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Deep Concatenated Residual Network With

Bidirectional LSTM for One-Hour-Ahead
Wind Power Forecasting

Min-Seung Ko

and Kyeon Hur

Abstract—This paper presents a deep residual network for im-
proving time-series forecasting models, indispensable to reliable
and economical power grid operations, especially with high shares
of renewable energy sources. Motivated by the potential perfor-
mance degradation due to the overfitting of the prevailing stacked
bidirectional long short-term memory (Bi-LSTM) layers associ-
ated with its linear stacking, we propose a concatenated residual
learning by connecting the multi-level residual network (MRN)
and DenseNet. This method further integrates long and short
Bi-LSTM networks, ReLLU, and SeL.U for its activating function.
Rigorous studies present superior prediction accuracy and param-
eter efficiency for the widely used temperature dataset as well as
the actual wind power dataset. The peak value forecasting and
generalization capability, along with the credible confidence range,
demonstrate that the proposed model offers essential features of a
time-series forecasting, enabling a general forecasting framework
in grid operations. The source code of this paper can be found in
https://github.com/MinseungKo/DRNet.git.

Index Terms—Activation function, bidirectional learning, deep
learning, long short-term memory, residual networks, wind power
forecasting.

1. INTRODUCTION

HE increasing concerns about sustainable environment
and energy systems have led to the widespread growth
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of renewable energy resources such as solar and wind energy,
and significant change in the composition of the electricity
generation mix [1]-[4]. The highest annual growth of these
resources can be observed all over the world and manifests
the fast energy transition [5]. For example, the worldwide wind
power capacity has grown from 180 GW in 2010 to 622 GW in
2019 [6]. The solar power capacity has concurrently grown from
41 GW to 585 GW [6]. Solar and wind penetrations are expected
to grow further, owing to their improved economic benefits. This
paper thus uses “variable renewable energy (VRE)” to represent
solar and wind energy [7], [8].

The weather-dependent variability of these energy re-
sources [9], however, may threaten the reliability and economi-
cal efficiency of power system operations, leading to significant
social and economic losses [3], [10], [11]. Among the various
methods to handle the supply-side variability, VRE forecasting
is the most fundamental and practical front-end application. Its
accuracy facilitates a secure and economical grid integration of
the VRE [7], [10]. Compared to solar, it has been understood that
wind power is less predictable because of its highly uncertain
characteristics [7]. Besides, wind generators tend to be installed
as wind power plants rather than distributed generators, unlike
the solar generators [12], [13]. This geographical aggregation
and smoothing help reduce operating reserve requirements, par-
ticularly beneficial to the bulk power system operations. Various
studies have thus been conducted to investigate the power system
impact of the aggregated wind power and methods for improving
the wind power forecasting (WPF) [14]-[16].

WPF methods can be classified into three categories: physical
method, conventional statistical method, and artificial neural
network (ANN) based method. A hybrid one combining more
than two methods above has been investigated to complement
each other [3], [17]-[19]. The physical method builds upon the
meso-scale weather model or the numerical weather prediction
system (NWP), which represents the mathematically expressive
model based on various geographical and meteorological in-
formation [20], [21]. Though this method performs good for
medium-term forecasting periods of more than 3 hours, it has
limitations on short-term forecasting because of the difficulty
in gathering all the related geographical or meteorological
data [21]-[23].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-0147-5676
https://orcid.org/0000-0001-9486-2434
https://orcid.org/0000-0001-9659-0858
https://orcid.org/0000-0003-3726-7545
mailto:kms4634500@yonsei.ac.kr
mailto:spearw@yonsei.ac.kr
mailto:khur@yonsei.ac.kr
mailto:kwangsuklee@yonsei.ac.kr
mailto:jkkim@keri.re.kr
mailto:joe.dong@unsw.edu.au
https://doi.org/10.1109/TSTE.2020.3043884

1322

The conventional statistical method produces a linear charac-
teristic of the wind power output based on the historical data [24].
Well-known methods such as AR or ARIMA models have
been widely used to construct a linear relationship; however,
the nonlinearity of the data often compromises the accuracy
and generality of the model [17]. Though there are various
approaches to express the nonlinearity based on the conventional
statistical methods, these methods still based on the linear forms
are limited in representing the nonlinear dynamics [25]-[27]. On
the other hand, the ANN-based method can effectively represent
the nonlinear and complex features of wind speed and power
with a large number of parameters.

ANN-based forecast methods have been widely used with
the improvement of memories and arithmetic units. ANN-based
shallow models for WPF or wind speed forecasting (WSF) are
proposed with higher accuracy than physical or conventional
statistical methods [28], [29]. Hybrid models, paralleling ba-
sic ANN models with other models, e.g., Kalman filters, and
support vector machines, are proposed to boost the accuracy of
WSEF [30], [31]. The introduction of a recurrent neural network
(RNN) in deep neural network (DNN) improved the accuracy of
ANN models [32], [33]. Furthermore, long short-term memory
(LSTM) network, which is the advanced structure of RNN,
is introduced. The memory cell of LSTM helps significantly
decrease the time-series forecasting error [34]. Based on the
ability to keep the data for a long time, LSTM is used to extract
temporal features for WSF [35]. The LSTM based WSF models
outperform the ANN or ARIMA based models as demonstrated
in [17], [36]. However, these previous studies mainly focused on
obtaining the diverse information from various LSTM networks
with few LSTM cells and the benefits from the deep learning
were not fully exploited.

In general, the performance of DNN increases as the network
depth grows. However, after a specific size of the network,
overfitting issues can arise and negatively affect the overall DNN
performance [37], [38]. Two approaches have been taken to miti-
gate these problems: ameliorating the layer itself and transform-
ing the structure of DNN [38]-[42]. A representative method
of the first approach is bidirectional LSTM (Bi-LSTM) [39].
Unlike LSTM training only in a forward direction, Bi-LSTM
allows for bidirectional training to improve the performance
of sequence learning [40]. In [43], [44], Bi-LSTM networks
for WPF and WSF achieve higher forecasting accuracy than
LSTM networks. However, it should be noticed that Bi-LSTM
networks do not always outperform LSTM networks, which is
handled in Section IV of this paper. As an example of the second
approach, residual learning modifies the structure of DNN with
shortcut connections and effectively trains DNN. Variants of
residual learning have been proposed and reported improved
performance [38], [41], [42]. However, the second approach is
only limited to CNN for sequential data. Structural improvement
of RNN is desired for highly complex sequential data, as the
network needs to be deeper to handle the data.

This paper thus proposes deep concatenated residual networks
(DRNets) for RNN as detailed in Section III following the brief
discussion of DNN, RNN, and (Bi-)LSTM in Section II. DRNets
integrate the key concepts of DenseNet and multi-level residual
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network and further incorporate several new improvements,
including activation functions and fused structure with short
and long Bi-LSTMs. The adequate constitution of RNN layers
is firstly investigated when DRNets are employed. With the
constitution, the combination of ReLU and SeL.U is proposed for
activating the network. Finally, the fused concept, which exploits
results from both short and long Bi-LSTMs, is used to enhance
the peak value forecasting capability. In particular, the proposed
model is adopted for 1-h ahead aggregated WPF, useful for a
range of system operations, including scheduling, dispatch, and
operating reserve requirements [7]. The accuracy and efficacy
of the proposed forecasting model are demonstrated through
rigorous case studies using the historical wind power data from
ERCOT! and validated by the other type of Jena’s temperature
data, as presented in Section IV. Finally, concluding remarks are
provided in Section V.

II. BI-LSTM FORECASTING NETWORK

A. Deep Neural Network (DNN) and Recurrent
Neural Network (RNN)

The DNN is an improved model of ANN with multiple pro-
cessing layers to learn representations of data [46]. Technologi-
cal improvement in memories and arithmetic units enables DNN
to express high dimensional data. DNN can be understood as a
large black box function, which even trains the functional form
itself. The DNN thus embraces the complex nonlinear dynamics
of the wind power, without providing the functional structure
for each dynamic pattern. In addition, various uncertain weather
factors commonly affect the wind power plants and their power
outputs to a varying degree, which cannot be adequately captured
by the shallow networks [47]. Therefore, compared to ANN,
DNN should be more adequate for WPF with the following two
attributes: 1) Ability to learn common or shared uncertainties
and 2) Ability to learn nonlinear relationships [47].

The RNN is one category of DNN suitable for the sequence
learning. RNN receives a sequence as an input at a time and
maps the sequence with the sequential output [39], as featured
in the recent successful applications such as speech recognition,
natural language translation, and image captioning [48], [49].
The conventional structure of RNN with N layers and its un-
folded graph are shown in Fig. 1. For data input z, at time step
t, corresponding predicted output O; can be represented as the
following equations:

hi = gt (Uy -z + Wi - bl + by) (1)
Oy = g (Vi - by +by) 2)

where g} represents the activation functions of the /th layer at ¢,
and! =1,2,..., N.b, and b, are bias terms, U, Wi, and Vi are
weight matrices, and h} is the sharing state vector of /th layer.
For each time step, parameters of RNN are updated to minimize
the value of the loss function L(Oy, y;), where y; is the desired

'ERCOT also conducts WPF with the time step of 5 min for real-time
dispatch [45] This paper focuses on 1-h ahead WPF, particularly useful to cope
with the larger variation.
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Fig. 1. Conventional structure and unfolded graph of RNN with N layers.
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Fig. 2. General structure of LSTM cell.

output. Therefore, RNN can learn temporal features owing to its
sharing property coming from the state vector.

B. Long Short-Term Memory (LSTM) and Bidirectional
LSTM (Bi-LSTM)

The LSTM is an improved architecture of conventional RNN
to overcome its limitation on solving problems with long-term
dependency [50]. LSTM can alleviate the vanishing gradient
problem by adding a special hidden unit, known as a memory
unit. This unit can accumulate or remove the new inputs. Three
controlling gates determine the operation of the unit by control-
ling the flow of data, as illustrated in Fig. 2 [51]. The forget gate
discards useless memories from the state vector and the input
gate adds the necessary information from the new input and
previous net output. Finally, the new output of the corresponding
unit is determined by the output gate. Based on these operations,
LSTM unit can keep the useful data for a long duration, so it
captures the long-term dependencies better than the conventional
RNN.

Bidirectional learning can contribute to boosting the accu-
racy of conventional RNN [52]. Bidirectional learning has been
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adopted from the reasoning that the output is not a sole product
of previous inputs, but a piece of the continuous correlation.
Bidirectional RNN (BRNN) trains its parameters in both forward
and reverse paths to understand the context. This training process
can capture the features or patterns in bidirectional aspects,
whereas RNN is trained in the forward-path only. BRNN showed
higher accuracy and performance in sequence learning than
conventional RNN, especially in speech processing tasks [52].

As represented in Fig. 3, Bi-LSTM incorporates the bidi-
rectional concept into LSTM. The forward layer of Bi-LSTM
updates the parameters in the unit as does the LSTM network.
On the other hand, LSTM cells in the backward layer compute
the derivative of the propagated errors in the forward layer. The
operation of a single LSTM cell h in a backward layer can be
described as follows [39], [51]:
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where €/, is the backpropagated error of the output on cell / at
time ¢, IV is the set of all units, U and W denote weight matrices,
and C is the set of cells. J is the derivative of error regarding
the gates of the cell, and y is the output of each gate, where
subscripts g, s, f, and ¢ represent input gate, state, forget gate,
and output gate each. Especially, cell output y,. is determined
by tanh function, while the other outputs are calculated using
a sigmoid function. sy, is the state value of h, and E? is the net
output error at time ¢. According to the operation of LSTM unit
in the backward layer, Bi-LSTM can adjust the parameters to
lessen the propagated errors in the forward layer.

III. PROPOSED RESIDUAL LEARNING
A. Conventional Residual Learning

Though stacking layers enables DNN to enrich the level of
features, other problems may arise [53]. At the early stage of
DNN, a vanishing/exploding gradient problem may adversely
affect the convergence of DNN during the training process.
Degradation and overfitting are the newly exposed problems
after resolving the convergence issues. The radical root of these
problems is the network not adequately structured to train its
parameters. Degradation is the retrogression of training related
to the network depth. As the network depth increases, training
error of the network saturates and then increases rapidly. On the
other hand, overfitting is related to validation or test. Overfitting
occurs as the parameters are updated for the training dataset
only; the performance of the trained network on test dataset
thus decreases.

The most fundamental way to avoid these problems is to
secure more training data or to reduce the size of networks.
However, there are some limitations on boosting the size of
training data in reality, and reducing the size of networks can
degrade the adaptability of networks to the other types of data.
Therefore, various methods, such as dropout strategy and pool-
ing strategy, have been proposed to solve the problems. Dropout,
one of the most successful regularization methods, reorganizes
the network only with strongly related connections by evaluating
each unit with random masking during the training process [54].
In addition, pooling strategy can reduce the network features by
mapping more than 2D to a single output [55]. However, the
noise added on RNN layer using the dropout can be amplified
with the depth of the network. It is thus advised that the dropout
should be applied only for shallow RNN [56], [57]. Pooling
strategy is not widely adopted for RNN, because RNN is the
sequence pooling process in itself [58], [59].

Among the countermeasures, residual learning has been
widely used due to its simplicity and effectiveness [60]. The
basic idea of the residual learning connects shortcuts within
the network. The desired mapping of the stacked layers in
conventional DNN can be represented as

H(x) = F(x) (®)

where H (z) is the desired mapping of stacked layers, F denotes
the pure stacked layers, and x is the input of the stacked layers.
In case of the residual, the representation of mapping is different
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from one of the conventional DNN as
H(x) = F(z) + x. 9)

The addition of z in (9) represents that the residual learning can
be regarded as a feedforward network. When the whole network
is composed of n stacked layers, conventional DNN is just an
expression between z and H,,. Therefore, the total network aims
to lessen H,, — x. On the other hand, if the residual learning
is applied to each stacked layer, ¢th stacked layer optimizes
its weight to drive H; — H;_1 to zero, where 1 = 1,2,...,n.
Therefore, the network with the residual learning is easier to op-
timize weights compared to the conventional network, because
the residual network can be regarded to divide the optimization
tasks. In addition, the final output of the residual network can
be represented as Fy, (Hp—1) + - - - + Fi1(z) + 2, while the out-
put of the conventional network is 7y, (Fp,—1 (- - - Fi(x))). This
shows that the residual network can maintain the input flow, not
stuck in the training details.

Accuracy can further be improved by modifying the residual
learning with various strategies [42], [61]-[63]. Multi-residual
network incorporates additional shortcuts on ResNet. The iden-
tity mapping of the network can be multiple levels [61]. Another
approach to reform the residual network is the fused network.
Fused network stacks the layers in both vertical and horizontal
directions, which resembles the ensemble approach [62]. Mul-
tilevel residual network (MRN) and DenseNet are the improved
residual learnings widely used in CNN. Instead of identity
mapping, MRN uses 1D CNN mapping based on the hypothesis
that the residual mapping of the residual network can be opti-
mized [63]. DenseNet connects all the layers by concatenation,
unlike the other structures whose layers are connected through
addition [42]. However, adding layers of MRN is limited in
improving the WPF performance, compared to concatenation.
Unlike MRN, the size of the network increases geometrically
with the increase of layer as DenseNet concatenates all the
layers.

B. Proposed Residual Learning

To overcome the limitations, this paper proposes another
structure of residual learning, which combines the strengths of
MRN and DenseNet. The key concepts of the proposed residual
networks (DRNets) are shown in Fig. 4. For MRN with stacked
layers and total 2n layers, the output can be represented as
follows:

Hp = Fo(Hp-1) + Act(J(Hn-1)) + Act(J(z)) (10)
where J(k) represents the output of 1D CNN for input k,
and Act(z) denotes an activated output for input x. In case of
DenseNet, the output of the ith stacked layer becomes

Hi=Fi(Hia) [| Hica [ Hiz || - | 2 an
where || means the concatenation. Therefore, the output of the ith
stacked layer with DRNets can be expressed as the combination
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Key concepts of (a) DRNet-1, (b) DRNet-2, (c) DRNet-3, and

of (10) and (11) as follows:

Hi =y, || Act(J(y:)) || Hi—1 || = : DRNet-1
Hi=yi || Act(J(y:)) | Hi1 | =
|| Act(J(z)) : DRNet-2

Hi=yi || Act(J(yi) || Hioa || 2 (12)
| Act(J(Hi-1)) : DRNet-3
Hi=yill Act(J(yi) || Hia || 2
| Act(J (x)) || Act(J(H;_1)): DRNet-4
yi = Fi(Hi-1) (13)

where y; is the pure output of ¢th stacked layer.

Structural formulations in (12) present that DRNets use 1D
CNN mappings and the activation functions similar to MRN,
but do not connect all the outputs from residuals. At the same
time, the shortcuts gather through concatenation like DenseNet.
Therefore, DRNets can nurture both the effective activation of
MRN and the preservation of data of DenseNet. In addition,
the total number of parameters is maintained similar to those of
MRN and DenseNet because the numerical increase of param-
eters by concatenation is covered by fewer links of the residual.
Another feature of DRNets differentiated from the others is that
the inputs of the concatenation include not only y; but also
activated y;, which is expressed as Act(.J(y;)). In turn, DRNets
perform well with higher parameter efficiency than the other
residual learnings.
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Fig. 5. Structure of the proposed forecasting model using DRNet-1 and
Bi-LSTM layers.

C. Additional Improvements: Peak Value Forecasting and
Confidence Interval

Peak load forecasting has been regarded as an essential tool
to make decisions related to the power system operations [64]—
[66]. Because the wind generation can be considered as negative
load in the steady-state operations, predicting the peak value of
wind power outputs should particularly be beneficial in estimat-
ing standby capacity of the power system and load rates with
capacity factors, i.e., useful information for unit commitment
or deploying quick start generators. With the increase of wind
power penetration level, the importance of the accurate peak
value forecasting should increase.

To further improve peak value forecasting capability, the
proposed model adopts the fused concept, as illustrated in Fig. 5.
The horizontally stretched size of RNN layers is related to the
period during which the layers can learn best. Horizontally long
RNN has strength in apprehending long-term tendencies while
short RNN learns short-term tendencies well. The fused net,
composed of long and short Bi-LSTM networks, can nurture
both strengths. A single Bi-LSTM layer at the end of the net-
work determines the participation of long and short Bi-LSTM
layers, which is related to the impact of short and long-term
uncertainties on the output. Therefore, the fused concept helps
the model better analyze the sequence and improve the peak
value forecasting of wind power.

Types of activation functions influence the forecasting per-
formance. One of the most widely used activation functions
is ReLU, which has significantly improved the performance
of deep neural networks [67]. However, ReLU has a serious
problem known as a dying ReLLU problem. When ReLLU activates
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Fig. 6. Overall process of computing probabilistic intervals.

alarge portion of hidden units as 0, the gradient-based algorithms
cannot update the weights. In order to solve this problem, leaky
ReLU and eLU were proposed [68], [69]. The SeLU or scaled
exponential linear unit has one more tunable parameter than eLU
[69]. On top of a tunable parameter « of eLU, SeLU has another
tunable parameter A, which can be represented as

m if m > 0,

. 14
ae™ —a ifm <0 (14)

SeLU(m) = A{

The SeLU not only avoids the dying ReLLU problem but also
offers a self-normalizing characteristic because the activation of
a normally distributed input through SeLU converges towards
the normal distribution [69], [70]. Therefore, SeLU helps train
deep networks without gradient problems. Activation functions
of the proposed model are divided into two categories. The first
one is the function used for activating 1D CNN layer, and the
other is used for activating Dense layer. As shown in Fig. 5, the
proposed activation functions (called as the final ReLU), take
SeL.U for the former category and ReLU for the latter.

Because there always exist forecasting errors and uncertain-
ties, quantifying the confidence interval about the predicted
value should be helpful for more reliable operation of the power
system [71], [72]. As represented in Fig. 6, the overall process
of obtaining stochastic or probabilistic intervals (PIs) consists of
4 steps; Classification, Gaussian Modeling, PI Estimation, and
Set Update. From the training results, elements specified by the
predicted values in a training set, 7', and the prediction error
et™ =y — ' can be obtained. If §J'" is matched to x-axis, and
el to y-axis, each element can be expressed as a form of ('",
efm). According to the value of 7', the elements can be classified
into m sets. The value m should be selected so that each set Ay,
has sufficient elements for assuming Gaussian distribution. If
we let By, represent the elements of Ay, ep, are the prediction
errors of By, and k € [1,2,...,m], Aj can be assumed to follow
Gaussian distribution with Efep,]| and variance o, by 2 ie.,

Ak ~ N(Elep,],0cp, 2). For ith predicted value in the test set,
the prediction error e;¢ can be estimated by the corresponding
Gaussian distribution of the training set. Assuming that §!¢ lies
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TABLE I
SUMMARY OF THE TEST SETTINGS
Training method Adam Batch size 40
Loss function MSE, MAE, MAPE | Input sequence length | {24}
Training strategy ReduceLROnPlateau

in the x-axis range of A,,, an stochastic interval [ ée about the
forecasting error with 100(1 — 3)% confidence level can be

expressed as
15 = [Lif (An), Ui (An0)] (15)

where the lower bound L;” and the upper bound U;” with
standard score z1_g/7 can be calculated as

Llﬂ :E[EBM,L] —2175/21/0'537“2 (16)
U7,B = E[GBW] + Zl_ﬁ/21 /UeBn,z‘2. (17)

Finally, the confidence interval about the wind power forecasting
can be obtained as below:

L =[5 + L% ;" + U], (18)

The above equations denote that the confidence interval
for specific test prediction data is determined by the interval
of corresponding set, which is initially composed of training
prediction data and error. After the real value of the test set,
y;'€, is revealed, the next prediction error set Ay i1 is up-
dated with ef® = y;*® — 1;"°. Therefore, the corresponding set
Apiv1 = [Ani, (4%, €l°)], and the other sets Ay ;11 = Ag;
fork € [1,2,...,m] N [n]. Then the new test confidence inter-
val is determined based on the new test prediction value, yH_ltE,
and the updated m sets.

IV. CASE STUDY

A. Test Settings

This paper presents 1-h ahead forecasting on the wind power
dataset of ERCOT and Jena’s temperature dataset. Each dataset
is composed of hourly average data with a single feature without
any other variables. The values of each dataset are preprocessed
to fit in the range between 0 and 1, for example, by MinMaxS-
caler in Python [73]. Each dataset is then divided into training,
validation, and test sets. The training set updates the parameters
of the forecasting models, and the validation set selects the
best-performed model. The test set evaluates the performance
of the selected model. In order to optimize the model during
the training process, three widely used metrics, including MSE,
MAE, and MAPE, are employed. Note that all the metrics are
calculated based on the preprocessed data. Test settings are
summarized in Table I.

The overall timeline of the proposed WPF is illustrated in
Fig. 7. In this paper, update time and forecasting horizon are set
to be 1-h to assist, e.g., the hourly reliability unit commitment.
For k-h WPEF, all the corresponding data would be collected at
(k — 1)-h plus data acquisition time. At the same time, k-h wind
power output forecasting is performed; thus, the actual lead time
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(k-1)h kh (k1) h
: Forecasting : Forecasting
E Lead time Forecasting Horizon
; - . = Resolution
; Update time ; .
T_ Data acquisition time _T : Update time = Ih
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Fig. 7. Timeline for the proposed wind power forecasting.
TABLE II
PERFORMANCE OF THE PROPOSED NETWORK ON JENA’S
TEMPERATURE FORECASTING
. Training Validation
Depth Il?::ﬁ?;l Error Error
& MSE MSE MAE MAPE
(x107%) | (x107%) | (x107?) (%)
Pure Bi-LSTM 9.1526 8.9575 2.2670 4.308
1 DenseNet 2.4632 2.4221 1.1371 2.2106
DRNet-3 2.0064 1.9879 1.0047 1.9118
Fused DRNet-1 1.8318 1.7953 0.9511 1.8277
Depth Residual Test Error Mean of the
Learning MSE MAE MAPE largest
(x107*) | (x107®) (%) 10% Error
Pure Bi-LSTM 8.3107 2.1950 3.9463 0.4680
1 DenseNet 2.2763 1.0978 2.0041 0.2244
DRNet-3 1.8942 0.9863 1.7673 0.2313
Fused DRNet-1 1.7143 0.9310 1.6750 0.1586

should be 1-h minus data acquisition time. The forecasting reso-
lution is the same as the forecasting horizon based on the hourly
dataset. Higher resolution or intra-hour forecasting could be
achieved with the shorter update time. The forecasting horizon
could also be extended for various applications in operational
planning.

B. Temperature Forecasting Results

To secure the objectivity of the proposed model, we have
conducted forecasting experiments on the temperature dataset
of Jena in Germany, which has been widely used for RNN
performance test [74]. The temperature data embeds variability
and imposes forecasting uncertainty, similar to the wind power
data. The experiments are based on the data of 70037 hours
from 2009 to 2017 with 60%, 30%, and 10% data division
for training, validation and test set. Table II represents the
experimental results of the 1-h ahead temperature forecasting.
DRNet-3 shows better performance than DenseNet in all metrics
except the peak value forecasting. Fused DRNet-1 improves both
overall performance and the peak value forecasting more than
DRNet-3. Moreover, the standard deviation of errors with fused
DRNet-1 is 1.1957, which is smaller than 1.2085 and 1.3447
with DRNet-3 and DenseNet, respectively. These results imply
both the improved performance and the generalization capability
of the fused DRNet for a time-series.

Training and Validation MSEs, according to epochs, are
shown in Fig. 8 and reveal the training processes of the networks.
Because the overall training processes of the temperature and
wind power data are similar, the training curves of the tempera-
ture data are only included in this paper. In general, the validation
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Fig. 8.  Training curves of various networks for temperature forecasting.
1.38 T r
~4-ResNet
—+Multi-residual
1.36 ~e-Multi-level
—DenseNet
—»=DRNet-1
1.34
=-DRNet-2
@ -#-DRNet-3
0 1.32 ~&-DRNet-4 H
=3
% /
S 13
(=4
S
‘a /
212801
t—
>
I’ 7L'*E| 11-depth DenseNet
1.26 y =
1.24 E
7-depth DRNets
- 1-depth DRNet-3
1
0.5 1 15 2 2.5 3 35 4 45
Number of Parameters «10°
Fig. 9. Parameter efficiency of various residual learnings.

errors of DRNet-3 and fused DRNet-1 generally converge at
between epoch 5 and 10. Therefore, the user-selectable early
stopping strategy may be an option to expedite the training
process when the validation error does not decrease for the
predetermined epochs. However, this paper excludes the early
stopping strategy to prevent early termination and to use the
generally trained model.

C. Wind Power Forecasting Results

The wind power dataset is drawn from the hourly total wind
output of ERCOT for 26311 hours from 2016 to 2018 [75]. The
data displays the aggregated power output from all the wind
generators in Texas. Total installed wind generation increased
from 16246 MW to 22607 MW, and the maximum output of
wind power was 19099 MW. The largest wind output percentage
of the load was 54.6%, and the biggest percentage change of
output was 280.6%. Among overall 26311 hours data, 76%,
16%, and 8% divisions are used for training, validation, and
test set, respectively.

1) Residual Learnings: The first task of the case study is
to examine WPF capability of the proposed residual learning.
Each residual learning was applied to Bi-LSTM networks with
the depth of 7 and 11, and all the activation functions are set as
SeLU. Overall WPF results are shown in Fig. 9 and Table III
For 7-depth network, DRNet-4 outperforms the other methods.
Among the conventional methods, the degradation for 11-depth
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TABLE III
WPF PERFORMANCE OF PURE BI-LSTM NETWORK WITH VARIOUS RESIDUAL LEARNINGS
Depth Residual Total Average Time Training Error Validation Error Test Error
Learning Parameters per Epoch MSE MSE MAE MAPE MSE MAE MAPE
(sec) (x107%) (x1079) (x1072) (%) (x107%) (x1072) (%)
MRN 54065 201.9 1.18117 1.24329 2.61980 9.11419 1.18727 2.52558 10.26104
DenseNet 81969 195.7 1.24487 1.27612 2.66144 9.43301 1.17232 2.53073 10.79754
7 DRNet-1 113553 199.4 1.21269 1.25607 2.63539 9.35526 1.13836 2.47652 10.47095
DRNet-2 150481 202.1 1.20976 1.24331 2.62894 9.32037 1.16926 2.52468 10.53595
DRNet-3 141361 202.9 1.19606 1.24451 2.62116 9.20104 1.14092 2.48192 10.31139
DRNet-4 181361 206.2 1.16272 1.24182 2.61316 9.09991 1.14079 2.46825 10.30897
MRN 81265 331.6 1.31593 1.37610 2.78542 9.83265 1.36487 2.75777 11.53130
DenseNet 238129 310.6 1.23790 1.26643 2.65208 9.55489 1.15059 2.49591 10.73446
1 DRNet-1 187569 289.5 1.23054 1.27148 2.65067 9.33239 1.15231 2.50099 10.55659
DRNet-2 305009 319.4 1.18092 1.24199 2.62390 9.21233 1.17948 2.51308 10.12464
DRNet-3 308497 3133 1.17695 1.23464 2.60832 9.12849 1.11899 2.44881 10.17813
DRNet-4 400721 329.6 1.16114 1.24397 2.61758 9.14447 1.18986 2.51014 10.01778
TABLE IV
WPF PERFORMANCE OF LSTM AND BI-LSTM NETWORKS WITH DRNETS
Residual Total Training Validation Error Test Error
Layers Learning Parameters Error
MSE MSE MAE MAPE MSE MAE MAPE
(x10~9%) (x10~%) (X107?) (%) (x1079%) (Xx1072) (%)

7LS DRNet-3 161841 1.20351 1.25982 2.63709 9.10769 1.12553 2.45946 10.14412
7 Bi 141361 1.20711 1.26156 2.64669 9.34005 1.14719 2.49229 10.56358
7 7LS 201841 1.19007 1.25889 2.64172 9.21327 1.16376 2.50653 10.41381
5 LS, 2 Bi DRNet-4 191601 1.18835 1.25452 2.63814 9.30516 1.6654 2.50714 10.67459
1LS, 6 Bi 189553 1.19838 1.25934 2.64239 9.19154 1.13319 2.46083 10.31093
7 Bi 181361 1.19228 1.25795 2.64284 9.48049 1.18828 2.53505 10.89894
11LS DRNet-3 337169 1.21182 1.28145 2.67182 9.32518 1.18351 2.52029 10.47664
1 11 Bi 308497 1.17695 1.23464 2.60832 9.12849 1.11899 2.44881 10.17813
11LS DRNet-4 429393 1.19753 1.26338 2.65131 9.35542 1.18545 2.53408 10.75092
11 Bi 400721 1.16114 1.24397 2.61758 9.14447 1.15986 2.51014 10.01708

network does not occur in DenseNet only. The others performed
well at 7-depth but a great increase of error can be observed at
11-depth network. On the other hand, DRNets showed superior
forecasting accuracy to conventional methods. Though there
is a slight increase in the error at 11-depth, DRNet-4 showed
the lowest error at 7-depth. DRNet-2 and 3 not only showed
good performance but also degradation did not occur. Especially,
DRNets in 7-depth network showed higher accuracy than the
11-depth network with DenseNet, even with less number of
parameters.

The better performance of DRNet-4 at 7-depth is owing to all
the residual mappings in DRNet-4 containing spatiotemporal
data, using both identity mapping and 1D CNN layer. However,
overfitting occurred in 11-depth network with DRNet-4 as the
number of parameters increases excessively. On the other hand,
DRNet-3 has relatively high validation error in 7-depth, and
the lowest error in 11-depth network. The difference between
DRNet-3 and 4 is 1D CNN mapping of the initial input, which
highly contributes to the increase of parameters. As shown
in Table III and Fig. 9, the margin of parameter increase in
DRNet-3 is much lower than one in DRNet-4, which leads to the
prevention of overfitting or degradation. This can be identically
stretched to DRNet-2 and 3 for deeper networks. In other words,
the deeper the network is, the more 1D CNN mapping should
be removed.

2) LSTM and Bi-LSTM Layers: The second task is to identify
the impact of substituting Bi-LSTM for LSTM with DRNet-3
and 4. When the number of layers is 7, the network with 7
LSTM and one mixed with LSTM and Bi-LSTM showed the
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Fig. 10.  Validation loss of various layer combinations with DRNets.

best performance each for DRNet-3 and DRNet-4, as shown in
Table III. In case of 11 layers, the network with 11 Bi-LSTM
surpassed the others. Fig. 10 shows the validation errors for
various combinations of layers according to the network depth.
7-depth networks showed similar performance regardless of the
type of the layers. However, the validation error of the 11-depth
LSTM network increases with the increase of depth, while one
of the pure Bi-LSTM network decreases. This is owing to the
improvement in the parameter optimization of the backward
layers in Bi-LSTM. As the network becomes deeper and more
complex, Bi-LSTM layers can help to prevent overfitting and
degradation, and to increase the accuracy of WPF.

3) CNN Layer and Activation Functions: In order to verify
the effectiveness of employing 1D CNN layer in the residual
connection, DRNets and DRNets without 1D CNN layers are
evaluated. In case of DRNets without 1D CNN layers, the
residual connections remain with SeL.U functions. According
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Comparison of validation MSEs with DRNets for various activation

to the test result of Table III, 11-depth DRNet-3 and 7-depth
DRNet-4 are used for comparison. The simulation results show
that the DRNets with 1D CNN outperform DRNets without
ID CNN, as represented in Fig. 11. All the validation and test
errors except the test MAPE of DRNet-4 are lower than those
of DRNets without CNN. The next step is to determine the
activation functions applied to 1D CNN and Dense layers. For
the conventional activation functions, WPF results of the con-
ventional functions, final ReLU, and final SeLU are compared.
Final ReLLU used SeLU for activating 1D CNN and ReL.U for
Dense layer and vice versa for final SeLU. Fig. 12 shows the
comparison of validation MSEs according to activation func-
tions. For conventional functions, ReLU has the lowest average
error for both DRNet-3 and 4. However, SeLLU recorded the
lowest errors for specific experiments, though the deviation of
the results was large. Final ReLU can nurture both strengths of
ReLU and SeLU. The average MSEs of final ReLU were lower
than those of ReLLU. In addition, the best result showed better
performance than one of SeLU. Overall deviations of final ReLU
were larger than those of ReLU, but much lower than those of
SeLU.

4) Fused Concept: WPFresults of our best single model, i.e.,
11-depth Bi-LSTM networks with DRNet-3 and final ReLU,
are shown in Fig. 13. DRNet-3 showed better performance
in forecasting low peak value than DenseNet, but has lower
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Fig. 13.  WPF results and peak values forecasting of DenseNet, DRNet-3, and
fused DRNet-1.

accuracy in forecasting high peak value. The fused concept
can help to improve peak value forecasting. Therefore, the
final model fused the short and long Bi-LSTM networks with
DRNet-1, as the fused net highly increases the parameters. As
shown in Fig. 13, fused DRNet-1 highly improves not only the
high peak value forecasting but also the overall errors. The
mean of the largest 10% errors for DRNet-3 was 275.2331
MW, which was higher than 247.0299 MW of DenseNet. Fused
DRNet-1 improved these values to 199.4232 MW with almost
the same standard deviation. Therefore, we can conclude that
the Bi-LSTM forecasting model with final ReLU and fused
DRNets enhances the overall WPF performance and peak value
forecasting as it has strength in adjusting the data flow so that it
can adequately optimize the parameters of DNN.

In order to verify the efficiency of our proposed mod-
els, Diebold-Mariano (DM) tests were conducted for ResNet,
DenseNet, DRNet-3, and fused DRNet-1 [76], [77]. Results of
DM tests based on the squared-error loss are shown in Table V
. DM tests comparing ResNet to the other models show that the
improvements made on DenseNet and DRNets are significant
since the absolute values of DM are larger than 1.96, which
is z score of 5% significance level in the normal distribution.
Comparing DenseNet and DRNets, both DRNet-3 and Fused
DRNet-1 have higher forecasting accuracy than DenseNet. The
observed differences between DenseNet and Fused DRNet-1 are
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TABLE V
RESULTS OF ABSOLUTE VALUE BASED DM TESTS
ResNet & ResNet & ResNet &
DenseNet DRNet-3 Fused DRNet-1
DM -2.5230 -4.3205 -3.0741
p-Value 0.0180 0.0002 0.0022
DenseNet & DenseNet & DRNet-3 &
DRNet-3 Fused DRNet-1 | Fused DRNet-1
DM -1.5051 -3.0460 -0.1058
p-Value 0.1310 0.0024 0.9124
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Fig. 14.  Stochastic interval of WPF result with the fused model.

significant, with the absolute value of DM = 3.0460 > 1.96. On
the other hand, the absolute value of DM between DenseNet and
DRNet-3 was 1.5051, which is less than 1.96. Therefore, the
observed differences between DenseNet and DRNet-3 are not
as significant as those between DenseNet and Fused DRNet-1,
but still have meaningful value, because the value is higher than
1.282, whichis z score of 10% level. DM test results on DRNet-3
and Fused DRNet-1 indicate that the forecasting accuracy of the
two models can vary, according to the stochastic interference.
However, it should be noticed that the test results represent the
overall performance, not the peak value forecasting ability.

5) Stochastic Intervals: The prediction error of WPF with
the fused model and the corresponding PIs with 95% and 99%
confidence levels are represented in Fig. 14. Initially, the training
prediction errors were divided into m sets in accordance with
the forecasted values. The value of m is selected as 8, so that
each set has more than 100 elements, i.e., n(Ay) > 100. Though
independent random variables follow Gaussian distribution with
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TABLE VI
EVALUATION OF PROBABILISTIC FORECASTING METHODS
Forecasting Proposed Method SB Method
Method 95% 99% 95% 99%
PICP (%) 92.51 96.81 85.16 88.08
PINAW (%) 12.86 16.92 7.69 10.12
CWC 57.5 67.5 1061.2 | 2389.3
Pinball Loss 10.8217 14.1298
Average CRPS 0.0179 0.0201

n(Ay) > 30 by the central limit theorem, n(Ay) > 100 is cho-
sen to get higher forecasting accuracy for more reliable power
system operation [78]. Each set was transformed into a separate
Gaussian distribution function, which is continuously updated
with the test data. Note that the objective of the probabilistic
forecasting in this paper is to get the range of the prediction error
for test data. For given WPF value of test data from DNN, each
data can be classified into Ay according to the forecasted value.
PI for the test data is determined based on the mean and variance
of the corresponding set, and the set is updated by merging the
test data. For example, if the forecasted value of the first test
data, g}{e, is included in A;, PI about the forecasting error is
determined as [L1”(A; 1), U1”(A;1)], where A; 1 is same with
Aj. After the real value is revealed, the forecasting error, eﬁe,
can be calculated and A, ; is updated to A; o, which contains
[9i¢, el] as a new element. Meanwhile, the other sets except for
Aj remain the same as the previous.

In order to compare the performance of the proposed prob-
abilistic forecasting to the standard bootstrap (SB) method,
PI coverage probability (PICP), PI normalized averaged width
(PINAW), and coverage width-based criterion (CWC) are
adopted as performance indices [79]. Additionally, Pinball loss
is calculated to evaluate the overall performance. Pinball loss can
guarantee the probabilistic forecasting performance as a com-
prehensive index, which simultaneously evaluates the reliability,
sharpness, and calibration. Physical meanings and mathematical
equations of PICP, PINAW, and CWC can be found in [80], and
Pinball loss used in this paper for certain S can be formulated
as follows:

(Wre—wi)s e >l
(whe — W) (1 - B) if Wi < wie,

(19)
where estimated interval width, Wite, and the difference between
prediction error and historical prediction error mean, w'®, are
defined as follows:

Pinball Loss = Z

%

Wi =z21_52,/02, ., (20)
wi® = |e; — Eleg, ]l 21

Note that the Pinball loss provided in Table VI is the average
of the Pinball values with 8 = 0.01,0.05,0.1,0.2,...,0.9. Two
hyperparameters in CWC are set to a value of 50 for 7, and
the confidence level, 1 — (3, for p. As shown in Table VI, the
proposed probabilistic method shows higher PICP than the SB
method for both 95% and 99% confidence level, which implies
that the actual values lie in the proposed range with higher
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TABLE VII
WPF PERFORMANCE TESTING USING VARIOUS FORECASTING METHODS

Forecasting Test Error

Method MSE MAE MAPE

(x107%) | (x107*) (%)
Naive Algorithm 20.313 11.598 34.797
ARIMA 9.4250 7.1411 29.270
Gaussian Process 1.8906 3.2035 11.797
SVM 1.5631 2.8301 11.730
3-Layer RNN 1.3211 2.5011 10.016
Fused DRNet-1 1.1251 2.4540 9.4041

possibility. Though PINAW of the proposed method is higher
than one of the SB method, lower values of CWC and Pinball
loss imply that the proposed method can derive more valid PI
than the SB method.

The average continuous rank probability score (CRPS) in
Table VI and the reliability diagram with sharpness in Fig. 15
affirm the high reliability of the proposed method. The reliability
diagram of the proposed method is more adjacent to the perfect
reliability curve than one of the SB methods, especially for
the forecast probability larger than 0.8. As remarked in [81],
[82], small deviations from the diagonal with small bias in
the sharpness verify the reliability of the proposed method. In
addition, smaller CRPS of the proposed method than the SB
method indicates the adequacy of the Gaussian distributions
postulated from the proposed method: the CRPS calculation for
the Gaussian distribution is well documented in [83].

6) Forecasting Performance Comparison: The WPF perfor-
mance of the proposed method is compared to other methods,
including the naive algorithm, ARIMA, Gaussian process (GP),
Support Vector Machine (SVM), and 3-layer RNN model and is
summarized in Table VII. The naive algorithm is one of the sim-
ple physical forecasting methods, and the combination of a sea-
sonal and hourly naive algorithms is used for comparison [84].
As one of the conventional statistical methods, ARIMA is used,
where the structure is determined to be ARIMA(2,0,1) based on
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the autocorrelation and partial autocorrelation plots [85]. The
GP and SVM are representative examples of shallow machine
learning methods. For the GP, Matern and White kernel are
combined within a Bayesian framework, and support vector
regression model is used for the SVM [86], [87]. The 3-layer
RNN represents a relatively small size of ANN.

As shown in Table VII, the machine learning methods excel
the physical and conventional statistical methods for all three
metrics. The DM values of GP with the naive algorithm and
ARIMA are —12.9265 and —11.7738 each. Thus, the GP shows
even higher performance than the naive algorithm and ARIMA.
At the same time, SVM and 3-layer RNN show lower test errors
than GP. DM values of SVM and RNN with GP are —6.0173 and
—8.9571, which denotes the meaningful observed differences.
Though RNN performs slightly better than SVM, there are no
significant differences between the two models because DM
value between SVM and RNN is 0.3362. It is remarkable that
the proposed model has improved the forecasting accuracy of
the SVM and 3-Layer RNN significantly. DM values of fused
DRNet-1 with SVM and RNN are —2.5514 and —3.0518.
Forecasted wind power profiles using all methods are shown
in Fig. 16. It is noteworthy that the profiles with lower accuracy
show longer time delay or more massive peak value error than
those with higher performance.

D. Additional Use of Wind Speed Data

In order to investigate the impact of incorporating weather
data explicitly, for example, wind speed data as an input, ad-
ditional experiments on the wind speed and the ERCOT wind
power output data from 2016 to 2017 are conducted. Wind power
capacities by site in ERCOT are obtained from [88] and wind
speed data is drawn from [89]. The actual wind speed input set
for the aggregated WPF is obtained by calculating a weighted
arithmetic mean of hourly wind speeds by regional wind power
capacities with reference to the total capacity. For the impact
analysis, the global attention mechanism is adopted and the
location-based attention scores are compared as detailed in [90].
The WPF test results based on attention mechanism and wind
speed data are shown in Table VII. The attention scores are
represented in Fig. 17 where the x-axis indicates the input vector
with 24 hours of length, and the attention scores on y-axis mean
the average of intensified weights for the vector at a specific hour.
When the attention mechanism is applied to the network only
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TABLE VIII
IMPACT OF WIND SPEED DATA AND ATTENTION MECHANISM ON
WPF TEST RESULTS
Wind Speed Attention Test Error
Data Mechanism MSE MAE MAPE
(x107%) | (x1072) | (%)
Without Without 1 o708 | 29634 | 93701
Mechanism
Data With
. 1.6451 2.9391 9.2909
Mechanism
With Without | 7063 | 3.0495 | 17.048
Mechanism
Data With
. 8.6707 7.2192 20.398
Mechanism

with wind power data, the accuracy of the network increases, as
indicated in Table VIIL. This is owing to the attention weights,
which increase the impact of the more relevant inputs.

On the other hand, the accuracy of the network using both
wind power and wind speed data decreases with the attention.
Though the scores of the wind power are similar to those only
using wind power data, the scores of 3 hours, 6 hours, and 11
hours ahead wind speed data have turned out to be much higher
than the others. Therefore, the performance of the network using
both data is dominated by wind speed data at specific points,
rather than the sequence of wind power or wind speed. The
following observations are then drawn from the analysis:

1) Though the raw wind speed data is obtained from a reli-
able source and has been preprocessed to be an adequate
pair with the wind power data, the wind speed was not
measured at the same sites for the aggregate wind power
forecasting. There are also unknown (or unexplainable)
dynamics on top of the underlying physics between the
wind speed and output power, which indeed requires an
even higher dimensional model [91]-[93].

2) Incorporating the wind speed data thus increases the uncer-
tainty and may degrade the overall performance. Focusing
on the wind power sequence with attention mechanism
draws higher performance for the 1-h ahead WPF as the
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wind power data assumes all of the dynamics the proposed
model tries to identify.

3) Ahigh attention score confirms the significant relationship
between wind power and speed. Instead of being used as a
direct input to the forecasting model, the wind speed data
may be used as an auxiliary signal or indicator to improve
the WPF performance.

V. CONCLUSION

This paper proposed the deep learning model for 1-h ahead
WPF, where the basic layer is composed of Bi-LSTM layer.
Bi-LSTM network has been widely investigated as a powerful
forecasting model as it can improve performance by eliminating
propagated errors, especially when the number of parameters
increases by residual learnings. The increasing depth of DNN,
however, makes the LSTM prone to overfitting, which degrades
the performance of the deep learning model. The proposed
DRNets effectively resolve this technical challenge by con-
catenating the original input, shortcuts of the residuals, and
the original activated input. The proposed activation functions
using SeLL.U for 1D CNN and ReLU for Dense layer can further
improve the overall accuracy. Significant improvements in the
peak value forecasting have been observed in the case study by
using the fused network of short and long Bi-LSTM networks
with DRNets. Consistent superior and reliable performance of
the proposed model for various datasets demonstrates that the
proposed method provides a general framework for time-series
forecasting applications, especially in grid power operations.

REFERENCES

[1] E. Du et al., “Operation of a high renewable penetrated power system
with CSP plants: A. look-ahead stochastic unit commitment model,” /[EEE
Trans. Power Syst., vol. 34, no. 1, pp. 140-151, Jan. 2019.

[2] B. Kroposki et al., “Achieving a 100% renewable grid: Operating electric
power systems with extremely high levels of variable renewable energy,”
IEEE Power Energy Mag., vol. 15, no. 2, pp. 61-73, Mar./Apr. 2017.

[3] M. Khodayar, S. Mohammadi, M. E. Khodayar, J. Wang, and G. Liu,
“Convolutional graph autoencoder: A generative deep neural network for
probabilistic spatio-temporal solar irradiance forecasting,” IEEE Trans.
Sustain. Energy, vol. 11, no. 2, pp. 571-583, Apr. 2020.

[4] M. Marinelli, P. Maule, A. N. Hahmann, O. Gehrke, P. B. Norgrd, and
N. A. Cutululis, “Wind and photovoltaic large-scale regional models for
hourly production evaluation,” IEEE Trans. Sustain. Energy, vol. 6, no. 3,
pp. 916-923, Jul. 2015.

[5S] M. E. Tahir, C. Haoyong, A. Khan, M. S. Javed, N. A. Laraik, and
K. Mehmood, “Optimizing size of variable renewable energy sources by
incorporating energy storage and demand response,” IEEE Access, vol. 7,
pp. 103 115-103 126, 2019.

[6] A. Dhabi, IRENA, “Renewable energy statistics 2020,” The internation
renewable energy agency, Abu Dhabi, UAE, Jul. 2020. [Online].
Available: https://www.irena.org/publications/2020/Jul/Renewable-
energy-statistics-2020

[7] L.Bird, M. Milligan, and D. Lew, “Integrating variable renewable energy:
Challenges and solutions,” Nat. Renewable Energy Lab. (NREL), Golden,
CO, USA, Tech. Rep., 2013.

[8] Z.Zhuo et al., “Transmission expansion planning test system for AC/DC
hybrid grid with high variable renewable energy penetration,” IEEE Trans.
Power Syst., vol. 35, no. 4, pp. 2597-2608, Jul. 2020.

[9] M. Nehrir et al., “A review of hybrid renewable/alternative energy systems
for electric power generation: Configurations, control, and applications,”
IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 392-403, Oct. 2011.

[10] L. Yang, M. He, J. Zhang, and V. Vittal, “Support-vector-machine-
enhanced Markov model for short-term wind power forecast,” IEEE Trans.
Sustain. Energy, vol. 6, no. 3, pp. 791-799, Jul. 2015.


https://www.irena.org/publications/2020/Jul/Renewable-energy-statistics-2020

KO et al.: DEEP CONCATENATED RESIDUAL NETWORK WITH BIDIRECTIONAL LSTM FOR ONE-HOUR-AHEAD WIND POWER FORECASTING

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. H. Rehmani, M. Reisslein, A. Rachedi, M. Erol-Kantarci, and
M. Radenkovic, “Integrating renewable energy resources into the smart
grid: Recent developments in information and communication technolo-
gies,” IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 2814-2825, Jul. 2018.
Iea, Distributed solar PV, 2019. [Online]. Available: https://www.iea.org/
reports/renewables-2019/distributed-solar-pv#abstract

A. Orrel, D. Preziuso, N. Foster, S. Morris, and J. Homer, 2018 Distributed
‘Wind Market Report, 2018. [Online]. Available: https://www.energy.gov/
eere/wind/downloads/2018-distributed- wind- market-report

L. Exizidis, J. Kazempour, P. Pinson, Z. De Gréve, and F. Vallée, “Impact
of public aggregate wind forecasts on electricity market outcomes,” [EEE
Trans. Sustain. Energy, vol. 8, no. 4, pp. 1394-1405, Oct. 2017.

M. Jia, C. Shen, and Z. Wang, “A distributed probabilistic modeling
algorithm for the aggregated power forecast error of multiple newly built
wind farms,” IEEE Trans. Sustain. Energy, vol. 10, no. 4, pp. 1857-1866,
Oct. 2019.

P. Mandal, H. Zareipour, and W. D. Rosehart, “Forecasting aggregated
wind power production of multiple wind farms using hybrid wavelet-pso-
nns,” Int. J. Energy Res., vol. 38, no. 13, pp. 1654-1666, 2014.

Y.-L. Hu and L. Chen, “A nonlinear hybrid wind speed forecasting
model using LSTM network, hysteretic ELM and differential evolution
algorithm,” Energy Convers. Manage., vol. 173, pp. 123-142, 2018.

H. Liu, X.-W. Mi, and Y.-F. Li, “Wind speed forecasting method based
on deep learning strategy using empirical wavelet transform, long short
term memory neural network and elman neural network,” Energy Convers.
Manage., vol. 156, pp. 498-514, 2018.

U. K. Das et al., “Forecasting of photovoltaic power generation and
model optimization: A review,” Renewable Sustain. Energy Rev., vol. 81,
pp. 912-928, 2018.

H. A. Nielsen, T. S. Nielsen, H. Madsen, M. J. S. I. Pindado, and 1. Marti,
“Optimal combination of wind power forecasts,” Wind Energy: Int. J. Prog.
Appl. Wind Power Convers. Technol., vol. 10, no. 5, pp. 471-482, 2007.
M. Lange and U. Focken, “Physical approach to short-term wind power
prediction,” Berlin, Germany: Springer, 2006, vol. 208.

G. Giebel, R. Brownsword, G. Kariniotakis, M. Denhard, and C. Draxl,
“State-of-the-art in short-term prediction of wind power: A literature
overview,” ANEMOS. plus, 2011. [Online]. Available: https://www.osti.
gov/etdeweb/servlets/purl/1011554

Y. Ren, P. Suganthan, and N. Srikanth, “Ensemble methods for wind
and solar power forecasting-a state-of-the-art review,” Renewable Sustain.
Energy Rev., vol. 50, pp. 82-91, 2015.

C. Zhang, J. Zhou, C. Li, W. Fu, and T. Peng, “A compound structure
of ELM based on feature selection and parameter optimization using
hybrid backtracking search algorithm for wind speed forecasting,” Energy
Convers. Manage., vol. 143, pp. 360-376, 2017.

O. A. Maatallah, A. Achuthan, K. Janoyan, and P. Marzocca, “Recursive
wind speed forecasting based on hammerstein auto-regressive model,”
Appl. Energy, vol. 145, pp. 191-197, 2015.

A. A.Ezzat, “Turbine-specific short-term wind speed forecasting consider-
ing within-farm wind field dependencies and fluctuations,” Appl. Energy,
vol. 269, 2020, Art. no. 115034.

P. Pinson, L. Christensen, H. Madsen, P. E. Sorensen, M. H. Donovan,
and L. E. Jensen, “Regime-switching modelling of the fluctuations of
offshore wind generation,” J. Wind Eng. Ind. Aerodyn., vol. 96, no. 12,
pp. 2327-2347, 2008.

E. Cadenas and W. Rivera, “Short term wind speed forecasting in la venta,
Oaxaca, México, using artificial neural networks,” Renewable Energy,
vol. 34, no. 1, pp. 274-278, 2009.

J. P. d. S. Cataldo, H. M. 1. Pousinho, and V. M. F. Mendes, “Short-term
wind power forecasting in portugal by neural networks and wavelet trans-
form,” Renewable Energy, vol. 36, no. 4, pp. 1245-1251, 2011.

H. Liu, H.-Q. Tian, and Y.-F. Li, “Comparison of two new arima-ANN and
arima-Kalman hybrid methods for wind speed prediction,” Appl. Energy,
vol. 98, pp. 415424, 2012.

C. Feng, M. Cui, B.-M. Hodge, and J. Zhang, “A data-driven multi-model
methodology with deep feature selection for short-term wind forecasting,”
Appl. Energy, vol. 190, pp. 1245-1257, 2017.

Q. Cao, B. T. Ewing, and M. A. Thompson, “Forecasting wind speed with
recurrent neural networks,” Eur. J. Oper. Res., vol. 221, no. 1, pp. 148-154,
2012.

T. Senjyu, A. Yona, N. Urasaki, and T. Funabashi, “Application of recurrent
neural network to long-term-ahead generating power forecasting for wind
power generator,” in Proc. IEEE PES Power Syst. Conf. Expo., 2006,
pp. 1260-1265.

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

1333

Q. Xiaoyun, K. Xiaoning, Z. Chao, J. Shuai, and M. Xiuda, “Short-term
prediction of wind power based on deep long short-term memory,” in Proc.
IEEE PES Asia-Pacific Power Energy Eng. Conf., 2016, pp. 1148-1152.
M. Khodayar and J. Wang, “Spatio-temporal graph deep neural network for
short-term wind speed forecasting,” IEEE Trans. Sustain. Energy, vol. 10,
no. 2, pp. 670-681, Apr. 2019.

H. Liu, X. Mi, and Y. Li, “Smart multi-step deep learning model for
wind speed forecasting based on variational mode decomposition, singular
spectrum analysis, LSTM network and ELM,” Energy Convers. Manage.,
vol. 159, pp. 54-64, 2018.

S.Li, P. Wang, and L. Goel, “Wind power forecasting using neural network
ensembles with feature selection,” IEEE Trans. Sustain. Energy, vol. 6,
no. 4, pp. 1447-1456, Oct. 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681,
Nov. 1997.

A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional LSTM networks,” in Proc. IEEE Int. Joint Conf. Neural
Netw., 2005, pp. 2047-2052.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1-9.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 4700-4708.

H. Jahangir, H. Tayarani, S. S. Gougheri, M. A. Golkar, A. Ahmadian,
and A. Elkamel, “Deep learning-based forecasting approach in smart grids
with micro-clustering and bi-directional Istm network,” IEEE Trans. Ind.
Electron., to be published, doi: 10.1109/TIE.2020.3009604.

J.-F. Toubeau, J. Bottieau, F. Vallée, and Z. De Greve, “Deep learning-
based multivariate probabilistic forecasting for short-term scheduling in
power markets,” IEEE Trans. Power Syst., vol. 34, no. 2, pp. 1203-1215,
Mar. 2019.

ERCOT “High level overview of ERCOT wind power forecasting
process,” ERCOT, Texas, USA, 2020. [Online]. Available: https://mis.
ercot.com/misapp/GetReports.do?reportTypeID=19375&reportTitl%e=
IRR%20Forecasting%20Process&showHTMLView=&mimicKey

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

H. Shi, M. Xu, and R. Li, “Deep learning for household load forecasting-
a novel pooling deep RNN,” IEEE Trans. Smart Grid, vol. 9, no. 5,
pp. 5271-5280, Sep. 2018.

A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2013, pp. 6645-6649.

W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on LSTM recurrent neural network,”
IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 841-851, Jan. 2019.

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157-166, Mar. 1994.

1. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,” Cambridge,
MA, USA: MIT press, 2016.

T. Fukada, M. Schuster, and Y. Sagisaka, “Phoneme boundary estimation
using bidirectional recurrent neural networks and its applications,” Syst.
Comput. Jpn., vol. 30, no. 4, pp. 20-30, 1999.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. 13th Int. Conf. Artif. Intell. Statist.,
2010, pp. 249-256.

N.Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.

Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature
pooling in visual recognition,” in Proc. 27th Int. Conf. Mach. Learn., 2010,
pp. 111-118.

Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” in Adv. Neural Inf. Process. Syst.,
2016, pp. 1019-1027.

W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” 2015, arXiv:1409.2329.

S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, “A fully trainable network with
RNN-based pooling,” Neurocomputing, vol. 338, pp. 72-82, 2019.


https://www.iea.org/reports/renewables-2019/distributed-solar-pv#abstract
https://www.energy.gov/eere/wind/downloads/2018-distributed-wind-market-report
https://www.osti.gov/etdeweb/servlets/purl/1011554
https://dx.doi.org/10.1109/TIE.2020.3009604
https://mis.ercot.com/misapp/GetReports.do{?}reportTypeID$=$19375&amp;reportTitl&percnt;e$=$IRR&percnt;20Forecasting&percnt;20Process&amp;showHTMLView$=$&amp;mimicKey

1334

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]
[75]
[76]

[77]

[78]
[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

H. T. Siegelmann and E. D. Sontag, “On the computational power of
neural nets,” in Proc. 5th Annu. Workshop Comput. Learn. Theory, 1992,
pp. 440-449.

C. Szegedy, S. loffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-ResNet and the impact of residual connections on learning,”
in Proc. 31st AAAI Conf. Artif. Intell., 2016, arXiv:1602.07261.

M. Abdi and S. Nahavandi, “Multi-residual networks: Improving the speed
and accuracy of residual networks,” 2017, arXiv:1609.05672.

L. Zhao, J. Wang, X. Li, Z. Tu, and W. Zeng, “On the connection of deep
fusion to ensembling,” 2016, arXiv:1611.07718.

K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu, “Residual
networks of residual networks: Multilevel residual networks,” IEEE Trans.
Circuits Syst. Video Technol., vol. 28, no. 6, pp. 1303-1314, Jan. 2017.
Z. Yu, Z. Niu, W. Tang, and Q. Wu, “Deep learning for daily peak load
forecasting-A novel gated recurrent neural network combining dynamic
time warping,” IEEE Access, vol. 7, pp. 17 184-17 194, 2019.

L. M. Saini and M. K. Soni, “Artificial neural network-based peak load
forecasting using conjugate gradient methods,” IEEE Trans. Power Syst.,
vol. 17, no. 3, pp. 907-912, Aug. 2002.

N. Amjady, “Short-term hourly load forecasting using time-series model-
ing with peak load estimation capability,” I[EEE Trans. Power Syst., vol. 16,
no. 3, pp. 498-505, Aug. 2001.

G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural
networks for lvesr using rectified linear units and dropout,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2013, pp. 8609-8613.

X. Zhang, Y. Zou, and W. Shi, “Dilated convolution neural network with
leakyrelu for environmental sound classification,” in Proc. 22nd Int. Conf.
Digit. Signal Process., Aug. 2017, pp. 1-5.

D. Pedamonti, “Comparison of non-linear activation functions for deep
neural networks on MNIST classification task,” 2018, arXiv.:1804.02763.
C. Nwankpa, W. [jomah, A. Gachagan, and S. Marshall, “Activation func-
tions: Comparison of trends in practice and research for deep learning,”
CoRR, vol. abs/1811.03378, 2018. [Online]. Available: http://arxiv.org/
abs/1811.03378

C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong, “Proba-
bilistic forecasting of wind power generation using extreme learning
machine,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1033-1044,
May 2014.

K. Bruninx and E. Delarue, “A statistical description of the error on wind
power forecasts for probabilistic reserve sizing,” IEEE Trans. Sustain.
Energy, vol. 5, no. 3, pp. 995-1002, Jul. 2014.

E. Bisong, “Introduction to scikit-learn,” in Building Machine Learning
and Deep Learning Models on Google Cloud Platform. Berlin, Germany:
Springer, 2019, pp. 215-229.

Stytch, Jena’s Climate Change, 2018. [Online]. Available: https://www.
kaggle.com/stytch16/jena-climate-2009-2016

ERCOT, “Intermittent renewable resources,” 2019. [Online]. Available:
http://www.ercot.com/gridinfo/generation

F. X. Diebold and R. S. Mariano, “Comparing predictive accuracy,” J. Bus.
Econ. Statist., vol. 20, no. 1, pp. 134-144, 2002.

H. Chen, Q. Wan, and Y. Wang, “Refined diebold-mariano test methods
for the evaluation of wind power forecasting models,” Energies, vol. 7,
no. 7, pp. 4185-4198, 2014.

R. Durrett, “Probability: Theory and examples,” Cambridge, U.K.: Cam-
bridge Univ. Press, 2019.

R. W. Johnson, “An introduction to the bootstrap,” Teach. Statist., vol. 23,
no. 2, pp. 49-54, 2001.

A. Khosravi, S. Nahavandi, and D. Creighton, “Prediction intervals for
short-term wind farm power generation forecasts,” IEEE Trans. Sustain.
Energy, vol. 4, no. 3, pp. 602-610, Jul. 2013.

J. Brocker and L. A. Smith, “Increasing the reliability of reliability dia-
grams,” Weather Forecasting, vol. 22, no. 3, pp. 651-661, 2007.

R. Perez, “Wind field and solar radiation characterization and forecasting:
A numerical approach for complex terrain,” Berlin, Germany: Springer,
2018.

T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction,
and estimation,” J. Amer. Stat. Assoc., vol. 102, no. 477, pp. 359-378,
2007.

R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and
Practice, Melbourne, Australia: OTexts, 2018.

F. A. Eldali, T. M. Hansen, S. Suryanarayanan, and E. K. Chong, “Em-
ploying arima models to improve wind power forecasts: A. case study in
ercot,” in Proc. IEEE North Amer. Power Symp., 2016, pp. 1-6.

V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth, “Matern
Gaussian processes on riemannian manifolds,” 2020, arXiv:2006.10160.

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 12, NO. 2, APRIL 2021

[87]

[88]
[89]
[90]

[91]

[92]

[93]

Y. Chen et al., “Short-term electrical load forecasting using the support
vector regression (svr) model to calculate the demand response baseline
for office buildings,” Appl. Energy, vol. 195, pp. 659-670, 2017.
ERCOT, ERCOT Wind Patterns for Existing Sites, 2018. [Online]. Avail-
able: http://www.ercot.com/gridinfo/resource

NREL, NREL National Solar Radiation Database (NSRDB), Dec. 2019.
[Online]. Available: https://sam.nrel.gov/weather-data

M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” 2015, arXiv:1508.04025.

Y. Wang, Q. Hu, and S. Pei, “Wind power curve modeling with asym-
metric error distribution,” /IEEE Trans. Sustain. Energy, vol. 11, no. 3,
pp. 1199-1209, Jul. 2020.

J. Yan, H. Zhang, Y. Liu, S. Han, and L. Li, “Uncertainty estimation
for wind energy conversion by probabilistic wind turbine power curve
modelling,” Appl. Energy, vol. 239, pp. 1356-1370, 2019.

Y. Zhao, L. Ye, W. Wang, H. Sun, Y. Ju, and Y. Tang, “Data-driven correc-
tion approach to refine power curve of wind farm under wind curtailment,”
IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 95-105, Jan. 2018.

Min-Seung Ko (Student Member, IEEE) received the
B.S. degree in electrical engineering in 2018 from
Yonsei University, Seoul, South Korea, where he has
been working toward the M.S./Ph.D. degrees since
September 2018. His research interests include inte-
gration of variable renewable energy sources, power
system operation and voltage control, and applica-
tions of deep learning and optimization in power
systems.

Kwangsuk Lee (Member, IEEE) received the B.S.
and M.S. degrees and completed the Doctoral course
in electrical engineering from Yonsei University,
Seoul, South Korea. From 2006 to 2010, he was a
Researcher with Yonsei University Automation Re-
search Center. Since 2010, he has been with SK Tele-
com, Seoul, Korea, as a Data Analyst. His research
interests include anomaly detection, fault diagnosis,
estimation of remaining useful life, pruning, quanti-
zation, model compression, model optimization, ma-
chine learning, and deep learning.

Jae-Kyeong Kim (Member, IEEE) received the B.S.
and Ph.D. degrees in electrical engineering from
Yonsei University, Seoul, South Korea, in 2012 and
2018, respectively. In 2018, he was a Postdoctoral
Researcher with Yonsei University. Since December
2018, he has been with Korea Electrotechnology Re-
search Institute (KERI), Uiwang, Korea. His research
interests include power system modeling, voltage sta-
bility, power system dynamics, impacts of parametric
uncertainty, and applications of deep learning and
optimization.


http://arxiv.org/abs/1811.03378
https://www.kaggle.com/stytch16/jena-climate-2009-2016
http://www.ercot.com/gridinfo/generation
http://www.ercot.com/gridinfo/resource
https://sam.nrel.gov/weather-data

KO et al.: DEEP CONCATENATED RESIDUAL NETWORK WITH BIDIRECTIONAL LSTM FOR ONE-HOUR-AHEAD WIND POWER FORECASTING 1335

Chang Woo Hong (Graduate Student Member,
IEEE) received the B.S. degree in foreign language
from the Republic of Korea Naval Academy, Jinhae,
South Korea, in 2006, and the M.S. degrees in me-
chanical engineering from Yonsei University, Seoul,
South Korea, in 2016. He is currently working toward
the Ph.D. degree with the Department of Electri-
cal and Electronic Engineering, Yonsei University,
Seoul, South Korea. From 2006, he was with ROK
S Navy, specializing in engineering and logistics. His
current research interests include an electric ship, dc
grids and load forecasting, and PHM (Prognostics and Health Management) of
the military application.

Zhao Yang Dong (Fellow, IEEE) is a Professor of
Energy Systems with the University of New South
Wales (UNSW) Australia. He is also the Director
of UNSW Digital Grid Futures Institute and ARC
Research Hub for Integrated Energy Storage Solu-
tions. His research interest includes power system
planning and stability, smart grid/micro-grid, load
modeling, electricity market, and smart city planning.
He was the Ausgrid Chair and Director of Ausgrid
Centre for Intelligent Electricity Networks to provide
R&D support for the Smart Grid, Smart City national
demonstration project. He has been a Editor for several IEEE TRANSACTIONS
and IET journals. He is a Web of Science highly cited Researcher since 2019.

Kyeon Hur (Senior Member, IEEE) received the
B.S. and M.S. degrees in electrical engineering from
Yonsei University, Seoul, South Korea, in 1996 and
1998, respectively, and the Ph.D. degree in electrical
and computer engineering from The University of
Texas at Austin in 2007.

He was an R&D engineer with Samsung Electron-
ics, Suwon, South Korea, between 1998 and 2003,
where he designed control algorithms and power-
electronic circuits for AC drives. His industrial ex-
perience includes the Electric Reliability Council of
Texas (ERCOT), Taylor, TX, USA as a Grid Operations Engineer between
2007 and 2008. He was also with the Electric Power Research Institute (EPRI),
Palo Alto, CA, USA and conducted and managed research projects in Grid
Operations and Planning from 2008 to 2010. He has rejoined Yonsei University
since 2010 and leads a smart-grid research group. His current research interests
include FACTS/HVDC, PMU-based analysis and control, integration of variable
generation and controllable load, and load modeling.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


