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Abstract—This paper introduces a new framework for optimum
design and operation of hybrid renewable energy plants (HREP)
augmented with battery energy storage systems (BESS). A new
renewable energy management system (REMS) is developed com-
prising three components: 1) Enhanced joint forecasting of wind
and solar outputs based on deep neural networks and also mul-
tiplicative weights update (MWU); 2) an advanced optimization
model for sizing the HREP-BESS components and the policy of
BESS operation; and 3) Augmenting the rolling hourly dispatch for
HREP-BESS with a novel dynamic ramping limit and a criterion
for reduction of deviations from the hour-ahead dispatch schedule.
The proposed REMS tool enables maintaining the inter-hourly
ramping of the HREP-BESS output within a threshold. In this
context, a novel dynamic ramp limit is proposed to minimize the
energy curtailment during operation and maximize energy sales to
the power grid. The advantage of the proposed REMS tool over
the classical renewable energy systems operation scheme is the
mitigation of the volatility of renewable energy sources (RES) by
suppressing extreme ramping events with minimum curtailment.
Moreover, the costs and revenues of the HREP-BESS design and
operation are assessed over a 25 years period. The design problem
is solved for different scenarios, and the optimal solution always
encloses a hybrid mix of renewables where the share of the PV plant
can reach up to 37.1% of the total plant size. With the proposed
REMS, the curtailment of RES never exceeds 12.9% even when the
HREP is operated without a reserve margin. For the selected design,
the optimum BESS capacity is 12.9% of the HREP capacity. The
number of hours which observe a ramping violation event is 2.4%
of the season’s length (2184 hours). 99% of all ramping events fall
within the defined ramping limits. The use of the MWU method
increases the total profit by 2.53% compared with adopting the
average forecast.

Manuscript received June 29, 2020; revised October 8, 2020 and January 9,
2021; accepted February 5, 2021. Date of publication February 9, 2021; date
of current version June 21, 2021. This work was supported by CIRA Project-
2018-37, Khalifa University, Abu Dhabi, UAE. Paper no. TSTE-00695-2020.
(Corresponding author: Mohamed Shawky El Moursi.)

Baraa Mohandes was with the Advanced Power and Energy Center,
EECS Department, Khalifa University, Abu Dhabi 127788, UAE (e-mail:
baraa.mohandes@list.lu).

Maisam Wahbah is with the Healthcare Engineering Innovation Center
(HEIC), Department of Biomedical Engineering, Khalifa University, Abu Dhabi
127788, UAE (e-mail: maisam.wahbah@ku.ac.ae).

Mohamed Shawky El Moursi is with the Advanced Power and Energy
Center, EECS Department, Khalifa University, Abu Dhabi 127788, UAE, and on
leave from the Faculty of Engineering, Mansoura University, Mansoura 35516,
Egypt (e-mail: mohamed.elmoursi@ku.ac.ae).

Tarek H.M. El-Fouly is with the Advanced Power and Energy Center,
EECS Department, Khalifa University, Abu Dhabi 127788, UAE (e-mail:
tarek.elfouly@ku.ac.ae).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TSTE.2021.3058252.

Digital Object Identifier 10.1109/TSTE.2021.3058252

Index Terms—Deep learning, multiplicative weights update,
rolling horizon, hybrid renewable energy, dynamic ramping limit,
proxy value of battery energy.

NOMENCLATURE

A. Set Indices

t Hour of operations in a season t ∈ {1, . . ., 2184}
τ Hours of the look-ahead horizon τ ∈ {0, . . ., 4} in a

provisional dispatch plan devised at each interval t
κ Weather scenario κ ∈ K
B. Fixed Parameters

CHREP Total capacity of the hybrid RES plant = 100MW
π(·) Unit cost of (·)
ηBESS Round trip efficiency of BESS
ζ Future uncertainty factor

C. Optimum Sizing & Design Decision Variables

ψ Capacity of the PV unit as a percentage of CHREP

1− ψ Capacity of the wind unit as a percentage of CHREP

CBESS Capacity of the BESS as a percentage of CHREP

πPBESS Proxy price of the energy stored in the BESS (SoC) as
a percentage of maximum energy price πE

D. Hourly Economic Dispatch Decision Variables

P tτ Power output of the HREP at hour τ of the look-ahead
horizon, according to the provisional dispatch schedule
devised at t

ρ±,t0 Actual power ramping between periods t− 1 and t
ρ±,tτ Anticipated power ramping between periods τ − 1 and

τ in the provisional dispatch plan devised at t. τ > 1
ρ̂±,t0 Violation size of the tolerable ramping limit between

period t− 1 and t
ρ±,tτ Anticipated violation size of the tolerable ramping

limit between periods τ − 1 and τ in the provisional
dispatch plan devised at t. τ > 1

δ±,t Deviation in actual HREP power output at t from the
provisional dispatch schedule devised at the previous
time interval t− 1.

E. Hourly Economic Dispatch Parameters

ρ̃±,t0 Tolerable ramping limit of actual power output be-
tween periods t− 1 and t
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ρ̃±,tτ Provisional tolerable ramping limit between periods
τ − 1 and τ in the provisional dispatch plan devised at
t

I. INTRODUCTION

R ENEWABLE energy (RE) is gaining interest worldwide
due to environmental concerns. New policies require grid

operators to supply a certain percentage of their load from
renewable energy sources (RES), or face high penalties. The
biggest challenge for grid operators and area balancing authori-
ties against integrating more RES is the volatility and uncertainty
of RES output, inherited from the nature of weather conditions.
Therefore, power system operators secure high amounts of
operating reserve, usually through conventional generators [1].

Applied studies on actual RE data conclude that suppress-
ing the drastic effects of RES on the power system requires
large amounts of load-following reserves [1]–[5]. For example,
Sørensen et al. [6] highlight that the most extreme drop in a
wind farm’s output within a 1-minute interval is 6% of the
plant’s rating. In contrast, the most extreme drop in a 10 minutes
or 30 minutes period is 27% and 45%, respectively. Similarly,
partial clouding of photovoltaic (PV) panels can decrease a PV
plant’s output by more than 50% within 1 h [7], [8]. Against
all these findings, European grid codes [9]–[11] define ramping
rate limits at the 1-minute time-frame only. The ramping limits
are 1%–1.5% of the RES capacity subject to a maximum of
60 MW/min. Theoretically, this allows the RES owner to ramp
continuously at the maximum rate for extended periods of time,
without any legal repercussions. Consequently, the RES output
is allowed within one hour to change by 60%–90% of the RES
capacity, subject to a maximum of 3.6 GW. In practice, this
would have a drastic effect on the grid, both technically and
economically.

The lack of load-following resources on the part of slow large
units has required fast small units to provide this necessary
resource at a premium cost. This leads to more aggressive
cycling of small thermal generators; a process characterized by
lower fuel efficiency and higher physical stress on these units [1],
[12], [13]. The consequent carbon emissions from aggressive cy-
cling defeat the original purpose of installing renewable energy
sources. Therefore, ramping reserve is an ever-present issue in
research on RES integration. In fact, several researchers dedi-
cated their effort to studying ramping reserve, in particular. The
authors of [14], [15] highlight the shortcomings in the existing
estimations of the ramping capability for thermal units, and the
inter-period ramping process in hourly dispatch. Bakirtzis et
al. [16] adopt a probabilistic method to determine the ramping
reserve requirement, such that the reserve accommodates a
percentage of all errors in forecasting the net-load. The authors
analyze the impact of a more conservative reserve requirement
(i.e. accommodating a bigger percentage of forecast errors) on
the dispatch and operation costs.

The majority of existing studies focus on providing the
system with more ramping reserve from thermal units, rather
than mitigate the root cause of additional reserves, which is
the RES variability. On the other hand, mitigation of RES
variability on the RES side is limited to operating RES below

their maximum power point tracking level, where this spare
margin represents reserve against large fluctuations or forecast
errors [17]–[19]. Hedayati-Mehdiabadi et al. [19] generate dif-
ferent wind-scenarios, and optimize the wind curtailment factor
for each scenario offline, and a lookup table of curtailment poli-
cies is produced. During real-time operation, the actual weather
conditions are compared against the generated wind scenario in
the look-up table, and the closest scenario is determined, and its
curtailment factor is applied, accordingly.

In addition, the majority of research in this area is focused
on eliminating fluctuations at the time-frame of seconds to few
minutes. For example, [20]–[22] optimize the operation of a RE
plant augmented with a battery energy storage system (BESS) at
time resolutions between seconds and 10-minutes, with a model
predictive control approach. In [13], a single forecast of wind-
speed for the next 1 minute is modeled as a Gaussian process, and
operation of the wind/BESS plant is optimized as a two-stage de-
cision recourse problem. For a PV/BESS plant in [8], the output
of the next minute is modeled as a discrete-time Markov process
and the plant’s operation is optimized accordingly. Similar work
on smoothing RES output is the subject of [23]–[25]. The
statistical tools used in these studies are reliable only for making
short-term predictions at the seconds–minutes timeframe. Due
to the small size of fluctuations in the seconds–minutes period,
BESS degradation is not studied in [8], [13], [21]–[26]. BESS
degradation is also oversimplified in [27]–[29].

Proper sizing of BESS calls for observing the accumula-
tion of fatigue, and the corresponding capacity depletion over
the battery’s life. For example, operating BESS at very low
state of charge (SoC) inflicts severe damage on the BESS
lifetime [30]–[33]. Battery degradation models which analyze
the electrochemical reactions at molecular levels are the most
accurate, however, these models are very complex. BESS fa-
tigue accumulation models have acceptable accuracy, moderate
complexity, and also incorporate multiple operation factors. A
number of these models are presented in [31]–[33]. One of these
models, the rainflow counting (RFC) algorithm has the ability
to analyze non-regular cycling profiles.

Fewer studies optimize the hourly economic dispatch of RES
plants. References [34]–[36] schedule system operations at vary-
ing time resolutions for the look-ahead period. The effect of
time-resolution on system performance in light of wind volatility
and uncertainty is discussed in [34]. Bakirtzis et al. [35] solve
a deterministic optimization problem to schedule operations for
multiple upcoming short periods incorporating security against
contingencies. The dispatch during the remaining horizon (few
hours - 36 hours) is planned using a larger time-period, and does
not incorporate security constraints. A stochastic formulation
incorporating the loss of load probability is adopted later in [36].

Ding et al. [37] optimize the operation of a wind farm with a
BESS in the day-ahead market, based on 12-36 hours forecast.
Instead of re-solving the optimization problem during real-time
operation stage, the decision variables are updated with respect
to the errors in wind power forecast and market price forecast,
using an affine transformation. This transformation incurs lower
computational burden than solving the optimization problem
again. However, an affine transformation does not guarantee the
optimality of the new solution in a nonlinear program, and BESS
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degradation is not considered. Wang et al. [38] optimize the
operation and bidding of a BESS for the next 48 hours period
to maximize the BESS owner profits. The profits of the next
day (24-48 hours) period are weighted down by a factor which
is meant to represent uncertainty. However, a fixed discount
factor is used without investigation. A constraint on the BESS
state of charge (SoC) at the end of the present day is applied
to support operations on the next day. The BESS degradation
is incorporated in the optimization as a fixed cost on energy
exchange only.

The predictability of a hybrid PV/Wind plant is twice that of
any single RES alone [39]. Using hybrid RES plants for lower
overall volatility is suggested in [39]–[41]. Hybrid renewable
energy plants are studied by [7], [41]–[43]. Reddy et al. [7]
optimize the operation of a hybrid renewable energy plant
(HREP) aided by a diesel generator. Operations are scheduled
in the DA market to minimize cost, and again in the HA market
with the objective of minimizing the quadratic cost of deviation
from the DA schedule. The operation objective also includes the
cost and revenue from trading renewable-obligation certificates.
The authors use a heuristic optimization algorithm to solve the
problem, which may not scale up very well with a large system.
A small HREP installation is sized to match a load profile in [42]
for multiple objectives: minimize pollutant emissions, minimize
social discomfort, and minimize costs. Energy in excess of
the target load profile is penalized, rather than sold to the
grid.

Anwar et al. [43] utilize an ensemble of nonlinear auto-
regressive neural networks with exogenous inputs to make
30-minutes forecasts of wind and marine current speeds. The
bootstrapping technique is employed to process the output
of the neural-networks and create a prediction interval with
95% confidence level. The prediction interval demonstrates
better performance than point-forecasts. The HREP’s oper-
ation philosophy is to dispatch the wind turbines (WT) at
their maximum available level, while controlling the marine-
current turbine (MCT) and a BESS to satisfy a hard ramp-
ing constraint. The BESS is sized based on the largest de-
viation event, which turns out to be 5% of the total plant’s
capacity.

The following gaps can be outlined in the existing literature.
The absence of any grid codes on maximum allowed ramping
for RES units at the 30-60 minutes period indicates that the
existing approach to RES integration is questionable. One of
the outcomes of this paper is the recommendation to update
grid-codes to apply a ramping limit at this time-frame. Moreover,
smoothing RES output at the seconds–minutes time-frame does
not supersede the need for optimizing RES operation at larger
time steps (i.e. 30-60 minutes), for two reasons:

• First, the energy storage systems (ESS) employed in
smoothing techniques have smaller size and different na-
ture. Ultra-capacitors (UC) are used for smoothing in [8],
however, UC cannot be employed for load-following re-
serve due to their small energy capacity.

• Secondly, it is impractical to limit the scheduling of the
power system’s operations to only a short look-ahead pe-
riod of few minutes, despite the accuracy of these forecasts.

Therefore, this paper attempts to achieve the following re-
quirements: A) maintain a steady output of RES without extreme
ramping events as well as maintaining the RES output reasonable
close to its forecast; and B) acquire better forecasts of RES
output for a longer look-ahead horizon.

To satisfy requirement (A) in the plant design (long-term),
the involvement level of BESS in arbitrage is optimized. Ex-
ploring the potential of commercial arbitrage requires analyzing
the extent of its interference with the BESS’s primary task of
reducing power fluctuations, and also the effect of arbitrage on
BESS aging. Consequently, this paper proposes a novel concept
of a proxy value of stored BESS energy and using this value
in operations scheduling. Moreover, the hybrid mix of RES is
optimized while the total size of the HREP is fixed at 100MW.

Existing literature has little work on optimizing the HREP
design based on the outputs of the hourly economic dispatch
over extended periods of time. Therefore, requirement (A) is
also tackled in short-term operations where the HREP operation
philosophy adopts a “fine, do not confine” approach to sup-
press extreme ramping events. That is, the HREP’s operation
philosophy applies a dynamic soft-limit on the RES inter-hourly
ramping and penalizes extreme ramping events rather than con-
strains them. Penalizing extreme ramping events plays the role
of mitigating RES volatility. In this quest, different designs of the
ramping soft-limit are investigated along with different penalty
factors. Consequently, RES variability is attenuated on the RES
side first, rather than exposing the central grid to its full extent
and calling for procurement of massive amounts of reserve. A
small penalty is also imposed on deviating from the provisional
operation schedule devised in the hour-ahead market. Penalizing
deviation from the HA-market plan plays the role of mitigating
the uncertainty aspect of RES.

To fulfill requirement (B), an ensemble of deep neural net-
works is employed to generate a set of RES output forecasts.
Later on, a machine-learning algorithm known as the multiplica-
tive weights update (MWU), processes the set of forecasts into
one forecast guaranteed to be better than or equivalent to the
best single forecast alone.

This paper is organized as follows: The optimum HREP sizing
and optimum hourly dispatch problems are formulated in Sec-
tion II. Generating RES scenarios from probability distributions
is discussed in Section III-A. The deep-learning technique and
multiplicative weights update method are described in Sec-
tion IV. The proposed test system is described in Section V.
Results of the case study are discussed in Section VI, and
Section VII concludes.

II. METHODOLOGY AND PROBLEM FORMULATION

A. Hourly Economic Dispatch

At each hour t, the actual dispatch of the HREP is denoted
P t0 , which is determined and deployed at the beginning of the
hour. The actual ramping between the present and the previous
hour is denoted ρ±,t0 . At the same hour t, a provisional plan for
the 4 hours of the look-ahead horizon is also devised, denoted
P tτ , τ ∈ {1, . . ., 4}. The anticipated ramping among hours in the
look-ahead horizon in this provisional plan is denoted ρ±,tτ . The
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Fig. 1. Dynamic ramp rate limit for different values of α.

superscript t ∈ {1, . . ., 2184} identifies hours of the season. τ ∈
{0, 1, .., 4} identifies hours in a dispatch plan. This nomenclature
applies to all quantities in addition to P and ρ in dispatch plans.
In this study, an enhanced hourly economic dispatch problem is
proposed with three novel features.

First, in order to tackle the volatility aspect of RES output,
it is desirable to suppress extreme ramping between any two
consecutive hours of operation ρ±,t. The (up, down) ramping is
defined in (1). (2) defines the inter-hourly ramping limit ρ̃ for the
HREP as the sum of a fraction α of the actual dispatch P t−1

0 in
the previous hour, and a fraction β of the HREP’s full capacity
CHREP. Consequently, α determines the dynamic component of
the ramping limit, and β sets a static component. The ramp-
ing limit criterion is usually implemented as a hard constraint
shown in (iii), which may lead to severe curtailment or even
infeasibility in extreme situations. Alternatively, a high penalty
is enforced on on excessive ramping ρ̂ in order implement a
soft ramping limit. This is defined in (3). Either (iii) or (3) can
be activated in an optimization problem. If both were activated,
the hard-constraint (iii) subdues ρ̂ in (3) to zero. Intuitively, this
criterion is deactivated for the first hour in a season since P−1

0

is undefined, (4).
It must be kept in mind that parameters {α, β} are out of

control of the HREP operator, albeit, are dictated by the grid-
code. The HREP must comply with this criterion or face harsh
penalties.β defines the fixed component of the ramping rate limit
as a percentage of the HREP’s full capacity. A value of β = 0
prevents the HREP from descending to, or rising up from zero.
Therefore, it is crucial to set β > 0. α defines a flexible ramping
limit which grows or shrinks with the HREP’s power output. A
valueα < 0 tightens the ramping limit around high output levels,
with larger values of |α| applying a tighter limit. At the same
time, a larger value of β allows the HREP bigger ramping room
to rise from low generation levels. Fig. 1 depicts the effect of
different values of α. It is important to choose values (α, β) that
satisfy −α ≤ β. Otherwise, the ramping limit becomes negative
at some point PHREP ≤ 100%, which is undesirable. The lines
ρ = p and ρ = 100%− p represent the upper and lower limits
of output power Pmin/max, which also bound the plant’s ramping
near these bounds. For example, whenPHREP = 10%, the HREP
cannot ramp down by more than 10%, such that its output
becomes negative. Similarly, when PHREP = 95%, the HREP
cannot ramp up by more than 5%.

Fig. 2. Nomenclature in the rolling/receding horizon dispatch.

The second enhancement on the economic dispatch problem
aims to tackle the uncertainty aspect of RES output by penalizing
deviation from the HA schedule. Fig. 2 illustrates the difference
between the inter-hour ramping ρ and the deviation from the
hour-ahead plan δ. The provisional dispatch plan for t devised
in the previous hour t− 1 is denoted P t−1

1 , and considered a
binding agreement in the HA market. The difference between
P t0 and P t−1

1 is defined as the HA deviation δt, and described in
(5). This deviation might be inevitable, and may also be tolerable
within a certain limit. Therefore, violating this criterion incurs
a smaller penalty.

ρ±,tτ =

{
max{0, P t0 ∓ P t−1

0 } τ = 0

max{0, P tτ ∓ P tτ−1} τ ∈ {1, .., 4}
(1)

ρ̃tτ =

{
αP t−1

0 + βCHREP τ = 0

αP tτ−1 + βCHREP τ ∈ {1, .., 4}
(2)

ρ±,tτ ≤ ρ̃tτ Equation is printed for illustration only (iii)

ρ±,tτ ≤ ρ̃tτ + ρ̂tτ (3)

t = 0 ⇒ P t−1
(·) is u.d. ⇒ ρ̃t0 := ∞, ρ̂t0 := 0 (4)

δ±,t = max{0, P t0 ∓ P t−1
1 } (5)

Involving BESS in arbitrage may interfere with its primary
task of providing flexibility. If the BESS discharges completely
in an arbitrage scheme, the BESS would fail to provide any
energy to suppress a steep unpredicted ramp-down event, or a
large HA-deviation. If the ramping penalty is very high, the
potential financial profits from arbitrage are outweighed by the
huge penalties. On the other hand, if the ramping-penalty is
mediocre, the profits from arbitrage may justify the payment
of ramping penalties. Therefore, the HREP operator should
optimize the involvement extent of the BESS in arbitrage. In
addition, aggressive cycling of the BESS has a drastic effect
on the BESS state of health. BESS degradation depends on the
depth of discharge of each charge-discharge cycle. Therefore,
BESS degradation at any hour is dependent on a future event,
and it cannot be incorporated during actual real-time operation.

The third enhancement in this study is the employment of a
proxy value for the value of energy stored in the BESS πPBESS.
When this value is high, the HREP is more frugal towards
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spending the BESS energy, and preserves BESS energy for
suppressing extreme ramping events and avoiding the associated
penalties. In contrast, when πPBESS is low, the HREP expends the
BESS energy with more liberty. The proxy value of energy can be
perceived in another way. When the power output of a BESS has
a non-zero value, the system perceives the BESS as a potential
generator and dispatchable load. The system would be willing
to discharge the BESS only if the benefit from discharging the
BESS exceeds the value of energy. On the other hand, the system
would be willing to charge up the BESS only if the cost of
charging the BESS is lower than the proxy value πPBESS .

The hourly dispatch problem is described by (6) – (14), in
addition to (1) – (5). This problem is solved for the full season
length of 2184 hours. At every hour t, the actual HREP dispatch
P t0 is determined, and also a provisional dispatch plan for the
look-ahead horizon of 4 hours is set. The decision variables of
the problem are: the power output of the PV and WT sources,
the power exchange of the BESS, the HA deviation, the actual
ramping and excess ramping (if any) for the present hour and the
look ahead horizon. The HREP sells its output to the grid at price
πtE, and also pays a penalty rate πρ̂ on the total excess ramping
ρ̂±,t0 , and on deviation from the hour-ahead schedule δt. The
BESS acts as a generator with a non-negative cost πPBESS. The
net power output of the HREP is sold to the grid, as described
by (7). Variables with undetermined sign are decomposed to
positive and negative parts in ((1)), ((5)), and (8). The BESS
SoC is updated in every period by (10), where ηBESS is the BESS
round-trip efficiency.

RES may be operated below their maximum power point,
where this spare margin represents reserve against large fluctu-
ations or forecast errors [17]–[19]. This criterion is described
by (12), where the reserve margin can be defined as a fraction
λ of the available RES energy, or as a fixed value ϕ in MW.
In the optimization objective, revenues and penalties in the
provisional plan for the look-ahead horizon are weighed down
by a factor (ζ)τ , ζ ∈ (0, 1], τ ∈ {0, . . ., 4}. The coefficient (ζ)τ

decays exponentially, thus, giving later hours a smaller weight.
A similar principle is applied in [38] with a fixed factor.

max

{0,..,4}∑
τ

[
πt+τE P tHREP,τ − πt+τE πρ̂ρ̂

t
τ−πPBESS P

t
BESS,τ

]
× (ζ)τ − πt+τE πδ δ

t, πρ̂, πδ ∈ [200%, 500%] (6)

PHREP,τ = PWT,τ + PPV,τ + PBESS,τ ∀t ∈ T
(7)

P tBESS,τ = P+,t
BESS,τ + P−,t

BESS,τ ∀t ∈ T
(8)

P−,t
BESS ≤ 0 ≤ P+,t

BESS ∀t ∈ T
(9)

SoCt0 = SoCt–10 −P±,t−1
BESS,0 · (ηBESS)

∓1 ∀t ∈ T (10)

SoCtτ>0 = SoCt0−
{0,..,τ−1}∑

P±,t
BESS,τ · (ηBESS)

∓1 ∀t ∈ T

(11)

RHREP,τ ≥ λ
(
Pmax,t

WT,τ + Pmax,t
PV,τ

)
+ ϕ ∀t ∈ T

(12)∣∣P±,t
BESS,τ

∣∣ ≤ Pmax
BESS ∀t ∈ T

(13)

0 ≤ SoCmin,t
τ ≤ SoCtτ ≤ SoCmax,t

τ ∀t ∈ T (14)

B. HREP Sizing and BESS Arbitrage Policy

After solving the hourly economic dispatch problem for every
season, the rainflow counting (RFC) algorithm is applied on the
BESS SoC profiles to evaluate the BESS degradation, and the
BESS is oversized accordingly. The actual revenues and penal-
ties in a financial analysis depend only on the actual dispatch
at each period P t0 , ρ

t
0, δ

t, while quantities for the look-ahead
horizon P tτ , ρ

t
τ are only provisional for system operators. Sim-

ilarly, the proxy value of BESS stored energy does not count
towards the project’s actual revenues and costs. The results of
hourly-operations across all seasons and weather scenarios can
be extrapolated to the whole project’s lifetime yr, and used to
evaluate the goodness of a candidate design of the HREP. The
optimum HREP design problem is described in (15) – (25). The
decision variables of the design and sizing problem are: the PV
and WT sizes, the BESS capacity CBESS, and the proxy value of
BESS energy πPBESS .

The objective function in (15) is the net present value of
total profits over the project’s lifetime. The decision variables of
optimization are the PV unit size ψ, the BESS capacity CBESS,
the proxy value of BESS stored energy πPBESS , and the oversizing
factor of the BESS OvFBESS to offset BESS degradation. The
capital expenses comprise the cost of installation of the PV, WT,
BESS and inverter, in (17). The HREP full capacity is assumed
fixed, and the scope of optimization is finding the optimal mix
of PV vs. WT in the HREP, denoted as ψ and described by 19.
The BESS inverter size depends on the magnitude of the largest
power exchange action by the BESS (20). Operation expenses
consist of: 1) The oversizing (i.e. derating) factor of the PV
unit (OvFPV), which denotes the additional PV units installed
annually to offset PV degradation DPV, 2) The additional BESS
units (OvFBESS) installed annually to offset BESS degradation,
described by (22). These expenses are deducted from the ex-
pected seasonal profits over all scenarios and seasons in (21).
Net profits of every year are adjusted for interest and inflation
IR′ [29]. The salvage value of all equipment at the end of the
project’s lifetime is represented by (24). The first term in (24)
pertains to the equipment installed at the very beginning of the
project whose age is yr. The second term represents the value
of equipment installed within the project’s lifetime whose age
is yr − yr. At the end of the project lifetime, the equipment is
sold for its salvage value S.

The BESS degradation model in (25) is known as the ex-
ponential model [44]. The denominator implies that the BESS
can go through 5135.7 full cycles (i.e. DoD=100%) before the
BESS is considered dead. The RFC algorithm maps the cycling
profile of a BESS into a list of full-cycles and half cycles. The
equivalent depth of discharge (DoD) for each event is calculated,
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and mapped into a percentage of damage to the BESS using (25).

max
{ψ,CBESS,πPBESS}

⎛⎜⎝
S

(1+IR′)yr − CapEx

+
∑yr Rev−OpEx−Pnt

(1+IR′)yr

⎞⎟⎠ (15)

IR′ =
IR− F

F + 1
(16)

CapEx = πCPV OvFPV CPV + πCWT CWT

+ πCBESS OvFBESS CBESS CHREP + πCInv CInv

(17)

CPV = ψ · CHREP (18)

CWT = (1− ψ) · CHREP (19)

CInv ≥ max
{t,κ}

∣∣P t,κBESS

∣∣ (20)

Rev = Eκ

[
t∑
πtE P

t,κ
HREP,0

]
(21)

OpEx = Eκ [πPV (OvFPV − 1) CPV

+πBESS (OvFBESS − 1) CBESS] (22)

Pnt = Eκ

[
πρ̂ ·

t∑
ρ̂t,κ0 + πδ ·

t∑
δt,κ

]
(23)

S = (1−S)yrCapEx+
yr∑ (1−S)(yr−yr)

(1 + IR′)yr
OpEx

(24)

D(DoD) =
(DoD)1.759

5135.7
× 100% (25)

III. WEATHER SCENARIO GENERATION

A. Non-Parametric Probabilistic Modeling

Historical datasets for wind speed, solar irradiance, and ambi-
ent temperature from a location in France are used in developing
the probabilistic models for the wind and PV power genera-
tion [45]. Nineteen years of data are divided into three seasons;
winter, summer, and a combined fall-spring season. Then, the
dataset for each season is further divided into eight time intervals
of equal length: {< 0, 1, 2 >,< 3, 4, 5 >, . . ., < 21, 22, 23 >}.
With eight intervals per day for each of three seasons, twenty four
subsets of data are created. For each set, two probability density
functions (PDFs) are generated for the wind speed and solar
irradiance data using a non-parametric Kernel Density Estimator
(KDE).

Non-parametric techniques proved to be more efficient and
accurate in probabilistic modeling of wind and solar data than
traditional techniques such as the Rayleigh or Weibull dis-
tributions for wind speed and the Beta distribution for solar
irradiance [46], [47]. The adopted KDE uses Unbiased Cross-
Validation (UCV) for bandwidth selection in the rth derivative of

the KDE “f (r)(x).” The UCV bandwidth “h” is given by [48]:

ĥ(r)ucv = argmin
hr

UCV (h, r) (26)

UCV (h; r) =

∫ (
f̂
(r)
h (x)

)2

dx− 2n−1(−1)r
n∑
i=1

f̂
(2r)
h,i (Xi)

(27)

for r = 0, 1, 2, . . . , which minimizes the function. The wind
speed probabilistic model is based on the specifications of the
VESTAS WT model V82− 1.65 [49] with cut-in vin, rated vrated,
and cut-out vout wind speeds of 3, 13, and 25 m/s, respectively.
Wind speed data in each time interval dataset is sorted into
12 bins, where the speed range vin–vrated is represented by 10
of the 12 states. The probability of occurrence of each state is
calculated from the UCV PDF and the corresponding power of
the state is calculated from:

Pw =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ; 0 ≤ va < vin
va−vin
vrated−vin

× Prated ; vin ≤ va < vrated

Prated ; vrated ≤ va < vout

0 ; va ≥ vout

(28)

The PV output is calculated according to module Type D
in [50], and shown by (29)–(33). G is the solar irradiance
in W/m2. The natural operating temperature NOT is 43◦C,
short-circuit current ISC and the open-circuit voltage VOC are
5.32 A and 21.98 V, respectively. Current KI and voltage KV

coefficients are 1.22 A/◦C and 14.4 mV/◦C. The maximum
current IMPP and maximum voltageVMPP are 4.76 A and 17.32 V.
Each time interval data set, excluding the night-time intervals,
is divided into 10 states. Then the probability of each state is
calculated from the UCV PDF and the corresponding power of
the state is calculated from:

Tc,s = Ta +
NOT − 20◦

800
·G (29)

Is = (ISC +KI · (Tc,s − 25◦)) · G

1000
(30)

VS = VOC −KV × Tc,s (31)

FF =
VMPP · IMPP

VOC · ISC
(32)

PPV = Vs · Is · FF (33)

B. Scenario Generation From a Multinomial Distribution

A recurrent neural network is trained in [51] to predict tem-
perature and solar irradiance based only on the date of the year
and the time of the day. After that, the trained network is used
to generate random weather scenarios. The bootstrap sampling
technique is used in [52] to generate random wind scenarios.
This technique does not incorporate the temporal correlation of
the variables, and hence, would not work for PV scenarios. Awad
et al. [29] optimize BESS sizing for all permutations of wind ×
load scenarios independently, assuming the BESS starts full in
all scenarios. For each month of the year, the hours of the day (i.e.
24 hours) are divided to eight epochs of three hours each in [19],
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Fig. 3. Correlations among {GPV(t), vWT(t)} of different hours of the day
for a) Winter, b) Summer, c) Spring/fall.

and a markov-chain is trained to model wind-speed variations
within each epoch. However, the markov-chains of different
epochs are completely independent, and trained separately. The
approaches of [19], [29], [52] destroy the diurnal patterns of
data, and assume mutual independence of RES output between
time periods. In order to be able to use any forecasting method
in the hourly economic dispatch problem, the generated weather
scenarios must incorporate the correlation in weather conditions
among hours of the day.

Fig. 3(a) depicts a heat map for each of the three seasons, as
follows: the color of each pixel represents the correlation factor
between two of the 48 variables in the raw data. Variables 1–24
are the solar irradiances for hours 1–24. Variables 25-48 are
the wind speeds for hours 1–24 as well. The top left quadrant
depicts correlations among solar irradiances of different hours
of the day. The bottom right quadrant represents correlations
among wind speeds of different hours of the day. The top-right
quadrant is a transposed copy of the bottom-left quadrant, and
describe correlations between solar irradiances and wind speeds.
Green color, red color, and white color indicate positive cor-
relation, negative correlation, and no correlation, respectively.
Darker areas indicate a stronger positive or stronger negative
correlation, respectively. Solar irradiance is zero at night, and
correlations cannot be calculated for these hours. Therefore,
white color is used as an exception. For all 3 seasons, strong
positive correlation exists among the solar irradiance of different
hours within the day, and also among wind speeds of different
hours within the day. Mild positive correlation exists between
solar irradiance and wind speeds in Summer. Mild negative
correlation exists between solar irradiance and wind speed in
the Spring/Fall season. These observations prove that the proper
approach to generate weather scenarios is by sampling from a
multivariate distribution with correlation.

Vine copulas can be employed for this purpose [53], [54].
However, vine copulas require evaluating the conditional prob-
ability of each pair of variables in a multivariate distribution. In
this paper, the solar irradiances and wind speeds for 24 hours
make up 48 variables, giving rise to (48!)/(2!× 46!) = 1128
pairs. Alternatively, It is possible to employ a Gaussian copula
to generate random numbers and map each point to another desir-
able distribution [55]. This mapping is possible since the inverse
cumulative density function (CDF) of the target distribution

can be evaluated, which is true for the multinomial distribution
model discussed earlier.

Consider a multivariate probability distribution model K
whose PDF is denoted as k(X), CDF is denoted as K(X),
mean vector is denoted μk ∈ Rm, correlation matrix is denoted
Σk ∈ Rm×m, and each event X = (x1, . . ., xm) consists of m
variables. The steps to generate a set K containing |K| instances,
and matching the distribution K, are as follows:

1) Generate a population N using a Gaussian number gen-
erator. The population N consists of |N| = |K| instances,
and each instance X ∈ N consists of m variables (i.e.
elements).
� The value of µ has no effect on the final population K

because N is a proxy which will be mapped later to K.
µ = 0 = [0, . . ., 0]T can be used.

� The correlation matrix Σk is fed to the Gaussian ran-
dom number generator. In the special case that the
variables are not correlated, Σk reduces to an identity
matrix.

The generated population N is defined by (34).N denotes
the normal (Gaussian) distribution. N has a PDF denoted
n(x), and a CDF denoted N(X).

N ∼ N (0,Σk) (34)

2) For each instance X ∈ N, calculate the CDF N(X),
incorporating µ and Σk. The CDF is defined as (35) and
calculated as (36).

N(x1, . . ., xn) = P [X1 ≤ x1, . . ., XN ≤ xn] (35)

=

∫ x1

−∞
. . .

∫ xm

−∞
n(x1, . . . , xm) dx1 . . . dxm (36)

3) Using the inverse-CDF K−1(p) of the target distribution
K, calculate the values of the random numbers. The inverse
CDF is calculated as (37)

K−1(p) = min
X

{X : K(X) ≥ p} (37)

In short, a Gaussian random number generator is employed
to generate a multi-variate population which has the desired
covariance matrix. This population is, then, mapped to the target
distribution. This method is commonly known as the Sampling
by inverse-transform.

The KDE model used to fit the RES data is a multinomial dis-
tribution model. Weather scenarios are generated as explained,
and the correlations among the variables in the generated scenar-
ios are depicted in Fig. 3(b). The mild discrepancy between the
two figures is loss of information caused by discretization of the
data. The raw data of Fig. 3(a) has continuous values, while the
generated scenarios are sampled from multinomial distributions.

IV. ENHANCED RES FORECASTING

A. An Ensemble of Deep Neural Networks

Deep neural networks can model complex phenomena by
learning intricate patterns of large datasets. Recurrent neural
networks (RNN) are particularly useful for modeling long-term
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Fig. 4. RNN architecture.

autocorrelated data for applications such as time-series fore-
casting, natural language processing, and speech recognition.
A variant of RNN called Long-Short-Term Memory (LSTM)
networks is used in this paper to forecast weather parameters
for the next 4 hours based on the weather data of the past 4
hours. The same raw dataset acquired from [45] and processed
in Subsection III-A is used to train the neural networks. The raw
data is split into training and testing sets on which 36 RNNs are
trained. Out of 36 trained networks, the best 15 are extracted for
use in the case study. The RNN architecture used in all networks
is shown in Fig. 4.

B. Multiplicative Weights Update (MWU)

Consider a set I of experts who provide technical advice to
a decision maker at every interval (i.e. 1 hour) in an ongoing
process (i.e. for 1 season). The advice of different experts must be
analyzed and processed into a single decision. The final decision
can be the advice of one of the experts selected with a probability,
or the weighted sum of all expert’s advices. It is intuitive to
keep record of the benefit and harm χ brought by each expert
over time. Eventually, experts who give better advice gain more
credibility γi, and have a bigger influence on the final decision,
such as higher probability of being selected in a draw, or a bigger
weight towards the weighted sum. Littlestone et al. [56] propose
a technique for updating the credibility scores γi such that after
a number of iterations, the decision maker ends up performing
at least as good as what the best single expert alone would. This
method is employed by [57] in a matrix-game for long-term
investment planning in a power system, considering multiple
climate scenarios. To the best of the authors’ knowledge, this
method has not been used for power system economic dispatch.

In this paper, each neural network represents an expert i
whose technical advice is a forecast of the wind-speeds and solar
irradiances for the next 4 hours. The weighted average of the
forecasts is used as the basis for the economic dispatch problem.
The advantages of using the MWU in power system economic
dispatch (ED) are as follows: different forecast algorithms and
models can be used to produce forecasts, and an economic
dispatch (ED) problem with a single weighted-average scenario
is solved instead of solving a stochastic ED problem with a set
of scenarios. In order to evaluate the performance of |I| fore-
casts and update the score credit of |I| experts, a deterministic

TABLE I
CASE STUDY PARAMETERS

economic dispatch problem is solved independently for each
expert’s forecast. This can be done offline between dispatch
periods, and in parallel on separate computing hardware with
mediocre computational power.

The MWU formula is shown in [38]. χi is the cumulative
profit brought by expert i from the start t = 1 up to the current
iteration t.γi is the credibility score of expert i, which is also used
as the weight of each forecast towards the final sum. σ is called
the “width parameter,” and is used to scale down the numerator.
σ is usually assigned the largest profit theoretically possible.
In this paper, σ is set to be the revenue from selling the full
HREP’s capacity CHREP for the operation horizon t+ {0, .., 4}.
parameter ε is a hyper-parameter which is used to tune the
step-size of the update. With larger values, the algorithm takes
bigger steps, approaches its terminal values faster, however, at
the cost of worse performance (i.e. advice). At small values of
ε, the algorithm converges slower while demonstrating better
performance at the end of operation. It is worth mentioning
that values of ε� 1 may lead γ to grow to infinity, causing
computational failure. %The parameter was tuned by trial and
error, and a value of ε = 0.1 is adopted. After calculating γi for
all experts, the weights γi are normalized by (39).

γi = exp
(
−ε χi

2 · σ
)

(38)

γ̌i =
γi∑i γi

(39)

V. PROPOSED CASE STUDY

The case parameters are listed in Table I. The electricity price
πtE profile consists of three levels. The average electricity price
$137.5/MWh applies for the period [3:00-11:59], and the period
[15:00-23:59] of every day. The price falls to $104.5/MWh in the
period [00:00-02:59], and also rises to $187/MWh in the period
[12:00-14:59]. This profile aligns with the average electricity
price of $133/MWh in USA [58], and lies below the average
price in France of $200/MWh [59].

Random scenarios consisting of 2184 hours are generated for
each of the three seasons {Winter, Summer, Spring/Fall} using
the scenario generation technique in subsection III-B. A total of
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TABLE II
RAMPING POLICIES (RP) UNDER TESTING

93 weather scenarios are generated. Costs and revenues of the
Spring/Fall season are counted twice towards the total objective
function. All tests are run on the same set of generated scenarios
to ensure objective comparison. Each of the 93 weather scenarios
are passed through the 15 trained RNNs (hour by hour) to obtain
a four-hours ahead forecast at each hour. We explore solving
the HREP design problem with and without a reserve margin
of λ = 5% of available RES power, for 2 penalty levels on
excessive ramping{{200%, 500%} ×maxt{πtE}}. The penalty
factor on deviation from the HA schedule is set as 25% of the
penalty on excess ramping as well. Finally, we also explore 6
different policies (α, β) for the ramping limit. Therefore, 24
design scenarios are explored: 2 penalty factors × 2 reserve
policies × 6 ramping policies.

A ramping policy α = 0.15, β = 0.05 restrains ramping at
low power output PHREP, but grants the HREP bigger ramping
room at higher output level PHREP. Preliminary tests reveal
that this RP leads to undesirable patterns in the HREP hourly
dispatch schedule. When the penalty factor πρ̂ is relatively
low < 150%×maxt{πtE}, the HREP has to choose between
curtailing large amounts of RES or commit a strategic violation
of the ramp-up limit to rise from low power level. This is for
the purpose of reaching a high power output around hours with
high-electricity price, when such hours befall within the forecast
horizon. Therefore, the financial profit from selling electricity
at a higher price justifies paying the penalty on excess ramping.

For high penalty factors above > 400%×maxt{πtE}, sig-
nificant amounts of renewable energy are abandoned in order
to abide by the ramping limit and avoid the penalty. In fact, the
average amount of spilled RE across all seasons exceeds 25% of
the total available RE. Therefore, this policy is deemed counter-
productive, which can also be foreshadowed for all policies with
α > 0. Based on this observation, the case-study focuses on poli-
cies withα ≤ 0, and β ≥ 0.05. The ramping policies considered
in this paper are listed in Table II. This table also reports the
total area of the permissible ramping bandwidth Aρ̃ = α+ 2β,
and the smallest ramping room: min{ρ̃} = α+ β in the band.
min{ρ̃} occurs at the maximum power output PHREP = 100%.

The hourly dispatch problem is formulated in MATLAB us-
ing MATPOWER’s optimum scheduling tool (MOST) [62]. The
linear-program solver from the CPLEX suite is used for the hourly
economic dispatch problem. A dedicated model is developed
separately for the optimal sizing and design problem. As men-
tioned earlier, the RFC algorithm cannot be represented in closed
form. At the same time, the proxy value πPBESS has an indirect
effect on the BESS lifelong degradation, and therefore, πPBESS

can only be optimized heuristically. The Genetic Algorithm
is employed to solve this black-box problem. Evaluation of a

Fig. 5. Optimization of HREP design and operation.

single candidate solution involves running the hourly dispatch
scheduling problem {31 scenarios} × {3 seasons} × {2184
periods}, and also running the RFC algorithm to process the
BESS profile. The final stage of evaluating a candidate solution
is running a peripheral process to determine the oversizing factor
of the BESS. The simulations are run on a high-performance
computing cluster with 24 dedicated cores. Evaluation of a single
candidate solution requires 10 minutes on this hardware setup.
The whole optimization process requires between 48-72 hours.
The full problem formulation is described by the flowchart
in Fig. 5. Eqs. (40)–(42) illustrate the bounds of the decision
variables of the design problem.

10% ≤ ψ ≤ 90% (40)

0.1% ≤ CBESS ≤ 50% (41)

0 ≤ πPBESS ≤ 500% ·max
t

{πtE} (42)
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TABLE III
MAIN RESULTS {ψ,CBESS, πPBESS , OvFBESS, PROFIT, PCURT}

VI. RESULTS AND DISCUSSION

A. Results of All 24 Design Regulations

The optimum HREP design parameters:ψ,CBESS, πPBESS , and
OvFBESS are listed in Table III. It is observable that a higher
penalty πρ̂ always leads to a larger PV unitψ, which implies that
PV power is less volatile than wind power. Moreover, most of
the design scenarios with a higher penalty πρ̂ have a larger BESS
unit CBESS, and a smaller BESS oversizing factor OvFBESS

compared to the results with low penalty πρ̂. A higher penalty
πρ̂ also leads to a higher proxy value of BESS stored energy
πPBESS . This indicates that flexibility becomes more important
than utilizing the BESS in arbitrage, in light of the high penalty.
Given the higher proxy price of BESS energy, the BESS is
utilized less aggressively, and the BESS experiences smaller
discharge cycles. Hence, the BESS suffers less degradation DPV,
and the required OvFBESS is smaller.

Further analysis is conducted on violations of the ramping
policy (RP) and the magnitudes of HA-deviation. Table IV
provides a survey of RP violations ρ̂ and deviation from HA
schedule δ. The number (#) and total magnitude (

∑t(·)) of both
types of violation events are reported. It is noticeable that the
reserve criterion λ = 5% reduces the number and total mangi-
tude of ramping violations for most RPs. A higher penalty πρ̂
is more effective at reducing all types of violations. The resreve
criterion λ = 5% also reduces the number and total magnitude
of hour-ahead deviations δ for most RPs.

Additional details about the operation aspects of each design
are given in Table V. For each design, the actual ramping ρt

profiles of all seasons and all weather scenarios are consoli-
dated for statistical analysis. The extreme values (min, max)
are reported. The 0.5 and 99.5 percentiles {p0.5, p99.5} are also
reported since they exclude extremely rare events, which helps
conducting a fair comparison between RPs. The same analysis
is carried out for the deviation from HA schedule δt. The lower
half of Table IV shows that for all different RPs and different λ,
when πρ̂ = 500%, violations of the ramp-up limit are very rare.
Table V confirms this statistic since the maximum ramp-up ρ+

is close to the actual limit β in each row. The 99.5 percentile is
below the limit in few cases.

TABLE IV
STATISTICS OF {ρ̂±, δ±}

TABLE V
STATISTICS OF {ρ±, δ±}

The system operator selects the RP based on the reserve avail-
able from existing units. Extreme ramping data indicate how
much additional ramping reserve is required; while extreme HA-
deviation δ data indicate how much additional power-capacity
reserve is required. Table V shows that the magnitude of extreme
ramp-down events is generally larger than the magnitude of
down HA-deviation events, despite that HA deviations incur a
smaller penalty. These findings align with the findings of [1]–[5];
that is, the primary effect of RES integration in the power
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TABLE VI
COMPARISON: MWU VS. SIMPLE AVERAGE FORECAST

system is an increased requirement for load-following reserve
(i.e. ramping reserve).

It can be noticed that the reserve criterion λ = 5% yields
a small improvement on extreme ramping and HA-deviation.
Moreover, later RPs may suppress the worst (i.e. extreme)
ramping and HA-deviation events, however, small-magnitude
violations occur much more often. With a low penalty πρ̂, later
RPs suppress extreme (i.e. min, max) ramping events. With a
high penalty πρ̂, a stringent RP exacerbates extreme ramping
events. The HREP operator collects a higher overall profit with
a low penalty factor πρ̂ and with the first RPs. Hence, the system
operator is advised to adopt a small penalty with RP 6, or a high
penalty with RPs 2 or 3.

The design scenario with RP 3, high penalty πρ̂ = 500%,
and no reserve λ = 0% features the least severe worst-case-
scenario of ramping-down (ρ− = −60.2 MW/hr), one of the
least severe worst-case scenarios of hour-ahead deviation (δ− =
59.5 MW), and a relatively small number (52.3) and total mag-
nitude (396.8 MW/hr) of ramping-down violations per season.
Therefore, this design scenario is recommended for implementa-
tion. Consequently, the optimum HREP design is {ψ = 39.8%,
CBESS = 12.9%, πPBESS = 84.8%}. This corresponds to a HREP
with a PV plant of capacity 39.8MW, a WT plant of capacity
60.2MW, a BESS unit with capacity 12.9 MWh. The proxy value
of energy stored in the BESS is 84.8%× 187 = 158.6$/MWh.
The penalty on violating the RP is 500%× 187 = $935/MW/hr.
The penalty on deviation from the HA schedule is 25%× 935 =
$233.8/MW. For this HREP design, a segment from the hourly
dispatch profiles of a Summer scenario is shown in Fig. 6. The
grey line represents the electricity price πtE, referred to the right
axis. The remaining graphs are referred to the left axis.

From t = 679 to t = 682, the HREP is ramping up at the
maximum rate. As the HREP’s output P tHREP rises, the permis-
sible ramping envelope ρ̃t tightens since α < 0 (i.e. α = −0.2).
The BESS is already fully charged at t = 679, and remains
full. Therefore, the HREP spills some RE. A temporary rise
in available RE is forecasted for t = 727, with a sharp drop

Fig. 6. Operation profile for a summer season for recommended HREP.

forecasted for the following hour. Therefore, the HREP does
not export the full available RE at t = 727 in order to avoid
a steep ramp-down on the following hour. The surplus RE is
utilized to charge up the battery fully. The BESS profile reveals
that the BESS avoids charging up during hours of high energy
price. However, the BESS charges up at t = 732 despite the
high price of electricity. This is because the actual available RE
is higher than the HA commitment. Hence, the HREP abides by
its HA commitment, and uses the surplus RE to charge up the
fully depleted BESS.

B. Analysis of All Weather Scenarios in Selected Design

The hourly dispatch profiles of all 31 scenarios and 3 seasons
are consolidated, and represented by histogram plots in Figs. 7–
9. The analysis involves: RES curtailment, RP violations, and
deviations from HA schedule. For example, RES curtailment
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Fig. 7. Histogram of Pcurt for recommended design.

Fig. 8. Histogram of δ for recommended design.

Fig. 9. Histogram of ρ̂ for recommended design.

events with similar magnitude are grouped together, and the
number of occurrences in each group is reported. The proposed
REMS framework demonstrates good performance such that
events withPcurt = 0MW are the most frequent among all events
ofPcurt. Therefore, cases of Pcurt = 0MW are excluded from the
histogram plots. Similarly, events of ρ̂ = 0, and δ = 0 represent
a super-majority in their population, and therefore, are not shown
in the histogram plots. Small RE curtailment events of magnitude
up to 5MW represent 47.7% of all non-zero curtailment events.

Figs. 8 and 9 elaborate over the information given in Table V
for the specific HREP design: RP 3, high πρ̂, λ = 0%, {ψ =
39.8%,CBESS = 12.9%, πPBESS = 84.8%}. It can be noticed that
the largest violations and deviations are extremely rare events.
While the worst ramping-down event is−60.2MW/hr, 99% of all
RP violations (±) fall between −25.3MW/hr and +22.5MW/hr
(i.e. no violations of ramp-up limit). Similarly, the worst HA
deviation event is −59.5MW, but 99% of HA deviation events
fall between −25.3MW and 8.7MW.

C. Added Value of Multiplicative Weights Update

Table VI demonstrates the advantage of using the MWU
algorithm for forecasting over taking the simple average fore-
cast. The MWU algorithm helps acquiring better forecasts.
Consequently, the system commits fewer violations, and bears
less penalties. The advantage of the MWU algorithm is most
apparent when a high penalty is applied πρ̂ = 500%. In the case
of recommended design (i.e. RP 3, high πρ̂ = 500%, no reserve
λ = 0%), the MWU contributes a 2.533% cost improvement
over taking the simple average of all forecasts.

VII. CONCLUSION

This paper develops a comprehensive framework for opti-
mum design and operation of a hybrid renewable energy plant
(HREP). The advantages of the proposed framework over exist-
ing frameworks are: improved forecasting technique, suppress-
ing extreme inter-hour ramping to mitigate the volatility aspect
of RES, suppressing deviation from the HA dispatch plan to
mitigate the uncertainty aspect of RES, and finally, the use of a
proxy variable for the value of energy stored in battery storage to
optimize engagement in arbitrage versus provision of flexibility.
Improved forecasts are obtained through deep-learning, and the
novel use of the multiplicative weights update method. The
output of the hourly economic dispatch problem is used to
optimize the HREP design. The proposed operation philosophy
yields a low total RES curtailment level between 1.2% and 15%,
depending on operation limits. 99% of all ramping events fall
within the defined ramping limits. In light of the findings of
this design, regulators of the electricity sector are recommended
to specify limits on the ramping rate of RES at the 30-minutes
and 1-hour time-frames, conduct cost/benefit analysis for careful
tuning of the penalty factor on violating these ramping limits,
and adopting a dynamic ramping limit.
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