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Abstract—Probabilistic wind power forecasting has become
an important tool for optimal economic dispatch and unit
commitment of modern power systems with significant renewable
energy penetrations. Ensemble forecasting based on Monte
Carlo simulation has been widely adopted by grid operators,
but other probabilistic approaches, such as multistep iterative
wind power forecasting have not yet been fully explored. The
associated uncertainty analysis is an important yet challenging
issue in this area. This paper proposes to use an analytic interval
forecasting framework to estimate the forecasting uncertainty
and its propagation with multisteps for two wind farms based
on the temporally local Gaussian process (TLGP) model. The
key findings confirm that TLGP forecasting not only has better
accuracy but is also more reliable and sharp than other benchmark
models. This paper provides an innovative analytical framework
for iterative multistep interval forecasts.

Index Terms—Probabilistic forecasting, gaussian process, uncer-
tainty propogation, wind energy.

NOMENCLATURE

The key symbols used in the paper are defined below for quick
reference while others are defined after their first appearance as
required.
x Deterministic input (state vector).

(X, Y ) Available training dataset.
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θ∗ Optimal hyperparameters.
B, Bt Cross-covariance vector.
CY , Ct Covariance matrix.
μ(x) Mean function of prediction under x.
σ2(x) Variance function of prediction under x.
Φ Covariance function.
x∗ Column vector of random input.
μx∗ Expectation of x∗.
Σx∗ Covariance matrix of x∗.
m(x∗) New mean output under random input x∗.
v (x∗) New variance of output under random x∗.
Ex∗ [f] Expectation of f under x∗.
Var (·) Analytical definition of variance.

I. INTRODUCTION

ACCURATE wind power forecasting plays a key role in
modern power systems to mitigate the impacts of the

stochastic and variable nature of wind energy [1], [2]. Prob-
abilistic forecasting has been widely used in the research of
energy storage [3], reserve quantification [4], unit commitment
and market trading [5]. In [6], probabilistic forecasting was used
to estimate dynamic operation reserve requirements based on
the uncertainty information in each forecasting interval. It was
found that probabilistic wind power forecasting, together with a
proper demand dispatch plan, can contribute significantly to the
efficient and economic operation of electricity markets and im-
prove unit commitment. In [7], optimal bidding strategies were
developed based on the probabilistic forecasting and sensitivity
modelling, which increase revenues for stakeholders and maxi-
mize the benefits of wind power generation. In [8] it was shown
that the uncertainty assessment of wind power prediction us-
ing local quantile regression benefits the grid operations when
incorporated in real-time energy management systems.

Machine learning methods have been used in probabilistic
wind power forecasting including the parametric methods such
as extreme learning machine (ELM) [9], sparse vector autore-
gressive (sVAR) 0, fuzzy neural networks 0 and the nonparamet-
ric method such as the adaptive resampling 0. The evaluation
metrics of probabilistic forecasting have been defined includ-
ing reliability, sharpness and the unique skill score 0. There are
several typical forms of probabilistic forecasting: 1) probability
distribution function (p.d.f) and cumulative distribution func-
tion (c.d.f.); 2) quantiles and intervals; 3) discrete probabilities;
4) moments of probability distribution [14]. Among them, inter-
val forecasts give a range of intervals within which the observed
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variable is expected to fall in with the pre-defined probabilities.
The current interval forecasts techniques include empirical er-
ror based methods, such as the parametric method [15] which
assumes the shape of error distribution and the nonparametric
method [12] which does not. Both kinds of empirical approaches
assume that future uncertainty can be expressed from the re-
cently witnessed behavior of the point prediction method and
the error of point forecasting are employed for further analysis.
However, the resulted confidence intervals do not necessarily
cover the measurements, which is not in favor of the above
assumption. The other type of interval forecast is the direct in-
terval forecast [16]–[17]. The intervals are given without the
prior knowledge of forecasting errors. In [16], the prediction in-
tervals and the corresponding confidence levels are predicted by
directly optimizing the reliability and sharpness with Extreme
Learning Machine based methods. Only time series wind gener-
ation data is employed for 90%, 95% and 99% interval forecasts
to ensure computational efficiency for hourly ahead forecast-
ing. In [17], the direct interval forecast is developed based on
neural networks for 4 fixed very short-term horizons with a
confidence probability of 90%. However, these methods train
the model separately for multi-horizon point forecasting and
bring in additional complex computation in the multi-horizon
interval forecasts. Therefore, an iterative way of implementing
the probabilistic interval forecasts becomes necessary in terms
of efficiency. This paper proposes an iterative interval forecast
method based on a variant of Gaussian Process. It analyses
how the uncertainty propagates and accumulates with iterative
multi-step forecasting for the first time and the analytical expres-
sion of the uncertainty for each prediction horizon is derived.
The results are evaluated and compared with other benchmark
models. Considering the computing-efficiency of the iterative
forecasting, this TLGP based interval forecast will benefit the
real-time power system operation and management due to its
high accuracy, reliability and efficiency.

TLGP is a non-parametric method proposed to adapt to the
time-varying characteristic of the wind power forecasting, to
enhance the local forecasting accuracy of the Gaussian Process
(GP) and to reduce the computational demand [18]. Moreover,
TLGP like GP generates not only the mean value of the predic-
tion for a certain horizon but also the variance representing the
uncertainty of the new prediction. In other words, it provides the
prediction intervals with the lower and upper bound and the pre-
defined probability of falling in the interval. TLGP is naturally
tuned for interval forecasts.

For multistep forecasting, the iterative method estimates the
next wind output and employs that estimate for the further fore-
casting step. It eliminates intensive re-computation, reducing
the computational time and thus increasing the efficiency [19].
The relevance of uncertainty propagation in interval forecasting
using iterative multi-step forecasting for more accurate wind
power forecasting is studied with a case study of a wind farm
in Ireland. The results are then evaluated using two metrics,
namely reliability and sharpness, for probabilistic predictions
in wind power forecasting [13].

The remainder of the paper is organized into six sections.
Section II introduces the framework of analytical interval fore-

casting using the TLGP. Section III develops the uncertainty
propagation for iterative multi-step TLGP under random inputs.
Section IV presents the results and analysis of a case study.
Section V discusses the probabilistic evaluations considering
the case study and Section VI concludes the paper. The Ap-
pendix provides the Taylor expansion used to estimate the mean
value and the variance under a random input.

II. ANALYTICAL INTERVAL FORECASTS WITH TLGP

There has been a lot of debates over the shape of the predictive
error distribution and the correct assumptions to make for the
wind power forecasting. In [20], Numerical Weather Prediction
(NWP) method was used to predict wind speed first, and the
wind power was obtained through the wind turbine power curve.
It was widely recognized that the conditional distribution of
wind power forecasting errors based on weather condition and
wind speed follows strongly a non-Gaussian distribution due
to the transformation of the wind speed to wind power, though
in [21], Gaussian distribution was used to represent the wind
power forecasting error for systems with significantly installed
wind capacity, and a new approach was proposed to quantify the
demand. In [22] the authors employed a persistence model for
wind power forecasting and found that the predictive error was
too fat-tailed to be Gaussian, and Beta distribution was used to
fit the probability distribution. An energy storage system was
designed to reduce the uncertainty. In [23], a generalization of
the logit-Normal distribution was introduced in auto regression
(AR) based models to describe the double-bounded nature of
wind power. However, it should be noted that two variables
are discussed above, namely the predictive error and the wind
generation output. Generally speaking, the global distribution
of the wind power generation is too skewed to be Gaussian
empirically, and the global forecasting error based on the wind
turbine working curve would not be Gaussian either.

The Gaussian Process assumes Gaussian noise in the obser-
vations [24], the non-linear relationship between the wind speed
and the resultant wind power implies that this assumption may
no longer be valid. However, the wind turbine working curve
can be approximated by a series of piecewise linear segments
and for each linear segment of the working curve, a Gaussian
Process can be assumed. Thus, the wind power dynamics can
be modelled by multiple local Gaussian Processes. The original
local Gaussian Process was proposed in [25] where the local
data within the Euclidean space are employed for local regres-
sion. For time series wind power forecasting where the system
exhibits strong time-varying features and most recent measure-
ments are mostly correlated to the following short-term gener-
ations, the TLGP proposed in [18] where the temporally local
data within a moving window are utilized for short-term wind
power forecasting, has shown to have a superior performance
in comparison with existing approaches. Within the short mov-
ing window, the wind turbine working curve will exhibit linear
property rather than a nonlinear one, thus the temporally lo-
cal Gaussian Process is well applicable for such situations. For
the scenarios where the wind power generation changes dra-
matically and a ramping event occurs, then a hybrid method
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combining the most recent measurements and the similar
historical data has been proposed [26]. The statistical analysis of
the forecasting errors in the form of kurtosis and skewness of the
distributions showed that TLGP generates the most Gaussian-
like uncertainties in comparison with other benchmark models
[18]. It is worth noting that the Gaussian assumption in time
series forecasting has been widely used in the literature. In
[9], [27], it has been demonstrated that even if the actual error
distribution is non-Gaussian, the time series models based on
Gaussian distribution assumption can still be applied with sat-
isfactory performance. Further, the work of [21] uses Gaussian
distribution of forecasting error for demand quantify and pro-
duces satisfactory performance. This paper mainly focuses on
the uncertainty propagation of the TLGP for multi-step itera-
tive forecasting, aiming to provide another innovative way for
reliable interval forecasts of wind power generation.

For a wind power system, denote yk |Nk=1 as the kth measure-
ment of the available generation output sequence, and xk as the
corresponding state vector for the time series model which is
made up of the previous wind power generation data, then

yk = f (xk ) + vk (1)

where vk is a random noise with vk ∼ N(0, v0). The objective
of wind power forecasting is to predict the output yt at time t
based on available historic datasets (X,Y ). According to Ras-
mussen [24], Gaussian Process could be derived for a system
with the Gaussian noise in (1) based on the Bayesian inference.
For the TLGP used in this work, it breaks the overall forecasting
range into temporal regions and adapts to the time-varying char-
acteristic of the wind power generations. The proposed TLGP
proposed dynamically uses a set of local Gaussian Process mod-
els to approximate the process with nonlinear noise. Locally the
process is modelled as a Gaussian process, though the global
function can be far from Gaussian. The amplitude and the dis-
tribution analysis of forecasting errors in [18] has verified the
effectiveness of this model.

Gaussian Process makes new probabilistic prediction in (2)
where A, B and CY are covariance between variables. It gives
the mean value of the new prediction as well as the uncertainty
associated in terms of variance. One of the most popular covari-
ance functions is shown in (3) where v1 , v0 , and ωd represent
each element of the hyper-parameter vector θ, and δij is the
Kronecker delta function.

P (yt |Y,X, θ∗,xt) = N
(
BC−1

Y Y, A − BC−1
Y BT

)
(2)

cov (yi, yj ) = Φ (xi ,xj )

= v1 exp

(

−1
2

D∑

d=1

ωd(xi (d) − xj (d))2

)

+ v0 · δij (3)

The ‘moving window’ forecasting technique as shown in
(4)–(9) was employed in TLGP, where t represents the time
instants of prediction. Similar to GP, TLGP not only generates
the mean value of prediction in (4), but also provides the vari-
ance/uncertainty of the prediction for one-step ahead forecasting

in (5).

ŷt = μ (xt) = BtC
−1
t Yt = BtC

−1
t

⎛

⎜
⎜
⎜
⎝

yt−1
yt−2

...
yt−M

⎞

⎟
⎟
⎟
⎠

(4)

σ2 (xt) = At − BtC
−1
t BT

t (5)

Bt = (Φ (xt ,xt−1) ,Φ(xt ,xt−2) , . . . ,Φ(xt ,xt−M ))
(6)

Ct =

⎡

⎢
⎣

Φ(xt−1 ,xt−1) , . . . ,Φ(xt−1 ,xt−M )
...

. . .
...

Φ(xt−M ,xt−1) , . . . ,Φ(xt−M ,xt−M )

⎤

⎥
⎦ (7)

At = Φ(xt ,xt) (8)

xt−i = (yt−i−1 , yt−i−2 , . . . yt−i−L )T (9)

Usually, non-parametric methods avoid assuming the type of
new probabilistic distribution, however, this GP based algorithm
makes use of the noisy time series generation and assumes the
joint distribution between them. The new prediction is noisy-
correlated to the previous measurement. Therefore, it becomes
natural and possible for the new prediction to automatically fol-
low Gaussian distribution. Under such circumstances, the three
prediction intervals become apparent: Interval I (μ − σ, μ + σ),
Interval II (μ − 2σ, μ + 2σ) and Interval III (μ − 3σ, μ + 3σ),
with the nominal probability of 68%, 95% and 99.7%, respec-
tively. Therefore, three nominal proportions are naturally given
without quantile definition. As in (5), the uncertainty can be ana-
lytically expressed, leading to a framework of analytical interval
forecasting. It should be noted that here every new prediction
has its individual uncertainty/variance, which is different from
the statistical analysis over all the forecasting error.

The assumption of Gaussian distribution for TLGP has been
validated in TLGP [18]. The principles and properties for proba-
bilistic iterative multi-step forecasting are further derived, eval-
uated and compared with standard Gaussian distribution in this
work.

III. MULTISTEP PROBABILISTIC ITERATION

UNDER A RANDOM INPUT

A. Probabilistic Estimation for Random Inputs

Technically speaking, the model input x∗ (state vector) of
wind power prediction at time t, which is often made of previous
measurements or previous predictions is assumed to be a random
variable following a Gaussian distribution x∗ ∼ N(μx∗ ,Σx∗)
and white noise v0 is presented in the measurements. The un-
certainty associated with the randomness is propogated in the
new wind power prediction. In particular, in iterative multi-step
prediction, the new estimation will be utilized for the next
step prediction. Thus such uncertainty is accumulated in each
step and can not be ignored.

Inspired by the method used in [28], the new variance
and mean under a random input could be obtained by Talor
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expansion which is derived in the Appendix and shown as fol-
lows:

m (x∗) = μ (μx∗) (10)

v (x∗) = σ2 (μx∗) + Tr
⎧
⎨

⎩
Σx∗

⎛

⎝1
2

∂2σ2 (x∗)

∂x∗∂(x∗)T

∣
∣
∣
∣
∣
x∗=μx∗

+
∂μx∗

∂x∗

∣
∣
∣
∣

T

x∗=μx∗

∂μx∗

∂x∗

∣
∣
∣
∣
x∗=μx∗

)}

(11)

where m(x∗) is the new mean output under random input x∗,
and is calculated by the mean μ() defined in (4) and v(x∗)
is the new variance of output under random input x∗, which
includes a new term in comparison with (5). The calculation
of (11) depends on the derivitives of the expected mean and
variance prediction for TLGP, as shown in (12) and (13). Such
uncertainty propagation rules under a random input apply the
same to GP.

∂μx∗

∂x∗
d

=
∂B (x∗)

∂x∗
d

C−1
Yt

Yt (12)

∂2σ2 (x∗)
∂x∗

d∂x∗
e

= −2
∂B (x∗)

∂x∗
d

C−1
Yt

∂B(x∗)T

∂x∗
e

− 2
∂2B (x∗)
∂x∗

d∂x∗
e

C−1
Yt

B(x∗)T +
∂2Φ (x∗)
∂x∗

d∂x∗
e

(13)

Here, the subscribtion d, e represent the dth and eth elements
of the input vector. For the square exponential covariance func-
tion Φ in (3), the first order and second order partial derivatives
of B can be written in the following form shown in (14) and
(15).

∂Bi (x∗)
∂x∗

d

∣
∣
∣
∣
x∗=μx∗

= ωd

(
xi

d − μx∗
d

)
Bi (μx∗) (14)

∂2Bi (x∗)
∂x∗

d∂x∗
e

∣
∣
∣
∣
x∗=μx∗

= ωd [−δde +
(
xi

d

−μx∗
d

)
ωe

(
xi

e − μx∗
e

)
]Bi (μx∗) (15)

where Bi refers to the ith element in B, and ∂ 2 Φ(x∗)
∂x∗

d ∂x∗
e

= 0.

B. Uncertainty Propagation in Iterative
Multi-Step Forecasting

Multi-horizon forecasting can be effectively achieved by em-
ploying the multi-step iterative forecasting, where the new esti-
mation ŷt together with its variance σ2

t will be used to construct
the new input xt+1 and further, to make the next step prediction
ŷt+1 , until the desired steps are achieved. In this procedure, the
uncertainty of the new estimation ŷt+j will be passed to the next
input xt+j+1 , and further introduce additional variance to the
next estimation ŷt+j+1 , thus the uncertainty is propagated and
continuously accumulated.

At the 1st step, xt ∼ N(μxt
,Σxt

)

xt ∼ N

⎛

⎜
⎝

⎡

⎢
⎣

yt

...
yt+1−L

⎤

⎥
⎦ ,

⎡

⎢
⎣

0 · · · 0
...

. . .
...

0 · · · 0

⎤

⎥
⎦

⎞

⎟
⎠ (16)

Applying TLGP it follows that ŷt ∼ N(m(xt), v(xt) + v0),
where m(xt) equals the mean prediction in (4) and v(xt) equals
the variance in (5).

At the 2nd step, the input xt+1 ∼ N(μxt + 1 ,Σxt + 1 ) with ran-
domness is

xt+1 ∼ N

⎛

⎜
⎝

⎡

⎢
⎣

m (xt)
...

yt+2−L

⎤

⎥
⎦ ,

⎡

⎢
⎣

v (xt) + v0 · · · 0
...

. . .
...

0 · · · 0

⎤

⎥
⎦

⎞

⎟
⎠ (17)

It can be obtained that ŷt+1 ∼ N(m(xt+1), v(xt+1) + v0),
where m(xt+1) still equals the mean in (4) considering the
Taylor expansion [23]. However, the uncertainty v(xt+1) is
made of the variance under the determistic input in (5) and an
extra part is determined by the covariance matrix Σxt + 1 of input
xt+1 as shown in the Appendix.

At the k+1 step, xt+k ∼ N(μxt + k
,Σxt + k

) in detail as
follows

N

⎛

⎜
⎝

⎡

⎢
⎣

m (xt+k−1)
...

m (xt+k−L )

⎤

⎥
⎦ ,

×

⎡

⎢
⎣

v (xt+k−1) + v0 · · · cov1L

...
. . .

...
covL1 · · · v (xt+k−L ) + v0

⎤

⎥
⎦

⎞

⎟
⎠ (18)

where covij is the cross-covariance

covij = cov (yt+k−i , yt+k−j ) (19)

Therefore, it follows that ŷt+k ∼ N(m(xt+k ), v(xt+k ) +
v0), similar to the distribution calculation of ŷt+1 .

Therefore, it can be concluded that to get v(xt+j), Σxt + j

must be updated at every step. The covariance matrix of next
step prediction Σxt + j + 1 can be obtained based on Σxt + j

. First,
by removing the last column and the last row of Σxt + j

, Σ′
xt + j

results. Second, the new cross-covariance terms that appear in
the first column of Σxt + j + 1 can be obtained by constricting
cov(yt+j , xt+j ) as (20):

R = cov (yt+j ,xt+j ) =
∂μ (xt+j )

∂xt+j

∣
∣
∣
∣
xt + i = μ xt + j

Σxt + j
(20)

Thus, resulting in the variance matrix for xt+j+1 shown in
(19), where R′ is obtained by removing the last element of R.

Σxt + j + 1 =
[

v (xt+j ) + v0 R′T

R′ Σ′
xt + j

]
. (21)

With the new variance v(xt+k ) calculated, the new predic-
tion will give the three interval forecasts directly based on the
Gaussian distribution assumption. The uncertainty propagation
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Fig. 1. One step ahead prediction with TLGP in wind farm ‘A’ [23].

for iterative multi-step forecasting can be outlined as follows:
Step 1: For one-step ahead predictions, a zero matrix of co-

variance is initialized. The mean and variance of ŷt

are estimated by TLGP with deterministic inputs as
in (4) and (5).

Step 2: For the jth (k > j > 0) step ahead prediction, the
previous output ŷt+j is used to construct the new
input vector xt+j+1 and further predict the mean
value of ŷt+j+1 using TLGP as defined in (4).

Step 3: Estimate R with (20). Remove the last element of
R and add up the variance v(xt+j ) + v0 of ŷt+j ,
leading to the construction of a new variance Σxt + j + 1

of xt+j+1 as shown in (21).
Step 4: Estimate the new variance vtl(xt+j+1) + v0 of

ŷt+j+1 with (11) where Σx∗ = Σxt + j + 1 . Thus, the
mean and variance of ŷt+j+1 can be used for the
next step prediction.

Step 5: Decide whether the desired horizon has been
reached. If not go to Step 2, otherwise terminate.

IV. CASE STUDIES AND RESULT ANALYSIS

A. Wind Farm ‘A’ in Ireland

Power generation data from a wind farm in Donegal in North
West Ireland is used to analyze the uncertainty propagation in
wind power forecasting with TLGP. The influence of the North
Atlantic sea wind and lake-hill breeze at this wind farm makes
wind power generation more unpredictable and thus more con-
vincing for any conclusion drawn from the study. The deter-
ministic forecasting of this wind farm and the parameter opti-
mization procedure has been addressed in [29]. Wind generation
data of one year were collected up to June 2004, averaged with
a time resolution of 15 minutes, and then normalized by the full
capacity to predict the output of the first 3 days in July 2004
as in Fig. 1. In [29], the data used was in unit of MWHr rep-
resenting the overall wind energy output in a quarter of hour,
thus the wind generation in [29] has similar shape with Fig. 1 of
this paper, but shows a fixed ratio of 0.25. Based on the existing

TABLE I
THE OPTIMAL MODEL PARAMETERS FOR TLGP IN WIND FARM ‘A’

TABLE II
THE IMPROVEMENT OF TLGP OVER BENCHMARK MODELS IN WIND FARM ‘A’

point forecasting results from [29], this work investigates the
uncertainty propagation of iterative multi-step forecasting and
determines the interval forecasting results.

1) Model Training and Mean Value Forecasting: The
squared exponential covariance function is still used in TLGP
for wind power forecasting. The trial-and-error method is used
to identify the optimal parameters (L,M) in TLGP. However,
in this work further tests were carried under different (L,M)
settings and the best results are given in Table I. The optimal
model with the least multi-step errors is (8, 6) which also shows
a satisfactory one-step ahead forecasting performance. Such
findings agree with the experiment settings in [29]. The input
vector is required to include measurements from 2 hours ahead
to implement TLGP.

In [23], the deterministic forecasting results of TLGP were
plotted to compare the forecasting performance with other
benchmark models. The forecasting metrics were evaluated with
root mean square error (RMSE) and mean absolute error (MAE).
Metric comparison has shown the effectiveness of TLGP for
point forecasting. In order to better show the interval forecast-
ing results, in this work the result of point forecasting is plotted
again in Fig. 1 as in [29]. Further analysis shows that the max-
imum normalized error could reach 0.33 while the average is
0.11. Table II shows that TLGP made over 6% and 12% im-
provement over the deterministic forecasting results of the GP
and persistence model separately. The uncertainty involved in
this mean value prediction will be discussed in the next sec-
tion. The benchmark models such as persistence, ARMA [30]
and neural network will be referenced based on which the em-
pirical error will be investigated and interval forecasts will be
implemented.

2) Analytical Interval Forecasts With TLGP: Fig. 2 shows
the three predictive intervals for one-step ahead prediction.
Region 1 represents prediction interval I with nominal confi-
dence probability of 68%. Region 1 and 2 together refer to
prediction interval II of 95% and Region 1, 2 and 3 together
represent prediction interval III with nominal confidence prob-
ability of 99.7%, as illustrated in Section II. In most cases,
the real outputs represented by the dashed red line stay within
Region I, which is the darkest region in the center. However,
some predictions leave Region I and enter Region II or even
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Fig. 2. The one-step probabilistic forecasting results of ‘A’ by TLGP. The red
dashed line represents the real measurements while the shaded area represents
the predicted intervals with different confidence.

Fig. 3. The uncertainty propagation of ‘A’ at the 1st sample and the 81st
sample. The solid lines represent the bounds of confident regions, the dashed
line without marker shows the multi-step prediction and the dashed line with
marker shows the real measurement.

Region III. This gives an intuitive indication of the three predic-
tion intervals with different coverage rate.

3) Uncertainty Propagation for Multi-Step Forecasting:
Prediction uncertainty propagates and accumulates in iterative
multi-step ahead prediction. The uncertainty, represented by std
(standard deviation), increases in multi-step ahead predictions
which is clearly shown in Fig. 3. While (a) and (b) show the
μ ± σ and μ ± 3σ bounds of the 12 step predictions based on
the 1st time instants respectively, (c) and (d) show those of the
81st time instants. The bounds are enlarged as the number of
steps increases. Besides, the μ ± 3σ interval (Interval III) in (b)
and (d) cover broader area than (a) and (c) (Interval I). Further,
as shown in (a), the 3rd real measurement leaves Interval I, but
stays within the Interval III of (b), showing less reliability in the
interval forecasting of this point. However, in (c) and (d) all the
predictions stay within both bounds of Interval I and Interval III,
showing the reliability of predictions at the 81st time instants.

Fig. 4 shows the comparison of the multi-step prediction
uncertainty at different time instants based on the derived

Fig. 4. The uncertainty of Interval I for the testing points at varied steps with
TLGP of wind farm ‘A.’

Fig. 5. Real measurement (top) and the corresponding one-step uncertainty
of forecasting with TLGP (bottom) of wind farm ‘A.’

uncertainty propagation rule presented earlier. The uncertainty
distributions of the one-step ahead predictions are relatively sta-
ble and only exhibit small variations at different points. How-
ever, for multi-step ahead predictions (such as 12th steps ahead),
the uncertainty begins to undulate severely and such uncertain-
ties escalate with the number of prediction steps. This uncer-
tainty information can be used to estimate other quantiles of new
predictions and can help to develop better plans for economic
dispatch and unit commitment of wind power.

4) Uncertainty Analysis at Different Prediction Points: Fig. 5
shows the standard deviation and the real measurements for
one-step ahead predictions. It shows that the uncertainty/std is
less than 0.04, e.g., less than 4% of the power capacity. This
is a very close fit with the real measurements. Every prediction
point shows similar uncertainty. It can also be seen that with the
changes between every two consecutive points, the uncertainty
grows rapidly during ramping events. For example, the uncer-
tainty increases dramatically at the 41th, the 111th and the 207th
samples, due to the rapid increase in wind power generation just
before these time instants. Further, other obvious large increases
in uncertainty occur at the 77th, the 178th, and the 248th points,
which are caused by a sudden drop of wind power generation
before those time instants. Less uncertainty is observed when
the wind power generation is relatively stable.
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Fig. 6. Real measurement (top) and the corresponding 12-step uncertainty of
forecasting with TLGP (bottom) of wind farm ‘A.’

For twelve-step ahead predictions, the uncertainty is shown
in Fig. 6. It shows a few significant peak values including
some points developed from the one-step ahead uncertainty peak
points in Fig. 5. For example, the 79th, the 207th and the 249th
points in Fig. 6 are developed from the 77th, the 207th, and the
248th points in Fig. 5. It is interesting that these uncertainty
peak points are shifted as in the multi-step ahead predictions.
Thus, it appears that uncertainties accumulate and shift forward
along the iterative multi-step forecasting horizon. Some of the
one-step peak uncertainties are averaged out in the twelve-step
ahead predictions, such as the 41th, 111th, and 178th points.
On the other hand, at some points, the uncertainty accumulates
very fast to generate some small peaks in the 12th step ahead
predictions, such as the 145th point in Fig. 6.

B. Overall Generation of Ireland

Regional wind power forecasting is important in terms of
wind penetrating, energy scheduling and power grid stabilizing
within large inter or intra areas. The accurate forecasting of re-
gional wind power will benefit the cooperation between different
regions for grid balancing, wind integration, security of energy
supply. Time series forecasting show its unique advantage re-
garding the dispersed wind distribution across the region while
NWP becomes out of effect for forecasting power as a whole.
In [23], the authors looked at the accuracy of using TLGP for
whole Ireland wind power forecasting. In this paper, the interval
forecasts will be further developed with (L, M) remaining the
same as (10, 14) to minimize the average error of multi-step
forecasting.

The interval forecasting results for the wind power of Ireland
are shown in Fig. 7. Similar to wind farm ‘A’, it has three
probabilistic intervals corresponding to 3 different confidence
levels, but show more confident (condense) interval estimation
results.

Fig. 8 shows half of the width of interval I at different time
instants and various prediction steps for Ireland. It shows that the
peak values happen at about the same time instants for different

Fig. 7. The three-step interval forecasting results of Ireland by TLGP. The
marked read line represents the real measurements, and the other shaded area
represents intervals with different confidence with the middle line representing
the mean of probabilistic forecasting.

Fig. 8. The uncertainty of Interval I for the testing points at varied steps with
TLGP for wind power of Ireland.

time horizons and a small bump for one step forecasting may
get accumulated and become a significant peak for multi-step
forecasting. This is similar to the pattern interval forecast for
wind farm ‘A’.

The uncertainty distribution over the investigated period for
the whole Ireland wind power forecasting show similar trends
with that of wind farm ‘A’, only with more confident and con-
dense interval forecasts due to the smooth change of generation.
The interval forecast results in this section showed the capability
of proposed network in approximating uncertainty propagation
for iterative multi-step forecasting. In the following sections, the
interval forecast results will be further analysed and compared
with other benchmark models. If the conclusions stand for this
small wind farm, then it will be also effective for the whole
island.



632 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 10, NO. 2, APRIL 2019

Fig. 9. The sharpness diagram with respect to the horizons for wind farm ‘A.’

V. PROBABILISTIC EVALUATION AND DISCUSSIONS

A. Wind Farm ‘A’ in Ireland

1) Sharpness/Uncertainty Evaluation and Comparison: As
one the of evaluation metrics of probabilistic forecasting, the
sharpness refers to the mean size of the interval in interval fore-
casts [13]. The size of each interval in this work is proportional
to the std with a coefficient c of 2, 4 and 6 respectively in (22)
where k refers to the prediction steps. As Interval II and III have
a very high coverage rate of 95% and 99.7%, which accounts
for the extreme error and outliers in the prediction, we will take
Interval I and compare the sharpness of different methods. The
sharpness of the other two intervals will be proportional to that
of Interval I. The sharpness comparison of Interval I with respect
to the multi-steps is shown in Fig. 9.

δ̄k =
1
N

N∑

t=1

cσt+k |t (22)

In [18], several benchmark forecasting models have been
assessed, including the persistence model, ARMA and the neu-
ral network model. In [15], the authors provided a parametric
framework of analyzing the empirical errors of these determin-
istic forecasting methods and employing the uncertainty of error
for interval forecasts. The forecasting error of these benchmark
models were analyzed and the parametric interval forecasts were
implemented with the standard deviation representing the uncer-
tainty. The probabilistic forecasting results of these benchmark
models are compared with those of GP and TLGP. As the five
models show significantly different prediction ranges, two y-
axes are used. The right represents the performance of GP, and
the left is for the other models as shown in Fig. 9. The sharp-
ness of persistence model, ARMA and neural network models
are far better than GP for the iterative multistep forecasting and
even comparable to TLGP for the first step prediction. However,
these models are inferior to TLGP for multi-step interval fore-
casts as the error accumulates. As these methods only generate
overall empirical uncertainty estimation over the time space, no
prediction interval can be estimated for each individual time
instance.

Fig. 10. The standard deviation distribution of forecasting at varied steps with
GP for wind farm ‘A.’

Fig. 11. The standard deviation comparison of TLGP and GP at varied steps
for wind farm ‘A.’

A better look at the interval forecast of GP and its compar-
ison with TLGP is shown in Figs. 10 and 11 respectively. The
variance of noise v0 has a significant impact on the uncertainty
accumulation rate. In the uncertainty analysis, the optimized v0
in both TLGP and GP are approximately the same. The uncer-
tainty propagates very fast in multi-step ahead predictions for
GP. For the one-step predictions in Fig. 11(a), TLGP shows
higher prediction uncertainty than GP almost at every testing
point. This is because TLGP employs less data in each moving
window for prediction, thus produce results with less confi-
dence. However, for multi-step ahead forecasting, TLGP starts
to outperform GP with smaller uncertainty from the 2nd step as
shown in (b). Furthermore, for the twelve-step ahead prediction,
the advantages of TLGP become more obvious, for example the
mean uncertainty of GP is approximately 7, while it is only 0.18
for TLGP. This analysis confirms that uncertainty accumulates
much more slowly for TLGP.

2) The Reliability Evaluation and Comparison: Since the
intervals have been defined in terms of the std of each
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TABLE III
THE EMPIRICAL PROBABILITIES OF DIFFERENT INTERVALS AND THE AVERAGE

OF PREDICTED STD OF TLGP FOR WIND FARM ‘A’

TABLE IV
THE EMPIRICAL PROBABILITIES OF DIFFERENT INTERVALS AND THE AVERAGE

OF PREDICTED STD OF GP FOR WIND FARM ‘A’

prediction (for one-step or multi-step), the interval is varying at
different time instants and horizons. The probability of the real
wind power generation falling in each interval can be obtained.
For a good prediction, the empirical (i.e., observed) probability
and the defined coverage rate (i.e., nominal probability) should
be as close as possible. This property is referred to as reliability.
Moreover, bias or deviation, bk has been defined as the dif-
ference between the nominal probabilities α and the empirical
probabilities αk as an evaluation metric for reliability [13].

bk = α − αk (23)

Empirical probabilities and estimated uncertainty (i.e., std)
at each horizon for TLGP forecasting are shown in Table III.
For longer prediction horizons, the empirical probabilities tend
to decrease slowly. This is because for TLGP, the uncertainty
(std) does not accumulate as fast as prediction error as the mean
value propagates. The average empirical probability over dif-
ferent forecasting steps ahead are 61.4%, 90.5%, and 99.5% in
Interval I, II and III, respectively for TLGP.

Empirical probabilities and estimated uncertainty (standard
deviation) at each horizon for GP are shown in Table IV. Con-
versely, the probabilities in each region tend to increase as the
forecasting horizon increases and stabilize finally at 100%. This
is because for GP the uncertainty (i.e., std) accumulates very
fast so although the forecasting error has enlarged, the proba-
bility of the wind power generation falling in the interval is still

Fig. 12. The reliability comparison of TLGP with other benchmark models
for wind farm ‘A.’

increased. The average probabilities with respect to different
step forecasting in every region are 93.2%, 99.1% and 99.97%
in Interval I, II and III, respectively for GP.

The above observations are further illustrated in Fig. 12. The
empirical probability results for TLGP tend to decrease with
multi-steps, whereas for GP they tend to increase and for other
benchmark models, they tend to stay the same. Furthermore,
the uncertainty accumulation for all the benchmark models are
very fast and the confidence probability approaches 100% very
quickly. The large empirical uncertainty for GP is caused by the
significant predicted variance at each point as shown in Fig. 9.
The black dashed line represents the ideal coverage probability
for ‘perfect’ probabilistic forecasting. It shows in the Interval
I, interval forecasting with TLGP shows much better reliability
than with GP or any other reference models. While the refence
models usually show bigger coverage rate than the nominal,
TLGP is displaying a smaller one indicating a slow uncertainty
accumulation over the iterative multi-steps. By calculating the
overall mean absolute bias and mean empirical probability, Ta-
ble V shows that the reliability of TLGP outperforms that of GP
and other models greatly in Interval I and performs about the
same in Interval II & III. This indicates that the estimated un-
certainty of the probabilistic forecasting for TLGP fits the data
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Fig. 13. The sharpness diagram with respect to the forecasting horizons for
wind generation of Ireland.

TABLE V
THE MEAN EMPIRICAL PROBABILITY AND RELIABILITY BIAS AT THREE

INTERVALS WITH DIFFERENT METHODS FOR WIND FARM ‘A’

better. This is another advantage of TLGP. It is worth noticing
that the three benchmark models have quite similar reliability
although their sharpness as shown in Fig. 11 is apparently dif-
ferent. This is probably due to two reasons. Firstly, as shown in
Table V is the averaged reliability over 12 forecasting horizons.
It is apparent that the minor difference of their reliability trends,
as reflected in the first figure of Fig. 12, is filtered out while
averaging the reliability scores. Secondly, the distribution of the
errors tends to be too long-tailed, so when the standard deviation
is used to evaluate the mean reliability, the interval forecasting
becomes over-confident with 100% reliability. This reveals the
difficulty of parametric interval forecasts.

B. Overall Generation of Ireland

1) Sharpness/Uncertainty Evaluation and Comparison: To
evaluate the sharpness of interval forecast for the overall wind
generation of Ireland, the same method was implemented for
Interval I and compared with the other benchmark models as in
part A. GP again shows quick uncertainty accumulation but the
trend slows down in comparison with that of wind farm ‘A’. The
sharpness of TLGP shows slowest accumulation with iterative

Fig. 14. The standard deviation distribution of forecasting at varied steps with
GP for wind generation of Ireland.

Fig. 15. The standard deviation comparison of TLGP and GP at varied steps
for wind generation of Ireland.

multi-step forecasting and generates sharpest interval forecasts.
Similar to part A, we will further illustrate the detailed interval
forecasts at various time instants for multi-horizons with GP and
the comparison with that of TLGP in Figs. 14 and 15. Although
TLGP shows more uncertainty for one step forecasting due to the
limited data used, but the uncertainty accumulates is the slowest
among the five models used for iterative multi-step forecasting.
The sharpness comparison show very similar results with that
of wind farm ‘A’.

2) The Reliability Evaluation and Comparison: The relia-
bility of different interval forecast methods are evaluated and
compared in this part. Similar to the results for wind farm ‘A’, the
reliability of TLGP shows most Gaussian-like behavior, which
verifies the assumption of local Gaussian Processes in each time
window. The reliability trend of different methods are shown in
Fig. 16 and the reliability bias for three predicted intervals is
listed in Table VI. It is worth noting the interval forecasts with
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Fig. 16. The reliability comparison of TLGP with other benchmark models
for wind generation of Ireland at three predicted intervals.

TABLE VI
THE RELIABILITY BIAS AT THREE INTERVALS WITH DIFFERENT METHODS FOR

WIND GENERATION OF IRELAND

TLGP show better qualities, e.g., sharpness and reliability bias
for the wind generation of whole Ireland in comparison with
that of a small wind farm ‘A’ due to the smooth change of wind
generation in a large region.

VI. CONCLUSION

Both TLGP and GP are convenient for interval forecasting
by nature with no need to calculate each of the single quantile
numerically. For the non-Gaussian noise in the wind generation
which is generated by the non-linear transformation between
wind speed and wind power, TLGP was proposed to approx-
imate Gaussian-like behavior in each short time window. In
this work, the uncertainty propagation of the iterative multistep
forecasting was analyzed for the first time and the analytical
interval forecasts were given for each step. While the traditional
probabilistic approach relies mainly on statistically analyzing
the forecasting error, this method provide one way of looking at
the uncertainty variation at different time instants for different
forecasting horizons. The probabilistic forecasting results were
evaluated after TLGP and GP were applied to short-term wind
power forecasting in a wind farm in Ireland and for the whole Ire-
land. Three main conclusions can be drawn from this work. First,
TLGP shows more accurate and more confident interval forecast
for smoother and more steadily changing wind generation with
an exception for ramp events forecasting. Uncertainties show up
mainly and accumulate significantly at the ramping points, and
they shift forward as the forecasting horizon expands iteratively.
Secondly, for one-step forecasting, TLGP shows higher predic-
tion uncertainty because a limited number of data are used, but
the uncertainties accumulate much more slowly for iterative
multi-step forecasting. It generates higher reliability over the
named three intervals and better sharpness on the shape of dis-
tribution, which makes the probabilistic forecasting with TLGP
more trustworthy. More importantly, the reliability of proposed
method approaches that of standard Gaussian distribution which
proves the assumption that TLGP is more Gaussian-like. Such
analytical method of analyzing the uncertainty propagation for
the iterative multi-step wind power forecasting has not been
proposed before. Hopefully, it will stimulate research for other
methods under investigation.

APPENDIX

A. The Mean Value Estimation Under a Random Input

With the law of iterated expectations, the new mean output is
the expectation of the old mean function.

m (x∗) = Ex∗ [μ (x∗)] (24)

The first order Taylor expansion can be written as follows,

μ (x∗) = μ (μx∗) +
∂μ (x∗)

∂x∗

∣
∣
∣
∣

T

x∗=μx∗

× (x∗ − μx∗) + O
(‖x∗ − μx∗‖2) (25)

If its first order differentiation is finite around x∗, thus we
have m(x∗) = μ(μx∗) in (10) which means the new mean stays
the same with the forecasting result under deterministic input.
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B. The Variance Estimation Under a Random Input

With the law of conditional variance, the new variance of
output will follow

v (x∗) = Ex∗
(
σ2 (x∗)

)
+ V arx∗ (μ (x∗)) (26)

Expanding the first term with Taylor Series in second order
gives

σ2 (x∗) = σ2 (μx∗) +
∂σ2 (x∗)

∂x∗

∣
∣
∣
∣

T

x∗=μx∗
(x∗ − μx∗)

+
1
2
(x∗ − μx∗)T ∂2σ2 (x∗)

∂x∗∂x∗T (x∗ − μx∗)
∣
∣
∣
∣

T

x∗=μx∗

+ O
(‖x∗ − μx∗‖3) (27)

Thus we have the following expectation

Ex∗
(
σ2 (x∗)

) ≈ σ2 (μx∗) + Ex∗

×
(
1
2
(x∗ − μx∗)T ∂2σ2 (x∗)

∂x∗∂(x∗)T
(x∗ − μx∗)

)

= σ2 (μx∗) +
1
2
Tr

{
∂2σ2 (x∗)
∂x∗∂x∗T

∣
∣
∣
∣
x∗=μx∗

Σx∗

}

(28)

Substitute (25) in the second term of (26), it follows

V arx∗ (μ (x∗)) ≈ V arx∗

×
(

μ (μx∗) +
∂μ (x∗)

∂x∗

∣
∣
∣
∣

T

x∗=μx∗
(x∗ − μx∗)

)

=
∂μx∗

∂x∗

∣
∣
∣
∣

T

x∗=μx∗
Σx∗

∂μx∗

∂x∗

∣
∣
∣
∣
x∗=μx∗

. (29)

Thus the new variance function in (26) is transformed into
(11) which contains an additional term in comparison with the
uncertainty result under a deterministic input in (5).
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