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Leveraging Turbine-Level Data for Improved
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Abstract—This paper describes two methods for creating im-
proved probabilistic wind power forecasts through the use of
turbine-level data. The first is a feature engineering approach
whereby deterministic power forecasts from the turbine level are
used as explanatory variables in a wind farm level forecasting
model. The second is a novel bottom-up hierarchical approach
where the wind farm forecast is inferred from the joint predic-
tive distribution of the power output from individual turbines. No-
tably, the latter produces probabilistic forecasts that are coherent
across both turbine and farm levels, which the former does not. The
methods are tested at two utility scale wind farms and are shown
to provide consistent improvements of up to 5%, in terms of con-
tinuous ranked probability score compared to the best performing
state-of-the-art benchmark model. The bottom-up hierarchical ap-
proach provides greater improvement at the site characterized by
a complex layout and terrain, while both approaches perform sim-
ilarly at the second location. We show that there is a clear benefit
in leveraging readily available turbine-level information for wind
power forecasting.

Index Terms—Forecasting, forecast uncertainty, wind energy,
wind farms, hierarchical forecasting.

I. INTRODUCTION

THE growth of weather dependent renewable energy
sources is transforming power systems across the world

with wide-ranging implications for system operation and mar-
ket design. Energy forecasting is essential for reliable and eco-
nomic power system operation due to the uncertain variation of
supply and demand, which increases the difficulty of balancing
the network and managing power flows [1].

Here we are concerned with short-term forecasting, where
the prediction horizon is several hours to days ahead. For ex-
ample, this type of forecast is used to inform trading strategies
for participants in the day-ahead market and for power system
operations. Numerical Weather Predictions (NWP) are key in-
puts into wind power forecasting models at such horizons [2].
Best practice in creating these models involves mapping the
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relationship between meteorological forecasts and correspond-
ing wind farm power generation via a statistical learning tech-
nique. This allows for a fully data-driven statistical model, using
inputs from the physics-based NWP, which implicitly accounts
for complex physical processes influencing the wind to power
conversion such as wake losses and any systematic bias in the
weather forecasts [3].

Wind power prediction was initially approached as a deter-
ministic problem with research and early commercial products
focusing on providing single-valued best estimates of future gen-
eration [4]. However, there has been extensive research in the
area of probabilistic forecasting, which is reviewed comprehen-
sively in [5], driven by the economic value of quantifying uncer-
tainty when making decisions [3]. Uncertainty at a single point
in the future is commonly quantified by producing a predic-
tive probability distribution of future power production, called
a density forecast. Density forecasts are central to probabilistic
forecasting, and as such have received much attention from the
research community. Non-parametric methods, where no par-
ticular distribution shape is assumed, have emerged as superior
to estimating parametric probability distributions conditional on
NWP and other inputs. Popular statistical methods for generat-
ing these forecasts emerged as additive quantile regression with
splines [6], adapted resampling [7], and conditional Kernel Den-
sity Estimation [8].

More recently, a number of competitions have been run in
order to compare forecasting methods on the same dataset and
under controlled conditions [9]. The two winning teams from
GEFCom (2012 and 2014) utilised Gradient Boosting regression
Trees (GBT), the latter for quantile regression to produce den-
sity forecasts, with input features engineered from NWPs [10],
[11]. Other entrants also employed GBTs but did not produce
as skillful forecasts highlighting the importance of feature en-
gineering in such methods. This approach was extended with
spatio-temporal features engineered from a grid of NWP points
to improve probabilistic forecast performance of both solar and
wind power in [12]. Analog ensemble methods have also been
successful in producing non-parametric density forecasts [13]
where here the definition of the distance measure used to de-
fine the ensemble is critical and similar to feature engineering
in regression.

Hierarchical forecasting has received increased attention in
recent years because of the desire from forecast users for co-
herency (or consistency), i.e. the forecast of each level in
a hierarchy should sum together appropriately. Additionally,
including coherency constraints in predictive models can im-
prove performance at all levels of the hierarchy. Hierarchies
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can be both spatial and temporal in nature [14], [15]. There are
different approaches to hierarchical forecasting, the simplest be-
ing the bottom-up approach, which forecasts the top level in the
hierarchy by summing the constituent lower level forecasts [16],
[17]. As discussed in [18], the bottom-up approach can in prac-
tice tend to deliver poor performance because of the low signal
to noise ratio of the bottom hierarchy in applications such as
load forecasting using smart meter data. However, this is not the
case for wind farms where each wind turbine provides a con-
sistent weather dependent signal. In the wind power forecasting
domain, [19] evaluates a method of deterministic forecast rec-
onciliation via a generalised least squares method to generate
coherent forecasts.

The concept of coherent probabilistic forecasts is explored
in [18], [20] where the importance of this property is emphasised
in settings where forecasts from multiple levels of the hierarchy
are used in decision-making. In these works, the marginal dis-
tributions are determined for nodes in the system and the de-
pendence is modelled using an empirical copula. However, in
the wind farm setting the structure of the hierarchy is relatively
simple, and the size lends itself to families of parametric copulas
rather than the empirical copula, which requires large volumes
of data to satisfactorily estimate.

A wide variety of copula families exist, several of which have
been applied to model spatial dependency in the wind power
forecasting context but not in a hierarchical setting to the best
of the authors knowledge [21]. The most frequently used family
is the Gaussian copula [22], [23], though temporal dependency
has received more attention than spatial or spatial-temporal de-
pendency. Copula vines, which are a series of linked bivariate
copula families, offer a more flexible framework for modelling
multivariate dependency, and have subsequently been the sub-
ject of recent studies in wind power forecasting [23], [24].

In this study, two methods are investigated to leverage turbine-
level data and are compared to state-of-the-art benchmarks. The
first is a feature engineering approach proposed in [25], where
deterministic power forecasts for individual turbines are used as
predictor variables when producing non-parametric wind farm
forecasts. This is a hierarchical method in the sense that infor-
mation from the turbine-level is used to supplement the available
information set. However, forecast coherency is not guaranteed.
This work also expands on [25] by extending the case study to a
second wind farm with different site characteristics and testing a
second novel approach based on hierarchical coherency. In this
second bottom-up approach, density forecasts are produced for
all turbines and the spatial dependence between them is mod-
elled in a copula framework to allow aggregation to the wind
farm level.

The turbine-level feature engineering method aims to im-
prove the wind farm forecast by generating new covariates from
individual turbine data. Whereas the bottom-up probabilistic
forecasts reflect the physical reality of the problem — that
the total wind farm power output is the sum of individual
turbine generation — and therefore have the added benefit
of coherency. The main contributions of this paper are the
proposed bottom-up hierarchical method and its evaluation,
plus significantly expanding the evaluation of the feature
engineering approach first introduced in [25]. We hypothesise

that leveraging information from the turbine-level will enable
us to improve forecast performance, particularly since modern
utility scale wind farms are often distributed over large areas
of complex terrain and as a result, individual turbines can
experience different conditions from one another at any given
time. The advantages of the proposed hierarchical method are
improved accuracy and coherency between turbine-level and
wind farm total, however the nature of the wind farm (terrain,
layout, size...) has a bearing on the extent of this improvement.

This paper is organised as follows: Section II details the fore-
casting methods and benchmark models, Section III describes
the case study based on two utility scale wind farms in the UK,
Section IV presents and evaluates the results, and conclusions
are drawn in Section V. Supplementary information provides
additional detail and results [26].

II. FORECASTING METHODOLOGY

This section covers the two tested methods for leveraging
turbine level data, the benchmark models, and the statistical
learning techniques employed. The entire forecasting method-
ology is summarised in Figure 1, which details the training
process, input data, and output forecast of each model. The
turbine level feature engineering model is generated using quan-
tile regression, where NWP predictions are supplemented with
additional features; these include deterministic forecasts of indi-
vidual turbine generation and wind farm-level generation [25].
The bottom-up probabilistic method involves estimating the
full multivariate predictive distribution of generation from all
turbines. To this end, the marginal distribution of each turbine is
determined via quantile regression and the spatial dependency
structure is modelled via a copula. The wind farm-level density
forecast is then generated by sampling from the multivariate dis-
tribution and taking the empirical distribution of the aggregated
turbine-level samples. The Gaussian copula with both empirical
and parametric covariance matrices is examined, due to its
simplicity and successful use in similar studies [21], [22], [27];
vine copulas with a range of copula families are also considered
[23], [24].

Explanatory variables xt common to both proposed methods
and benchmarks are derived from NWP wind speed and direction
outputs at 10m and 100m. Features that capture wind shear,
veer, and phase errors in NWP are engineered inspired by [11],
[12]. Cubic spline basis functions are also included to capture
diurnal bias in the NWP at the specific sites along the lines
of [28]. Full details of all features are listed in the supplementary
material [26].

A. Gradient Boosting Trees

This section introduces the statistical learning technique used
to map the relationship between the input features derived from
the NWP and the target measured time series, i.e. individual tur-
bine or wind farm power measurements. The Gradient Boosting
regression Tree algorithm (GBT) is an ensemble learning tech-
nique whereby powerful predictive models can be constructed
by combining a number of individual regression trees, known
as weak learners [29]. This technique can capture non-linear
relationships such as the wind power curve, can be used with
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Fig. 1. Flowchart illustration of the entire forecasting model training methodology. Wind Farm Level Power Data and Turbine Level SCADA data are only
required for model training and evaluation. The only inputs required to produce operational forecasts are Numerical Weather Predictions. TB indicates turbine, WF
is wind farm, Det. is deterministic, and Reg. is regression.

a variety of differentiable loss functions, and can intrinsically
learn interactions between input features. GBTs are also natu-
rally regularised by virtue of the way trees are constructed [30].
The use of GBTs for quantile regression here is motivated by
their success in similar applications [10], [11] though this el-
ement could be substituted for other supervised learning algo-
rithms. The gradient boosted tree Fn(xt) is defined as the sum
of n regression trees

Fn(xt) =

n∑

i=1

fi(xt) (1)

where each fi(xt) is a regression tree. The ensemble of regres-
sion trees is constructed sequentially by estimating the new re-
gression tree fn+1(xt) via

argmin
fn+1

∑

t

L (yt, Fn(xt) + fn+1(xt)) (2)

for some loss function L(·). Where L(·) is differentiable, this
optimisation can be solved by steepest descent [30]. Turbine-
level deterministic forecasts used as features in this study are
produced by GBTs fit with a squared loss function, and density
forecasts are produced using GBTs for multiple quantile regres-
sion (quantile loss function [1]) and then using spline interpola-
tion, with knots at each predicted quantile and the boundaries 0
and nominal power, to estimate the predictive Cumulative Dis-
tribution Function (CDF).

GBTs include several hyper-parameters which control both
the tree fitting and boosting processes to optimise performance
while preventing over-fitting [31]. The two key parameters tuned
to minimise out-of-sample error via k-fold cross validation are
the interaction depth and shrinkage. The interaction depth is the
number of splits allowed to partition the input variable space
per tree and the shrinkage or learning rate controls the weight
of each tree in the ensemble.

B. Benchmark Models

Two highly competitive benchmark models are implemented
based on wind farm level power measurements and input fea-
tures xt derived solely from NWPs. These features include tem-
poral averaging, shear and others; a full list is provided in the

supplementary information [26]. The first benchmark is a wind
farm-level GBT quantile regression model, WF(xt), and the sec-
ond is an Analog Ensemble method, AnEn, described below.
These benchmarks represent the state-of-the-art in wind power
forecasting and were informed by [10], [11], [13] in particular.

The Analog Ensemble is a non-parametric algorithm that
ranks similarity between the current forecast and a training
dataset of historical forecasts with concurrent measurements.
The k most similar concurrent measurements are used to con-
struct an ensemble, assumed to be equally likely, from which
empirical quantiles can be extracted. In this case, a mean GBT
benchmark forecast is used as the explanatory variable and the
model searches for the most similar out-of-sample mean power
forecasts in the training dataset. The AnEn is also conditioned by
lead time and the ranking metric used is euclidean distance. This
algorithm is similar to the k-Nearest-Neighbours regression so-
lution used in the second placed entry to the GEFCom2014 wind
track [13]. For more information, the reader is referred to [32].

C. Turbine-Level Feature Engineering

Here, we present the method to engineer features based on
individual wind turbines to feed into the wind farm-level fore-
cast from related work by the authors [25]. This approach com-
prises of two layers: in the first layer, deterministic forecasts
for individual wind turbines and the wind farm as a whole are
produced; then in the second layer, density forecasts for the
wind farm are produced by quantile regression using features
from both NWP and the first layer. The deterministic forecasts
for individual wind turbines yi,t are produced using the same
explanatory variables xt as for direct wind farm-level forecast-
ing benchmark. These forecasts are combined via a weighted
sum over all D turbines to produce the deterministic wind farm
forecast

zt =

D∑

i=1

ωiyi,t + εt (3)

which completes the constitution of the supplementary feature
set xSUP

t = [xt, y1,t, ..., yD,t, zt]. The weights ω are estimated
via elastic net regression motivated by the necessity to regularise
turbine forecasts because they are highly correlated. The weights
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are calculated via

ω = argmin
ω

{
1

2N
||Z−Yω||22

+ λ

[
(1− α)

1

2
||ω||22 + α||ω||1

]}
(4)

where α and λ are hyper parameters requiring tuning, Z and Y
are matrices of vertically stacked instances of zt and yt [33].
The hyper parameter 0 ≤ α ≤ 1 controls the weighting of the
two penalty terms, in effect trading off between ridge (α = 0)
and lasso (α = 1) regression. Total regularisation is controlled
by λ ≥ 0. The optimal values of α and λ are determined through
grid search and k-fold cross validation.

The final wind farm level density forecast, WFT(xSUP
t ), is pro-

duced using quantile regression in the same way as the bench-
mark model but with the expanded feature set xSUP

t . In order to
refine the forecast skill, a reduced feature set selected from xSUP

t

is used. This selection process involves fitting a regularised GBT
model with all the available inputs from xSUP

t , then selecting and
retaining only the features that have the greatest influence. This
additional selection stage removes superfluous predictors which
provide no additional information and only deteriorate forecast
performance. The final variables retained in each model, and
their relative importance, can be found in the supplementary
information [26]. Low shrinkage and interaction depth hyper-
parameter choices for the GBT algorithm provide a degree of
regularisation and feature selection from which the dimensions
of the problem can be reduced substantially [30].

D. Bottom-Up Probabilistic Method

Here, we propose a novel approach to forecast the power from
the wind farm by estimating the joint predictive distribution of
production from all wind turbines in the farm in a copula frame-
work. The marginals of the copula comprise of density forecasts
which are produced for each turbine using quantile regression
and spline interpolation from the collection of quantiles. A range
of copula functions are explored.

Let the random variable Yi denote the wind power genera-
tion at the ith turbine, and yi the corresponding realisation (time
indices are dropped to avoid notational clutter). The predictive
CDF of the ith turbine is

Fi(yi) = P (Yi ≤ yi) (5)

for i = 1, 2, ..D turbines. Sklar’s theorem [34] states that for
any D-dimensional cumulative distribution F (·) with continu-
ous marginals Fi(·) there exists a unique copula function C(·)
such that

F (y1, y2, ..., yD) = C (F1(y1), F2(y2), ..., FD(yD)) , (6)

which separates the marginal distributions and dependency
structures between the marginals. This is useful because it de-
couples the problem into two constituent parts: 1) estimating the
marginal distributions for each turbine, and 2) estimating the de-
pendence structure via a copula function. Note that the copula
function links uniformly distributed marginals ui = Fi(yi) and
therefore the calibration of the density forecasts that form the
marginal distributions is critical. Equation 6 can be alternatively

written as

C(u1, u2, ..., uD) = F
(
F−1
1 (u1), F

−1
2 (u2), ..., F

−1
D (uD)

)

(7)
where F−1

i (·) is the inverse of the marginal distribution Fi(·).
Therefore, via sampling from the multivariate copula, pseudo-
observations can be back transformed into the original domain
to produce spatial scenario forecasts of power generation [21].
Next we introduce a range of options for the copula function.

1) Gaussian Copula: The Gaussian copula is given by

C(F1(y1), F2(y2), ..., FD(yD))

= ΦΣ

(
Φ−1(F1(y1)),Φ

−1(F2(y2)), ...,Φ
−1(FD(yD))

)
(8)

where Φ−1(·) indicates the inverse standard normal distribution
function andΦΣ(·) theD-dimensional normal distribution func-
tion with covariance matrix Σ and zero mean. In this context,
the covariance matrix encodes the spatial dependence structure
for the D-turbines which illustrates one of the reasons why the
Gaussian copula is so popular: the dependency structure is char-
acterised by a single covariance matrix. It should be noted that

vi = Φ−1 (Fi(yi)) (9)

constitutes the transformation of the uniformly distributed
marginals into the Gaussian domain where vi ∼ N (0, 1). There-
fore, we can estimate the copula by calculating the sample
covariance matrix for the transformed normally distributed vari-
ables. Using this framework, it is simple to sample from the
multivariate distribution and generate D-spatial scenarios of the
future generation v̂i. Each of the samples are back-transformed

ûi = Φ(v̂i) (10)

and then transformed into the original power domain using the
inverse CDF for the ith turbine

ŷi = F−1
i (ûi) (11)

which are summed over the D-turbines to give a snapshot of
the wind farm forecast generation ẑj for a jth out of K ordered
samples j = 1, 2, ...,K. Using the empirical distribution func-
tion the wind farm forecast with the correct underlying spatial
dependence structures is finally given by

F̂ (z) =
1

K

K∑

j=1

1(ẑj ≤ z) . (12)

We refer to this approach (based on the empirical covariance ma-
trix) as EGCop in the proceeding text. From observing the often
noisy empirical covariance estimates in this and other studies
based on temporal scenarios forecasting [21], [27], we also con-
sider a parametric exponential covariance structure (PGCop).
This approach has shown to be effective in increasing forecast
skill by smoothing the empirical covariance matrix. The para-
metric spatial covariance between two turbines is

Σi,j = cov(vi, vj) = exp

(
− Δs

η

)
(13)

where Δs is the distance between turbines i and j, and the pa-
rameter η is fit using weighted least squares regression using
empirical covariance and distance information.
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2) Copula Vine: The vine copula (VCop) is a series of bivari-
ate copulas in which a different distribution family may be used
for each pair. This allows for more complex dependency struc-
tures with asymmetry and tail dependencies to be captured, at the
expense of added computational cost compared to the Gaussian
method. This flexibility has encouraged recent studies consid-
ering vine copulas in the wind power forecasting context [23],
[24]. The vine method works by factorising the D-dimensional
density into the d(d− 1)/2 product of bivariate copulas where
each pair copula is estimated via maximum likelihood from a set
of distribution families (Gumbel, Gaussian, Student-t etc.). The
optimal family for each pair-copula is chosen by minimisation
of the Akaike Information Criteria (AIC). The implementation
here follows [23] and for more detail please refer to [35].

III. CASE STUDY

The proposed methodologies and benchmarks are tested on
two large UK wind farms, Wind Farm A (128 MW capacity,
56 turbines) and Wind Farm B (70 MW capacity, 35 turbines),
which cover an area of approximately 20 km2 and 15 km2 respec-
tively. Training and testing data are partitioned at Wind Farm A
into 12 and 4 month blocks respectively and at Wind Farm B 15
and 6 month blocks, due to differences in data availability. The
test dataset covers the months of December to March for Wind
Farm A and April to September for Wind Farm B. Both test pe-
riods contain periods of high, low, and variable wind speed, and
results based on the shortest test dataset (Wind Farm A) covers
the most challenging period for forecasters. An example density
forecast at Wind Farm A using the parametric copula method is
shown in Figure 2.

Generation data from individual turbine SCADA systems and
the wind farm power export meter are used at 30-minute resolu-
tion with instances of curtailment flagged and excluded from the
forecasting exercise. Data is also adjusted for availability so the
impact of outages on evaluation results is minimised. NWP data
from the European Centre for Medium-Range Weather Forecasts
is extracted at the closest grid point to each wind farm from 0
to 48 hours ahead in hourly intervals, with 2 issue times per
day. Linear interpolation is used to match the resolution of the
hourly forecasts and half hourly power data. The methodologies
described are implemented in R using the packages glmnet,
VineCopula, kknn, and gbm [36]–[40].

IV. RESULTS

The skill of probabilistic forecasts is evaluated using proper
scoring rules and according the principle that it is desirable for
density forecasts to be as sharp as possible subject to calibra-
tion [41]. Sharpness is a measure of the spread of the distribution
and calibration (or reliability) is the property that the forecast
spread matches that of the observations. Calibration of individ-
ual quantiles q is calculated as

â(q) =
1

N

N∑

t=1

1(zt < ẑ
(q)
t ) , (14)

where 1(·) is the indicator function. If the forecast is calibrated,
the empirical coverage should satisfy â(q) ≈ q for all q [1].

Fig. 2. Example density forecast using the parametric Gaussian copula
approach at Wind Farm A.

Calibration is visualised using reliability diagrams and quan-
tile bias b(q) = q − â(q) [42]. The sharpness and calibration can
be both quantified via the Continuous Ranked Probability Score
(CRPS) [41]

CRPS =
1

N

N∑

t=1

∫ ∞

−∞
{Ft(z)− 1(z ≥ zt)}2dz (15)

which compares the predictive forecast distribution Ft to obser-
vation zt and rewards both sharpness and reliability.

The hyper-parameters of the GBT and AnEn models con-
sidered here are tuned in order to minimise CRPS, subject to
reliability. However, it is beneficial to tune hyper-parameters for
different quantiles separately. Here, we produce 19 GBT mod-
els for quantiles from 0.05 to 0.95 in steps of 0.05. To minimise
the burden of hyper-parameter selection, only hyper-parameters
for the 0.05, 0.3, 0.5, 0.7, and 0.95 quantiles are optimised and
then used for neighbouring quantiles. The shrinkage and tree
depth hyper-parameters are selected using k-fold cross valida-
tion and a grid search of the parameter space on the training data.
The number of trees is kept constant at 500, as is the minimum
number of observations in each terminal node at 30, and the
bag fraction at 75%. For the AnEn benchmark, the number of
members in the ensemble is selected by minimising the CRPS
on the training data via k-fold cross validation.

For VCop, C-vine and R-vine structures were both tested. The
C-vine, which uses a star shaped configuration for each tree in
the vine to connect the bivariate copulas, consistently provided
lower error metrics than the R-vine structure, so only results from
that structure are detailed here for brevity. Each bivariate copula
is selected using the AIC on the training data and then used to
produce forecasts on the test data. Full details of copula family
selections are given in the supplementary information [26].

At Wind Farm A, all of the proposed methods show improve-
ments over the two benchmarks across the whole forecast hori-
zon. The CRPS and improvement over benchmark metrics at
Wind Farm A are detailed in Table I. The feature engineer-
ing method reduces CRPS by 3.95% and 5.46% compared to
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TABLE I
RESULTS AT WIND FARM A. %Δ INDICATES IMPROVEMENT COMPARED TO SPECIFIED BENCHMARK [CRPS IN % OF MAX POWER]

Fig. 3. Wind Farm A calibration plots.

direct wind farm-level forecasting using WF(xt) and AnEn re-
spectively. The only difference between the WF(xt) benchmark
and this method is the incorporation of features derived from
turbine-level information. The copula-based methods also con-
sistently outperform the benchmarks, and the Gaussian copula
with parametric covariance matrix give the best performance
of all models across all lead-times with reductions of 5.01%
and 6.50% over WF(xt) and AnEn respectively. The calibration
plots in Figure 3 reveal that the turbine-level feature engineer-
ing and copula methods also marginally improve the reliability
of the forecast compared to the WF(xt) benchmark, and that
these methods are all well calibrated, indicating that reductions
in CRPS are mainly due to increased sharpness.

At Wind Farm B, as detailed in Table II, all proposed meth-
ods outperform the benchmarks, though to a lesser extent than
Wind Farm A. Unlike Wind Farm A, the feature engineering
approach provides the greatest improvement reducing CRPS by
1.24% and 2.39% compared to the WF(xt) and AnEn bench-
marks respectively. This improvement is also consistent across
lead-times. The quantile bias plots, shown in Figure 4a, illustrate
that the model calibration is slightly diminished when compared
to the WF(xt) benchmark from the 15th-60th percentile, but oth-
erwise provides improvement outside this range. The reliability
diagram in Figure 4b reveals that the proposed models are well
calibrated and that variations between the models are small.

Bootstrapping [43] is used here to estimate the uncertainty
of evaluation results. The CRPS values from the test datasets

Fig. 4. Wind Farm B calibration plots.

are re-sampled with replacement (number of samples equal to
the size of the test dataset) and averaged 1000 times in order to
estimate the sampling variation of the average scores in Tables I
and II. The results of this process are presented via boxplots
in Figure 5 and show that improvement in CRPS compared to
benchmarks is pronounced at both sites.

Comparing the copula methods at both wind farms, the Gaus-
sian copula with parametric covariance matrix produces fore-
casts with lower CRPS and superior calibration, supporting
parametrisation of the covariance matrix to produce a smooth
spatial dependency structure. The more detailed and flexible de-
pendency structure of the copula vine does not lead to further
improvements in the forecast skill, and neither does the Gaussian
copula with empirical covariance suggesting that both of these
models are over parametrised given the volume of training data.
The calibration of the vine copula in particular is poor compared
to the WF(xt) benchmark.

The regular layout of turbines at Wind Farm B is evident in
the covariance matrix for that wind farm, shown in Figure 6 and
the layout of the farm can be found in the supplementary mate-
rial [26]. The block pattern is consistent with the evenly spaced
rows of turbines. The covariance is relatively high across the
wind farm with only 6% of values below 0.7, which implies that
there is little information to be gained by considering individual
turbines as forecast errors are very similar across the site. At
Wind Farm A, as shown in Figure 7, the covariance structure is
more complex because of the wind farm’s irregular layout and
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TABLE II
RESULTS FOR WIND FARM B. %Δ INDICATES IMPROVEMENT COMPARED TO SPECIFIED BENCHMARK [CRPS IN % OF MAX POWER]

Fig. 5. Boxplots showing the bootstrap sample distributions of mean CRPS
for the best benchmark and proposed model at both wind farms.

terrain. Covariance is high within small areas of the wind farm
but weak between regions.

Deterministic forecast performance is summarised in Ta-
ble III. The median (p50 in Figure 2) of each predictive dis-
tribution is taken as the deterministic forecast and evaluated in
terms of Mean Absolute Error (MAE) [44]. As expected, the
behaviour of the results is very similar to the probabilistic case.
Performance evaluations separated by forecast horizon and in
terms of Root Mean Square Error are available in the supple-
mentary information [26].

One feature of the bottom-up probabilistic method is the ex-
tended computational time required to train all the models. In
this study, with a desktop computer (8 virtual cores, 3.6 GHz
CPU, 16GB RAM) it takes approximately 10.5 minutes to fit
the required 19 quantile regression models using parallelization.
This is the length of the model training phase for the WF(xt)
benchmark. The feature engineering method will take 10.5 min-
utes plus an additional 3.5 minutes multiplied by the number of
turbines. The bottom-up hierarchical method training duration
is 10.5 minutes multiplied by the number of turbines. However,
significant additional time is required to determine the vine cop-
ula structure. Operationally the time required to issue a forecast
is negligible for all but the VCop method and re-training models
would be required infrequently.

The case study results indicate that turbine-level data can be
leveraged to improve forecast skill, although the characteristics

Fig. 6. Parametric covariance matrix at Wind Farm B.

TABLE III
DETERMINISTIC FORECAST PERFORMANCE BASED ON THE MEDIAN (P50) OF

EACH PREDICTIVE DISTRIBUTION — %Δ INDICATES IMPROVEMENT

COMPARED TO SPECIFIED BENCHMARK [MAE AS % OF NOMINAL POWER]

of the wind farm also have a bearing on the performance of the
different methods. At a site with simple layout where the re-
sponse of all turbines to the weather is similar, and therefore
forecast errors are similar, only a modest improvement in fore-
cast skill is realised by considering turbine-level information. In
this situation there is no advantage in modelling the full spatial
dependency structure between forecast errors at individual wind
turbines; it is sufficient to supplement a conventional forecast-
ing method with turbine-level features. However, at a complex
site modelling the spatial covariance structure provides greater
improvement — 5% greater in this case study — than feature
engineering alone.

Importantly, these improvements come at very low cost.
Turbine-level SCADA data is routinely collected and stored by
operators, and only modest computational power is required to
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Fig. 7. Parametric covariance plots at Wind Farm A. Note that the latitude and longitude scales of (b) are indicative.

realise the benefits of the methods proposed here. Furthermore,
turbine-level data is only required for training, not in real-time
operation, so there is no need for new communications or data
feeds, and third party forecast providers could enhance their
forecasts for individual wind farms with a static dataset of his-
toric turbine-level data. Importantly, the proposed framework is
not constrained to GBTs as these can be readily substituted with
any other method of producing density forecasts.

V. CONCLUSION

Turbine-level data provides valuable information about how
a wind farm responds to different weather conditions, and the
nature of forecast errors, which is not accessible when only con-
sidering a wind farm’s total power production. Two methods
for improving wind power forecasting by leveraging data from
individual wind turbines are evaluated. The first is a feature
engineering approach whereby deterministic forecasts for indi-
vidual turbines are aggregated and used as supplementary input
variables to a conventional wind farm-level model [25]. The sec-
ond is a novel bottom-up probabilistic approach which forecasts
the joint predictive distribution of generation from all turbines
in a copula framework, which is then used to produce a wind
farm-level forecast.

Both methods are shown to increase forecast skill compared to
two highly competitive benchmarks, particularly at the site with
complex terrain. At Wind Farm A, the Gaussian copula method
with parametric covariance matrix reduces CRPS by 5% com-
pared to the best performing benchmark while the feature engi-
neering approach provides a 4% improvement. At Wind Farm
B, both methods improve forecast skill by approximately 1%.

These improvements come at almost no cost as turbine-level
data is routinely recorded by SCADA systems and this data is
only required for training forecast models; no additional com-
munications or data flows are required operationally. Therefore,
both utilities producing in-house power forecasts and third party
forecast providers could enhance their forecast performance us-
ing a static dataset of turbine-level data. Future work should

explore the benefits of turbine-level data in spatio-temporal fore-
casting and the dynamic evolution of covariance structures. For
example, [22] propose an adaptive update scheme to track slow
changes in temporal covariance, but fast changes require de-
pendency structures to be conditional on suitable explanatory
variables or regimes.
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