condition 2
curves, divergence is calculated with respect to a testing set of 10 random
topologies including the one in Figure 2.

evaluate. Because these “exploiter” agents always play against
a fixed ego agent strategy, we can use more computation-
ally efficient single-agent RL techniques to train them. We
use the Advantage Actor-Critic (A2C) [32] algorithm to train
exploiter agents with the ego agent strategy treated as part of
the environment.

More precisely, if we have trained ego agents πAtk and πDef
that have average payoffs playing against each other of δg and
−δg respectively, we would train exploiter πXA against πAtk
and πXD against πDef using A2C, and they would achieve
average payoffs of δXA and δXD respectively. Our calculated
exploitability would then be

δ = (
δXD − δg

) + (
δXA + δg

)
(8)

After training, the learned ego and exploiter models were
evaluated for 1000 episodes on the set of 10 testing graphs.
The heuristic benchmarks from the literature: random selection
and deterministically selecting the node with highest degree
are also evaluated.

Table III shows the average KL divergence and exploitabil-
ity of each of the evaluated methods. All of the learned models
demonstrate exploitability that is either near 0 or negative,

CUNNINGHAM et al.: DEEP LEARNING GAME THEORETIC MODEL 1195

TABLE III
AVERAGE EXPLOITABILITY AND NASH KL DIVERGENCE OF EACH

EVALUATED STRATEGY ON THE TESTING SET OF 10 GRID

TOPOLOGIES FOR THE 10 CHOOSE 1 TEST CASE

while both of the benchmarks have a positive exploitability.
While the random benchmark has a smaller divergence from
the NashEQ than the model under condition 2, it is still more
easily exploited on average. It should be noted that this is true
despite the fact that for 3 of 10 test scenarios, the NashEQ
strategy is coincidentally uniform random for both players.

For a concrete example of the strategies learned for the fixed
graph, Table IV shows the average strategies over the 1000
episodes for both trained models compared against the Nash
equilibrium strategy. We can see that the condition 1 tabular
model learns the exact Nash equilibrium with respect to the
precision of the figures in the table, and our model is very close
to exact. Under training condition 2, we can see that the influ-
ence of the node features is apparent, especially node degree.
The highest degree nodes are 4, 9, and 8, while the lowest
degree nodes are 0, 2, and 3. The high degree nodes are all
among the most often defended, and the lowest degree nodes
are the least often defended. However, the model correctly
defends node 8 most often, despite it only being the second
highest degree node, indicating that the model has learned to
predict high impact nodes with respect to cascading failure.
These results illustrate the key aspect that makes training con-
dition 2 more challenging. Instead of memorizing via trial and
error the best solution for a particular network, the agent must
learn which node features correspond to high value nodes and
prioritize their targets accordingly.

Next, we examine a slighty more complex test case of each
player choosing 2 nodes out of 5. We compare modeling the
full action space versus using RCR with m = 1. Figure 4
shows the learning curves for 2 million steps of training for
each of these cases. The assumption referenced in Section III
that for larger problems the overall error to the Nash equilib-
rium will be larger than the error induced by RCR seems to
hold here, as RCR achieves a KL divergence of less than 1,
while in the full action space little progress is made.

With this in mind, we examine the large-scale
(100

5

)
test case.

Unlike the small-scale experiments, we are unable to directly
calculate Nash equilibrium.

For the
(100

5

)
test case, we train A2C exploiters using RCR

with m = 1 for 100, 000 time steps against the RCR agent
model for the

(10
2

)
test case applied to the

(100
5

)
scenario as

the ego agents. We also benchmark against both random node
selections and the largest node degree heuristic. We gener-
ate a test set of 10 randomly generated 100-node graphs to
train the exploiter agents, and then evaluate the trained agent
for 1000 the average and standard deviation of exploitability
across the 10 test networks for our neural network agent and

Fig. 4. Comparison of RCR versus full combinatorial action space for the
“5 choose 2” graph test case.

the benchmark strategies. Table V shows the exploitability of
our proposed method compared to the exploitability of the
random and node degree heuristics that are used in practice
for large-scale graphs. We can see that our proposed method
is less exploitable than these heuristics by a factor of 19 and
24 respectively. This means that an intelligent agent is able to
inflict a much larger cost against an agent that is using these
standard heuristics as opposed to our proposed game theoretic
strategy of preemptive defense.

The final test case we consider is the topology based on
the Polish grid. This topology constitutes a

(2383
50

)
test case.

Table VI shows the exploitability metrics for this network. We
find an exploitability of −0.00151 for the Polish grid, which
indicates that the exploiter agents performed slightly worse
than the ego agents. However, the exploiter agents still had
success against the two benchmark heuristics.

These results certainly do not indicate that our method’s
strategies are close to the Nash equilibrium despite the low
exploitability, due to the imperfection of the best response
strategies. However, the fact that the A2C exploiters were
largely unable to exploit the strategies learned by the ego
agents, especially compared to common heuristic strategies
employed on large-scale graphs, indicates that the ego agents
learned intelligent strategies for attack and defense on large
networks with many simultaneous target selections. This is in
contrast to state-of-the-art game theoretic methods that avoid
modeling many simultaneous target selections entirely due to
their inability to scale.

V. CONCLUSION

We introduced a neural network model that uses node
embeddings and minimax Q-learning to predict the utility of
attacking or defending nodes in a graph. This model does not
depend on the size of the graph, which enables us to train
on small graphs and leverage those same learned features on
graphs of realistic scale. We also introduced a sampling trick
we call RCR, that allows for the approximation of a large
combination of actions as a series of smaller combinations of
actions. Combining both of these contributions, we were able

1196 IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 2, MARCH 2023

TABLE IV
COMPARISON OF STRATEGIES FOR THE ATTACKER AND DEFENDER ON THE 10 NODE TEST CASE SHOWN IN FIGURE 2. THE NASH EQUILIBRIUM

STRATEGY IS COMPARED WITH THE STRATEGIES LEARNED BY THE TABULAR AGENT UNDER TRAINING CONDITION 1 AND THE NEURAL NETWORK

(NN) AGENT UNDER TRAINING CONDITIONS 1 AND 2

TABLE V
EXPLOITABILITY OF EGO AGENT STRATEGIES WITH

RESPECT TO A2C EXPLOITERS

TABLE VI
EXPLOITABILITY OF EGO AGENT STRATEGIES WITH RESPECT TO A2C

EXPLOITERS FOR THE POLISH GRID TOPOLOGY

to learn both an attack and defense strategy on a large-scale
coupled power and communication network that was far less
exploitable with respect to a dedicated RL exploiter agent than
common heuristic strategies for node failures.

While this work is an important first step towards scaling
security games to large-scale graphs, there are several possible
directions to expand upon this work. Firstly, very simple node
features were used for the node embeddings, and this likely
limited the ability of the network identify optimal strategies
from node features alone. To overcome reliance on heuristics,
graph convolutional neural networks such as “struc2vec" could
be used to automatically learn embeddings of the nodes that
are useful for Q-value prediction.

Another direction for future work is expanding to more
complex security game models, for example multi-step envi-
ronments where agents must apply long-term credit assign-
ment to their actions, as well as more complex models of how
attackers and defenders can distribute resources over possi-
ble targets. Additionally, relaxing the assumption of zero-sum
payoff would require more complex adversarial learning meth-
ods than minimax Q-learning, but would allow for modeling of
scenarios where the attacker and defender have different prior-
ities and incentives. Moreover, relaxing the zero-sum assump-
tion would effectively increase the training time required, as
in this work the fact both sides of the game can be represented

with the same Q-function (with inverted sign) was exploited
to reduce training time. This motivates methods of improv-
ing the computational efficiency of the proposed method as
an additional avenue for future work.

ACKNOWLEDGMENT

Thanks to Alex Aved for concept development. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of
the Air Force Research Laboratory or the U.S. Government.
The authors would also like to thank John Salerno for his
contribution to this project.

REFERENCES

[1] T. D. Le, A. Anwar, R. Beuran, and S. W. Loke, “Smart grid co-
simulation tools: Review and cybersecurity case study,” in Proc. 7th
Int. Conf. Smart Grid (icSmartGrid), 2019, pp. 39–45.

[2] C.-C. Sun, A. Hahn, and C.-C. Liu, “Cyber security of a power grid:
State-of-the-art,” Int. J. Elect. Power Energy Syst., vol. 99, pp. 45–56,
Jul. 2018.

[3] Z. El Mrabet, N. Kaabouch, H. El Ghazi, and H. El Ghazi, “Cyber-
security in smart grid: Survey and challenges,” Comput. Elect. Eng.,
vol. 67, pp. 469–482, Apr. 2018.

[4] Gö. N. Ericsson, “Cyber security and power system communication—
Essential parts of a smart grid infrastructure,” IEEE Trans. Power Del.,
vol. 25, no. 3, pp. 1501–1507, Jul. 2010.

[5] M. Korkali, J. G. Veneman, B. F. Tivnan, J. P. Bagrow, and
P. D. H. Hines, “Reducing cascading failure risk by increasing infras-
tructure network interdependence,” Sci. Rep., vol. 7, pp. 1–13,
Mar. 2017.

[6] “Analysis of the cyber attack on the Ukrainian power grid: Defense
use case,” Elect. Inf. Sharing Anal. Center, Washington, DC, USA,
E-ISAC–388, 2016.

[7] A. Sturaro, S. Silvestri, M. Conti, and S. K. Das, “Towards a realistic
model for failure propagation in interdependent networks,” in Proc. Int.
Conf. Comput. Netw. Commun. (ICNC), 2016, pp. 1–7.

[8] Y. Cai, Y. Cao, Y. Li, T. Huang, and B. Zhou, “Cascading failure anal-
ysis considering interaction between power grids and communication
networks,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 530–538, Jan.
2016.

[9] J. Cordova-Garcia, X. Wang, D. Xie, Y. Zhao, and L. Zuo, “Control
of communications-dependent cascading failures in power grids,” IEEE
Trans. Smart Grid, vol. 10, no. 5, pp. 5021–5031, Sep. 2019.

[10] S. Paul, Z. Ni, and C. Mu, “A learning-based solution for an adversarial
repeated game in cyber-physical power systems,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 31, no. 11, pp. 4512–4523, Nov. 2020.

[11] L. Wei, A. I. Sarwat, W. Saad, and S. Biswas, “Stochastic games for
power grid protection against coordinated cyber-physical attacks,” IEEE
Trans. Smart Grid, vol. 9, no. 2, pp. 684–694, Mar. 2018.

CUNNINGHAM et al.: DEEP LEARNING GAME THEORETIC MODEL 1197

[12] Y. Guo, L. Wang, Z. Liu, and Y. Shen, “Reinforcement-learning-based
dynamic defense strategy of multistage game against dynamic load alter-
ing attack,” Int. J. Elect. Power Energy Syst., vol. 131, Oct. 2021,
Art. no. 107113.

[13] Y. Guo, L. Wang, Z. Liu, and Y. Shen, “Reinforcement-learning-based
dynamic defense strategy of multistage game against dynamic load alter-
ing attack,” Int. J. Elect. Power Energy Syst., vol. 131, Oct. 2021,
Art. no. 107113.

[14] J. Yan, H. He, X. Zhong, and Y. Tang, “Q-learning-based vulnerability
analysis of smart grid against sequential topology attacks,” IEEE Trans.
Inf. Forensics Security, vol. 12, no. 1, pp. 200–210, Jan. 2017.

[15] I. Ahmad, A. Clark, A. Sabol, D. Ferris, and A. Aved, “Maximizing
resilience under defender attacker model in heterogeneous multi-
networks,” in Proc. 3rd Int. Conf. Data Intell. Secur. (ICDIS), 2020,
pp. 117–126.

[16] D. Silver et al. “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[17] D. Silver et al. “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm,” 2017, arXiv:1712.01815.

[18] C. Berner et al. “Dota 2 with large scale deep reinforcement learning,”
2019, arXiv:1912.06680.

[19] O. Vinyals et al. “Grandmaster level in StarCraft II using multi-agent
reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[20] F. Wei, Z. Wan, and H. He, “Cyber-attack recovery strategy for smart
grid based on deep reinforcement learning,” IEEE Trans. Smart Grid,
vol. 11, no. 3, pp. 2476–2486, May 2020.

[21] Z. Ni and S. Paul, “A multistage game in smart grid security: A rein-
forcement learning solution,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2684–2695, Sep. 2019.

[22] M. L. Littman, “Value-function reinforcement learning in Markov
games,” Cogn. Syst. Res., vol. 2, no. 1, pp. 55–66, 2001.

[23] M. L. Littman and C. Szepesvári, “A generalized reinforcement-learning
model: Convergence and applications,” in Proc. ICML, vol. 96, 1996,
pp. 310–318.

[24] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song,
“Learning combinatorial optimization algorithms over graphs,” 2017,
arXiv:1704.01665.

[25] V. Mnih et al. “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[26] M. Osborne, A. Lall, and B. Van Durme, “Exponential reservoir sam-
pling for streaming language models,” in Proc. 52nd Annu. Meeting
Assoc. Comput. Linguist., 2014, pp. 687–692.

[27] M. J. Eppstein and P. D. H. Hines, “A ‘random chemistry’ algorithm
for identifying collections of multiple contingencies that initiate cascad-
ing failure,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1698–1705,
Aug. 2012.

[28] R. Pfitzner, K. Turitsyn, and M. Chertkov, “Statistical classification of
cascading failures in power grids,” in Proc. IEEE Power Energy Soc,
General Meeting, 2011, pp. 1–8.

[29] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu, and G. Zussman,
“Power grid vulnerability to geographically correlated failures—
Analysis and control implications,” in Proc. IEEE INFOCOM IEEE
Conf. Comput. Commun., 2014, pp. 2634–2642.

[30] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas,
“MATPOWER: Steady-state operations, planning, and analysis tools for
power systems research and education,” IEEE Trans. Power Syst., vol.
26, no. 1, pp. 12–19, Feb. 2011.

[31] J. Heinrich and D. Silver, “Deep reinforcement learning from
self-play in imperfect-information games,” 2016, arXiv:1603.
01121.

[32] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

