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Accounting for Environmental Conditions in
Data-Driven Wind Turbine Power Models

Ravi Pandit , David Infield , and Matilde Santos

Abstract—Continuous assessment of wind turbine performance
is a key to maximising power generation at a very low cost. A wind
turbine power curve is a non-linear function between power output
and wind speed and is widely used to approach numerous problems
linked to turbine operation. According to the current IEC standard,
power curves are determined by a data reduction method, called
binning, where hub height, wind speed and air density are consid-
ered as appropriate input parameters. However, as turbine rotors
have grown in size over recent years, the impact of variations in
wind speed, and thus of power output, can no longer be overlooked.
Two environmental variables, namely wind shear and turbulence
intensity, have the greatest impact on power output. Therefore,
taking account of these factors may improve the accuracy as well
as reduce the uncertainty of data-driven power curve models,
which could be helpful in performance monitoring applications.
This paper aims to quantify and analyse the impact of these two
environmental factors on wind turbine power curves. Gaussian
process (GP) is a data-driven, nonparametric based approach to
power curve modelling that can incorporate these two additional
environmental factors. The proposed technique’s effectiveness is
trained and validated using historical 10-minute average supervi-
sory control and data acquisition (SCADA) datasets from variable
speed, pitch control, and wind turbines rated at 2.5 MW. The
results suggest that (i) the inclusion of the additional environmental
parameters increases GP model accuracy and reduces uncertainty
in estimating the power curve; (ii) a comparative study reveals that
turbulence intensity has a relatively greater impact on GP model
accuracy, together with uncertainty as compared to blade pitch
angle. These conclusions are confirmed using performance error
metrics and uncertainty calculations. The results have practical
beneficial consequences for O&M related activities such as early
failure detection.

Index Terms—Condition monitoring, fault detection, gaussian
process, power curves machine learning, SCADA data.

I. INTRODUCTION

IN THE last decade, wind power has witnessed significant
growth worldwide. By the end of 2021, the annual net wind
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Fig. 1. New installed capacity, 2016-2020 [1].

capacity addition is expected to reach 68 GW despite the impact
of the Covid-19 pandemic [1]. According to preliminary World
Wind Energy Association statistics [2], 93 GW of new turbines
were installed in 2020 alone, as shown in Fig. 1, where China,
the United States, and Russia all set new installation records,
while most European markets saw only modest expansion. With
the significant increase in rotor blade size, operation and mainte-
nance (O&M) costs of wind farms have risen correspondingly.
Therefore, the wind power must be cost-effective in order to
compete with traditional generation sources in the long term.

Compared to onshore wind farms, those located offshore are
less mature and face different environmental challenges (e.g.,
lightning and extreme winds). Because of this, the O&M cost
is significantly higher offshore and is estimated to account for
20%–30% of the lifetime costs of an offshore wind farm mainly
due to logistics and transportation challenges [3]. As per [4],
the global cost of wind O&M is projected to hit $27.4 billion by
2025, with an expected compound annual growth rate of 8%. Un-
expected component failures trigger unscheduled maintenance,
which is particularly problematic for wind turbine operators.
Thus, wind farm operators are gradually adopting condition-
based maintenance philosophies to prevent such occurrences and
minimise O&M costs by improving turbine efficiency.

Accurate monitoring of wind turbine power generation perfor-
mance can support more rational maintenance planning, prevent
failures [5], and reduce O&M costs [6]. Wind power curve mod-
elling is commonly used to assess wind turbine power generation
efficiency (Power Curve Grouping Group). Due to technolog-
ical advancement, wind turbines are generally equipped with
SCADA systems that record extensive historical and operational
data from wind turbines. These data are in recent years started
finding an application in performance [7] as well as condition

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6850-7922
https://orcid.org/0000-0002-8052-049X
https://orcid.org/0000-0003-1993-8368
mailto:ravi.pandit@cranfield.ac.uk
mailto:david.infield@strath.ac.uk
mailto:msantos@ucm.es
https://doi.org/10.1109/TSTE.2022.3204453


PANDIT et al.: ACCOUNTING FOR ENVIRONMENTAL CONDITIONS IN DATA-DRIVEN WIND TURBINE POWER MODELS 169

monitoring [8] tasks. However, it is worth noting that for larger
turbines SCADA system suffers from prediction reliability and
accuracy issues, mainly due to erroneous measurements by sen-
sors, which may affect estimating the average power generated
by such wind turbines, resulting in time-consuming maintenance
plans and resource waste [9]. However, suitable, pre-processing
of datasets ensures more accurate wind power calculation and
increases SCADA-data-based model accuracy [10].

The International Standard IEC 61400-12-1 [11] for measur-
ing the power curves utilises a standard data reduction technique
known as ‘binning’. Given a turbine at a location within a
particular wind farm, this curve is referred to as a site-specific
power curve for the specific wind turbine. While calculating
power curves, a significant database covering a wide range of
operating conditions is required, and this is generally obtained
over a significant time period. It has been found that because of
changes in air density, atmospheric stability and other aspects
of operational conditions that influence power performance, a
notable difference in power output at a given hub height wind
speed is seen [12], [13], [14]. Though Section I-B of the IEC only
considers hub height wind speed and air density, it is, however,
worth mentioning that the IEC standard IEC 61400-12-1 (2017)
also has informative annexes that discuss turbulence normalisa-
tion, based largely on the work of Axel Albers (Annex M) and on
wind shear normalisation (Annex P). As a result, attention has
been given to improving site-specific power curve predictions
by considering various factors.

A. Related Work

For power curve modelling, various SCADA data-based para-
metric and nonparametric methods have been used in the past;
the results show that nonparametric models generally perform
better than parametric models in part due to their ease of opera-
tion and flexibility [15], [16]. Nonparametric approaches, often
applying data-driven machine learning methods, have recently
become popular in power curve modelling and its related appli-
cations such as performance and condition monitoring of wind
turbines [8], [9] and wind farms [17], [18], where 10-minute
averaged historical SCADA data have been used for training
and validation purposes. Shen et al. [19], for example, suggested
that a nonparametric model is better suited to working with
large datasets than parametric models because it can integrate
the effects of various parameters other than wind speed on
power curves more easily. Wang et al. [20] proposed a copula-
based joint probability model for modelling wind turbine power
curves, and outliers were detected based on the derived joint
probability distribution. In [21], a multi-layered neural network
power curve model has been shown to verify the performances
and fault diagnosis in turbines. Wind power forecasting [22],
wind resource assessment [23], wind turbine site matching [24],
and power system reliability assessment [25], among others, are
considered to be essential applications of power curves in power
systems.

Wind power generation is known to be affected by many dif-
ferent factors, such as air density, wind shear, turbulences, etc, so
the inclusion of these factors is important to improve data-driven

models’ accuracy. For example, Pandit et al. [13] incorporated
air density as the second input variable along with hub height
wind speed, for a Gaussian Process (GP) based power curve,
and the result suggests significant improvement in accuracy and
a reduction in uncertainty. It should be noted that considerable
changes in air density (which is wind farm location-specific) will
add significant uncertainty to long-term energy yield prediction
from turbines. Another important observation is found in [26],
where air density correction (via temperature and pressure) is
suggested for improving the power curve and wind resource
assessment of a wind farm. Adjusting resource measurements
to ensure they represent the same air density as the one for which
a power curve is considered valid is standard practice in wind
resource assessment and energy yield estimation. According to
existing literature [27], [28], as wind shear increases, power
generation decreases (within a certain permissible range of
shear exponents). Wagner et al. [27] proposed that a hub height
equivalent to wind speed be used in the power curve derivation.
With wind shear taken into account in this manner simulations
based on a blade element model were tested to show a reduction
in power curve scattering. The Wagner et al. [28] study on
wind shear effect on wind turbine power curves proposed and
concluded that power curves are less sensitive to shear, thus less
dependent on the site.

Clifton et al. [29] proposed three methods for accounting
for the effect of turbulence on wind turbine power curves.
They used IEC standard binning, turbulence normalization and
random forest techniques and comparative analysis showed that
a random forest model can estimate the power as conditions
change, and is more flexible than the alternatives examined.
Turbulence intensity is another environmental factor that affects
wind power generation. Bardal et al. [30] analysed the effect
of turbulence intensity and wind shear on the performance of
a 3 MW wind turbine using lidar data. A new technique for
turbulence normalization is presented in [31]. This approach
defines a zero turbulence power curve that may be used to
generate power output using either a measured or reference wind
speed distribution. Recent works on turbulence intensity and
wind turbines can be found in [32], [33], [34], [35], [36], [37].

B. Scientific Novelty and Contribution to Knowledge

From the above works of literature, it is well established that
the previously mentioned factors have significant influences on
the power performance of a wind turbine. However, the IEC
61400-12-1 standard considers only wind speed and air density
as the relevant input variables and ignores other operational and
environmental factors that are known to influence wind power
generation. Pandit et al. [38] carried out a comparative analysis
of operational variables (rotor speed and blade pitch angle) and
found rotor speed as a key variable that improves power curve
model accuracy and uncertainty. They further extended this work
in [39] and developed a fault detection algorithm incorporating
rotor speed and compared this with existing techniques and
concluded that including rotor speed in the algorithm increases
early fault detection capability without false positive alarms. But
both have ignored the importance of environmental factors on
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wind turbine power performance. As a result, it is unclear if
including environmental variables (wind shear and turbulence
intensity) would increase data-driven power curve accuracy and
reduce uncertainty. This research is vital as it can help to iden-
tify the most appropriate parameters that improve data-driven
power curve model accuracy, and further, that can be useful in
constructing robust fault detection algorithms for wind turbine
condition/performance monitoring purposes. This paper aims to
fill this knowledge gap by proposing an in-depth analysis of the
impact of these two environmental variables on a power curve
model based on a GP. This is the driving force behind the work
that is presented here. In addition, as a practical contribution, we
are suggesting key variables that if included in the power curve-
based condition monitoring model may improve O&M-related
activities such as early failure detection and thus, reduce costs.

The remainder of this paper is organised as follows. Section II
describes the wind turbine power curve and factors affecting
it, while Section III presents a description of operational wind
turbine SCADA data and appropriate pre-processing method-
ologies. The GP methodology for power curve modelling is
explained in Section IV. Section V investigates the effect of envi-
ronmental variables on the GP power curve model accuracy and
uncertainty, further divided into two subsections. Comparative
output analyses for the GP model incorporating environmental
parameters are presented in Section VI. Finally, Section VII
provides conclusions drawn from the research and an indication
of useful future work.

II. WIND TURBINE POWER CURVES AND FACTORS

AFFECTING IT

The wind shear, turbulence intensity and air density have
strong relationships with topography and meteorological condi-
tions and therefore, their impacts on the power curve model are
important for wind farms condition monitoring and performance
analysis purposes as described as follows.

A. Wind Speed and Air Density

A wind turbine power curve is a nonlinear graph that specifies
how much electrical power the turbine will produce as a function
of wind speed, as shown in Fig. 2(10-min mean values from the
SCADA system). Many existing methods concentrate primarily
on the power curve, although data spread, such as the probability
distribution of power points in a given wind speed bin of a
typical power curve, certainly contains useful information. Thus,
an accurate power curve model aids wind power suppliers in
capturing the performance of wind turbines. Mathematically the
power curve is described by the following equation, [11]:

P = 0.5 ρACp (λ, β ) v3 (1)

where ρ is air density (kg/m3), A is swept area (m2), and v is the
hub height wind speed (m/sec). Cp is the power coefficient and
depends on tip speed ratio (λ) and pitch angle (β) turbine param-
eters. Generally, the higher the wind speed is, the more power can
be generated and this can be shown in (1) where wind power is
proportional to the cube of wind speed below rated wind speed
where the tip speed ratio and blade angle are fixed. It should

Fig. 2. Measured power curve.

be noted that generator losses are conventionally absorbed into
Cp, unless otherwise stated. Furthermore, as shown in (1), wind
power output is also directly proportional to the air density and
therefore affects power production. Ambient temperature and
atmospheric pressure affect the air density which consequently
affects the wind turbine power curve. Therefore, as per IEC
standard 61400-12-1, air density correction for variable pitch-
regulated wind turbines must be made by using the following
equations:

ρ = 1.225

[
288.15

T

] [
B

1013.3

]
(2)

VC = VM

[ ρ

1.225

] 1
3

(3)

where VC and VM are the corrected and measured wind speed in
m/sec. It should be noted that B is atmospheric pressure inmbar,
and T the temperature in Kelvin. It is worth noting that equation
(2) represents the approximate relationship between air density,
temperature and pressure; however, the impact of humidity on
air density is small compared to ambient temperature. The air
density (ρ) is calculated by putting the SCADA 10-minute aver-
age ambient temperature and pressure values into (2), and then
corrected wind speed (VC) is computed by (3), by inserting the
calculated air density into it. Finally, power output is available as
a function of corrected wind speed; this is called the air density
corrected power curve, and is used in the upcoming sections.

B. Wind Shear and Turbulence Intensity

Wind shear is the variation of wind speed with height, and
is significant in the lower atmosphere; it is also known as wind
gradient. The wind profile power law describes an approximate
relationship between wind speeds at different heights, and can
be used to compute the wind shear exponent as follows:

v/v0 =
(
h/h0

)α
(4)

where, v = the wind speed at height h (m/sec); v0 = the wind
speed at a height h0 (m/sec), and α= the wind shear exponent.
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It should be noted that the equation is only valid under the
assumption of stable atmospheric conditions [15].

Turbulence is another environmental factor that needs to
be included for an accurate site-specific wind power curve.
Turbulence is quantified in the wind energy industry using a
metric called turbulence intensity (TI), which is the standard
deviation of horizontal wind speed divided by the average wind
speed over a time period, typically 10 minutes [40]. The impact
of turbulence on a typical power curve can be broken down
into two parts. First, the normal 10-minute averaging of power
and wind speed data have an effect. Second, the non-linearity
of the power curve, when considered as a transfer function
between wind speed and power, enables the produced power to
be dependent mostly on the variance and the average of the wind
speed [41]. Therefore, affects the different wind speed regions
of the power curve. It is worth noting that topography can have
a strong influence on both shear and turbulence, and this can
introduce a directional dependence, while atmospheric stability
can introduce a diurnal and seasonal dependence.

C. Wind Direction and Blade Pitch Angle

One of the most often utilised elements in wind power fore-
casting models is wind direction. However, it has less of an
impact on producing wind power as compared to wind speed
and is hence not covered in this study. Nevertheless, wind
direction changes impact yaw control which plays an important
role in minimising yaw drive misalignment to boost wind power
production [42].

The blade pitch angle is recorded in the SCADA system and is
used to manage the blades of a wind turbine to employ the right
amount of available wind speed in order to produce controlled
power making sure it does not surpass its rated power. Blade
pitch angle may make a considerable effect on power estimations
when wind speed is above or close to its rated value. Since most
of the useful power is produced in-between cut-in and rated wind
speed. Thus, blade pitch angle will have a far lesser impact on
the wind power curve [38] and it is not included in this research.
In short, three environmental variables, namely, a) wind shear;
b) turbulence intensity and c) air density are incorporated in
this paper to investigate their impacts on data-driven algorithms
accuracy and uncertainty.

III EXPLORATORY SCADA DATA ANALYSIS AND FILTERATION

SCADA records a massive amount of datasets used to re-
flect the operational status together with performance without
additional costs. SCADA data used in this investigation comes
from a 2.3 MW Siemens (SWT-2.3-108) variable pitch con-
trolled wind turbine that is currently in operation and owned by
ScottishPower Renewables. This is an onshore WT located on
Eaglesham Moor, 15 km from Glasgow, Scotland. It measures
91,44 m to the tip of the blade. Each blade is 45,72 m in length.
The turbine makes 17 rpm turning at 360° tearing the wind at a
speed of 150 mph. Each turbine at the Whitelee windfarms has
a tip height of 110 metres from ground level to the hub plus the
rotor radius. The rotor blades measure 45 metres in length. The
location is 11.5 kilometres broad (east-west) and 7 kilometres

long (north-south), with a height of 370 metres above sea level.
The wind farm’s main access road is 16.5 kilometres long, with
additional 70 kilometres of tracks connecting the turbines. Also,
the terrain is reasonably flat but the presence of many forest
patches and clearing may cause additional turbulence.

In this study, due to the lack of information about the wind
direction sector, it is not possible to analyse how the inflow
of the wind turbine is distorted by the wake of the adjacent
wind turbines. This source of uncertainty may not allows us to
consider some turbine power losses and fatigue loads caused
by the wake effects, that have been ignored and all data have
been used even when the turbine was exposed to wakes from
neigbouring turbines.

Data are recorded 10-minute mean, maximum, and standard
deviation values for over 100 variables, including timestamp,
wind speed, rotor speed, power output, ambient temperature,
air pressure, and so on. In this study, 10-min mean values
are considered. Due to a confidentiality agreement, important
turbine information is excluded; however, a sample of SCADA
data used in this paper is provided in Table I.

The raw data gathered from SCADA systems may contain
sensor faults and communication problems, resulting in missing
data and, if not pre-processed, affecting the performance of
created models. As a result, before using these data for further
analysis, the first task is to filter them. Pre-processing of the raw
data was done similarly to that outlined in [43]. The first step
is to filter out samples with missing values or negative power
values. Data points with a maximum wind speed of more than 25
m/sec are additionally filtered out because the turbine is usually
shut down at this speed. Furthermore, during low-wind-speed
periods, data sampling during repeated start-up or stop may have
a different variance. Thus, a lower limit of output power is kept
at 0 kW for data pre-processing.

Overall, criteria including timestamp missing, negative power
values, out-of-range values, and turbine curtailment are utilised
to filter out misleading data like that reported in [43], [39].
Table II summarises a SCADA dataset that has a starting time-
stamp of “01/3/2012 00:00 PM“ and ending at the time-stamp
of “30/05/2012 00:00 PM”. It contains 14465 measured values
that were reduced to 9677 data points after filtration using
the above-mentioned criteria. The air density corrected (as ex-
plained before) power curve of the filtered SCADA data is shown
in Fig. 3 and will be used in the subsequent investigation.

IV. GAUSSIAN PROCESS METHODOLOGY

For nonlinear inference, GP is a powerful nonparametric
machine learning technique for building probabilistic models
of real-world problems [44]. It’s a stochastic process with a
joint Gaussian distribution for any finite number of collections
[45]. A GP model is unique in that it allows you to describe
prior distributions over functions in a straightforward way. For
given training datasets D = {(Xn, yn), n = 1, 2, 3, . . . .., N} ,
where the input is Xn ∈ Rdx , the output yn ∈ R. Here dx is the
dimension of the input. The relationship between input and the
target value is modelled in GP regression as:

y = f (X)+ ∈ (5)
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TABLE I
SCADA DATA SAMPLES

TABLE II
SCADA DATA PRE-PROCESSING SUMMARY

Fig. 3. Pre-processed power curve.

where f is the latent function and ∈ represents i.i.d. (indepen-
dent, identically distributed) Gaussian noise with zero mean and
varianceσ2

n, i.e., ∈∼ N(0, σ2
n). It should be highlighted that the

target value is y = (y1, y2, . . . . . . , yN )T while X is the input,
mathematically represented asX = [x1, x2, . . . . . . , xN ]T . The
latent function f(X) has a GP prior, which is defined by
f(X) ∼ GP (m(X), k(X,X ′)). For a real process X , the mean
functionm(X) and covariance function k(X,X ′) can be written
as:

m (X) = E [f (X)] (6)

k (X,X ′) = E [(f (x)−m (X)) (f (X ′)−m (X ′))] (7)

The accuracy of a GP model is determined by the covariance
function k(X,X ′), also known as a kernel (a positive-definite
function), which quantifies the similarity between two points.
Even though it can be randomly chosen, the mean function
m(X) is commonly assumed to be zero for notational simplicity
because it is preferred to centre the observed data around a
zero mean. The most generally used covariance function is the
squared exponential function, which is a stationary function
that will be employed in this research to explain the nonlinear
relationship between wind speed and wind turbine power output
mathematically; it is defined as:

k (x, x′) = σ2
f exp

(
− (x− x′)2

2l2

)
(8)

The squared exponential covariance function is a function of
Euclidean distance and to minimise the impact of noise, a noise
term is added to it, as follows.

k (x, x′) = σ2
f exp

(
− (x− x′)2

2l2

)
+ σ2

nδ (x, x
′) (9)

where σ2
f signifies the signal variance while the length scale,

l, is used to define how quickly the covariance decreases with
respect to the distance between the points. Both of these factors
are commonly known as hyper-parameters. The marginal distri-
bution over any set of input points must have a joint multivariate
Gaussian distribution, according to the definition of a GP. As a
result, we have:(

f
f∗

)
∼ N

(
0,

[
K (X,X) K (X,X∗)
K (X∗, X) K (X∗, X∗)

])
(10)

where K(X,X∗), k(X∗, X∗) are constructed by using (5), and
K (X∗, X) = K(X,X∗)

T . From the i.i.d. noise assumption,
we have that, [

f
f∗

]
∼ N

(
0,

[
σ2
nI 0
0 σ2

nI

])
(11)

Because the sums of independent Gaussian, random variables
are Gaussian (11) can be modified as follows,(

y
y∗

)
∼ N

(
0,

[
K (X,X) + σ2

nI k (X,X∗)
k (X∗, X) k (X∗, X∗) + σ2

nI

])
(12)

The prior distribution is helpful in providing important in-
formation about the unknown parameters. The posterior dis-
tribution is created by combining the prior distribution with
the probability distribution of future data, which is useful for
inference and any decisions involving uncertain parameters.
The posterior distribution p(y ∗ |y) reflects the likelihood of a
prediction y∗ given data y and is given by:

y∗|y,X, X∗ ∼ N (μ∗,Σ∗) (13)

whereμ∗ is the mean vector andΣ∗ is a covariance matrix. These
are calculated using the following equations:

μ∗ = k (X∗, X)
(
K (X,X) + σ2

nI
)−1

y (14)

Σ∗ = k (X∗, X∗)

− k (X∗, X)
(
K (X,X) + σ2

nI
)−1

k (X,X∗) + σ2
nI
(15)
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Fig. 4. Gaussian Process estimated power curve.

If P is the new dataset, then, the prediction for a new sample
xnew is easily calculated by using the following formula,

ŷnew =
1

P

P∑
p = 1

μp (xnew) (16)

where μp(xnew) is the GP regression model’s prediction for a
new sample dataset. The estimation of ŷnew takes into account
the sampling variability caused by missing data. Five-fold cross-
validation has been used to nullify the impact of missing data
on model performance.

To assess the performance of GP models, confidence intervals
(CIs) are found to be key and hence included in later sections
of this paper. These GP CIs are model-based estimates that
provide information on the uncertainty surrounding an estimate.
A GP estimates CIs for the prior and posterior for each predicted
mean value that represents the pointwise mean plus and minus
two times the standard deviation for a given input value (cor-
responding to a 95% confidence interval, that corresponds to a
significance level of 0.05) [13].

Power curves were produced with the GP models outlined
above (using MATLAB and Python) on the filtered SCADA
datasets (of Section III), and the results are shown in Fig. 4.
The result shows the GP power curve with confidence intervals
(CIs) and suggests that the GP is able to estimate the power
curve accurately. Indeed, the GP model overlaps the curve except
for some red points at high wind speed where it is possible to
differentiate them. Note that CIs are smaller between the 6 m/sec
to 12 m/sec wind speed region as compared to other regions.
This is because of the concentration of data in this region. Also,
for low wind speed, GP estimates negative power indicating
GP assumptions may not work with low wind speed data. A
GP model like any machine learning technique suffers from a
cubic inversion problem that affects its accuracy together with
uncertainty and increases the computation cost. The posterior
conditional distribution for a given observation is defined math-
ematically in [46], and there is a covariance matrix component,
associated with the inverse matrix operation which leads to the
mathematical challenge of inverting an n× n matrix (and this
goes approximately with O(n3), where n is the number of data

Fig. 5. GP power curve incorporating turbulence intensity.

points). This is the cubic inversion challenge, and therefore,
for effective GP modelling, maintaining a balance between the
numbers of data points employed and the cost of computation is
important.

V. INCORPORATING ENVIRONMENTAL PARAMETERS

The covariance function, as previously stated, is the heart of
the GP model and is used to represent the similarity between two
points. The variance of each variable along the leading diagonal
is given by the general covariance matrix, while the off-diagonal
elements measure the correlations between the individual vari-
ables and are mathematically expressed as follows:

k (x, x′) =

⎡
⎢⎣
k (x1, x1) · · · k (x1, xn)

...
. . .

...
k (xn, x1) · · · k (xn, xn)

⎤
⎥⎦

Where k is of size n × n, and being n the number of input
parameters is considered, and it must be symmetric and non-
negative semidefinite.

Because of the intrinsically multivariate nature of a general
GP, a large number of predictors can be incorporated into the
GP model to examine their impact on GP model accuracy and
uncertainty. Hence, environmental parameters (air density, wind
shear and turbulence intensity) can be included along with wind
speed to train the GP model, and the results are shown in a 3D
scatter plot to analyse the effect of incorporated variables on the
GP power curve accuracy.

A. Accounting for the Effect of Turbulence Intensity

The ratio of the standard deviation of wind speed to the
mean wind speed is known as turbulence intensity (TI). TI is
found to be critical in wind turbine construction, design and
aerodynamic load calculations; however, its impact on wind
power generation is significant as well [47]. TI is incorporated
as an extra input variable together with wind speed for GP power
curve modelling to analyse its impact on GP accuracy. Figs. 5
and 6 show a 3D scatter plot of the predicted GP power curve
(red: measured, blue: estimated) where TI is incorporated with,
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Fig. 6. Pre-corrected air density GP power curve incorporating TI [red:
measured, blue: estimated].

Fig. 7. Uncertainty quantification when turbulence intensity is included.

a) without pre-correction but with air density, and b) with air
density pre-correction. It should be noted that pre-correction
means air density correction as per (2) and (3). If we compare
Figs. 5 and 6, results suggest that without pre-correction but
with air density further improves GP model accuracy, which
is slightly better than the air density pre-correction approach.
That is, by adding air density directly into the model without
precorrection together with turbulence intensity, the accuracy
of the power curve improves instead of adding only turbulence
intensity as an extra input.

This is further confirmed by Fig. 7 which shows the calculated
CIs as a function of wind speed used for uncertainty analysis. If
TI is incorporated without pre-correction but with air density in
the GP model, there is an improvement in model uncertainty as
shown in Fig. 7. Nevertheless, whether TI is included with air
density or not, the improvement in the GP model will always
be higher than the IEC standards prescribed pre-correction ap-
proach, as illustrated in Fig. 7.

B. Accounting for the Effect of Wind Shear

As already explained, wind shear is an environmental phe-
nomenon that influences wind power generation. A shear expo-
nent (α) that links wind speeds at two different heights is used to

Fig. 8. GP power curve incorporating wind shear with pre-correction[red:
measured, blue: estimated].

Fig. 9. Pre-corrected air density GP power curve incorporating wind shear
[red: measured, blue: estimated].

quantify wind shear and it is calculated once in 10 minutes using
the power-law, (4), where v0 is taken from the SCADA system
at h0 = 27 m while v is at h = 66 m. Thereafter, calculated α
values are added as an extra input variable alongside wind speed
to estimate the power curve using GPs.

Figs. 8 and 9 present 3D scattered plots of the estimated
GP power curve with and without air density pre-correction,
respectively. In both cases, it is seen that the inclusion of wind
shear improves accuracy. Furthermore, incorporating air density
directly into the model improves accuracy and uncertainty. This
is demonstrated in the uncertainty analysis, where estimated CIs
are plotted against corrected wind speed, as shown in Fig. 10. It is
possible to see how incorporating both air density and wind shear
results in improved uncertainty across all wind speed ranges
in terms of CI. However, improvement is not as significant as
turbulence intensity. These results will be quantified in Table IV.

VI. COMPARATIVE STUDIES

This section presents a comparative assessment of incorporat-
ing environmental characteristics into GP power curve models,
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Fig. 10. Uncertainty quantification when wind shear is included.

TABLE III
PERFORMANCE METRICS EQUATIONS

TABLE IV
PERFORMANCE METRICS RESULTS

using uncertainty analysis and error metrics (RMSE, MAE and
R2) to assess the performance.

A. Uncertainty Quantification

As previously stated, confidence intervals (CIs) are a useful
tool for assessing model uncertainty and precision. Therefore,

Fig. 11. Comparative performance analysis.

estimated CIs of GPs incorporating environmental variables into
models were plotted as a function of wind speed as shown in
Fig. 11.

TI and air density directly included in the GP power curve
model suggest the largest improvement in uncertainty across
all wind speed regions, unlike the other models. Furthermore,
adding air density without pre-correction also improves GP
model accuracy but is not as significant as compared to tur-
bulence intensity and wind shear, as shown in Fig. 11. This
conclusion is further demonstrated by the calculated numerical
values of performance error metrics in an upcoming section.

B. Performance Error Metrics

The root mean squared error (RMSE) and mean absolute error
(MAE) are presented in Table III as performance metrics to
quantify the performance of the proposed models incorporating
environmental conditions, where n is the number of observed
samples, y′i and yi(i = 1, 2, . . . , n) denote the estimated values
and measure values, respectively. They measure the deviation
between the estimated and the measured values. In general,
lower values of these metrics reflect higher model accuracy.

The coefficient of determination (R2) is another useful metric
and is defined as the square of the correlation between predicted
output and actual value; it reflects how close the data are to the
fitted regression (hence always in between 0 to 1 with values
closer to 1 indicating better fitting of the model to the data). It
is defined as R2 = 1− SSE

TSS , where SSE is the sum of squared
errors and TSS is the total sum of squares.

The calculated values of these performance error metrics for
GP models are tabulated in Table IV. The calculated RMSE
and MAE values for turbulence intensity incorporated in the
GP model record a significant improvement in accuracy. The
R2 = 00.991 for turbulence intensity and air density directly
incorporated in the GP model is relatively close to 1 and thus
suggests a highly robust model. In the case of the wind shear
based GP model, calculated values of RMSE and MAE are sig-
nificantly higher as compared to the turbulence intensity-based
GP model. The largest improvement in performance metrics is
being recorded (see bolded results of Table IV) when turbulence
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intensity, wind shear, and air density are all incorporated directly
into the GP model. These performance error metrics values are
consistent with Fig. 11.

VII. CONCLUSION AND SUGGESTED FUTURE WORK

In this paper, the impact of environmental conditions on data-
driven wind turbine power curve models is reported. The results
obtained with this dataset show that including environmental
variables improves power curve accuracy and reduces model
uncertainty without undue additional complexity. A multivariate
data-driven Gaussian Process technique was applied to estimate
the power curve with environmental variables (air density, wind
shear, and turbulence intensity) incorporated as extra inputs
alongside wind speed. The results demonstrate clearly that the
inclusion of these additional parameters significantly improves
model accuracy and reduces uncertainty, as shown in Figs. 4
to 8. A comparative analysis was undertaken to identify the
most significant parameters in terms of impact on GP model
accuracy. This study concluded that the inclusion of turbulence
intensity makes the greatest improvement. Indeed, turbulence
intensity is an important parameter that improves GP power
curve accuracy and uncertainty in terms not only of RMSE
but of MAE (around 15% regarding the second-best case). This
accuracy further improves if air density is directly added to the
model together with turbulence intensity as shown in Fig. 11.
Calculated values of performance error metrics (Table IV) also
support these conclusions.

The core findings of this research revealed that by using
environmental variables, industrial practitioners can improve
modelling performance for condition monitoring-related activi-
ties. Moreover, incorporating key environmental variables with-
out additional computation and high processing power demand
will help enhance early fault detection algorithms and, thereby,
optimize O&M decisions and reduce costs. The inclusion of
environmental variables makes the confidence interval narrower,
which means it has a better ability to detect incoming faulty data
points if they are not within confidence interval limits. This is
kept for future study.

Future research will apply the findings of this study to alterna-
tive data-driven algorithms in order to evaluate, more generally,
the impact of environmental variables on power curve modelling
accuracy and uncertainty. Even more, how higher resolution data
(e.g., blade pitch angle) may affect data-driven fault detection
algorithm accuracy will be also analysed. Finally, other machine
learning techniques-based models will be explored.
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