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Alerting to Rare Large-Scale Ramp Events
in Wind Power Generation

Yu Fujimoto , Member, IEEE, Yuka Takahashi, and Yasuhiro Hayashi , Member, IEEE

Abstract—Wind power is an unstable power source, as its output
fluctuates drastically according to the weather. Such instability can
cause sudden large-scale changes in output, called ramp events; the
frequency of such events is relatively low throughout the year but
they could negatively affect the supply–demand balance in a power
system. This study focuses on an alerting scheme of wind power
ramp events for a transmission system operator to support oper-
ational decisions on cold reserve power plants. The ramp alerting
scheme is implemented from the viewpoint of supervised learning
by using the prediction results of wind power output. In particular,
the authors address the class imbalance problem, as the accuracy
of ramp event prediction tends to be low because of the infre-
quency of such ramp events in the database used for learning. In
this study, several data sampling strategies are proposed and im-
plemented to overcome the problem in the ramp alert task. The
effectiveness of the proposed data sampling framework is evalu-
ated experimentally by predicting real-world wind power ramps,
based on a dataset collected in Japan. The experimental results
show that the proposed framework effectively improves the ramp
alert accuracy by addressing the class imbalance problem.

Index Terms—Class imbalance problem, machine learning,
prediction, wind power ramp.

NOTATION

Symbols

B = (|B|−1, . . . , 0) A set of indices for the observations uti-
lized in prediction.

D Data set.
εt = p̂Ht − pH∗t Error sequence of wind power output

forecasted at the time slice t.
h Time slice of forecast horizon (30 min

time resolution).
H = {1, 2, . . . , |H|} A set of forecast horizons (30 min time

resolution).
〈H〉 = {1, 2, A set of forecast horizons (1 h time
. . . , �|H|2 �} resolution).
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pt ∈ [0, 1] Wind power output ([pu.h/30 min]) at the
time slice t.

pHt = (pt+1 , Sequence of wind power outputs at the
. . . , pt+ |H|) time slice t for forecast horizons inH.

p
〈H〉
〈t〉 = (p〈t+1〉, Sequence of wind power outputs at the
. . . , p〈t+ |H|〉) time slice 〈t〉 for hourly forecast horizons

in 〈H〉.
pB∗t = (p∗t−|B|+1 , Sequence of observed wind power
. . . , p∗t ) outputs at the time slice t for the period

B.
Δpt = (p∗t−|B|+2 Sequence of the first-order difference

− p∗t−|B|+1 , . . . , in wind power outputs (pBt ,p
H
t ).

p̂t+|H| − p̂t−|H|−1)
R ∈ [0, 1] Ratio parameter for sampling.
rut , r

d
t ∈ {0, 1} Ramp up/down event occurred at the

time slice t.
rut , r

d
t Sequence of ramp up/down events

for forecast horizon H; e.g., rut =
(rut+1 , . . . , r

u
t+ |H|).

t ∈ {1, . . . , T} Time slice index (30 min time resolu-
tion).

S Data subset of D.
〈t〉 = � t2 � Time slice index (1h time resolution);

hourly time index corresponding to t.
x〈t〉 ∈ RP P -dimensional meteorological field

forecasting result for the hourly time
slice 〈t〉 used for power prediction.

ψ(·) Regressor for wind power outputs.
φ(·) Classifier for wind power ramp events.
�·� Floor function.
|z| Absolute value of a scalar z.
|Z| Cardinality of a set Z .

Subscripts and Superscripts

·t At the time slice t (30 min time resolu-
tion).

·t+h h-ahead result at the time slice t (30 min
time resolution).

·〈t〉 At the time slice 〈t〉 (1 h time resolution);
i.e., hourly value corresponding to the
time slice t.

·∗ Observed value.
·̄ Rough prediction result.
·̂ Predicted value.
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I. INTRODUCTION

W IND power generation systems have been introduced
proactively in Japan [1], and are expected to contribute

to improving the energy self-sufficiency rate, prevent global
warming, and accelerate economic growth in related industries.
However, sudden and unexpected fluctuations in wind power
generation (called ramp events) [2] could have a significant ef-
fect on the supply-demand balance in a power system under a
high amount of penetration. To mitigate such effects, prediction
technology is a valuable tool for planning operation of alterna-
tive generators [3], [4] or energy storage devices [5], [6], and
decision making in a market [7], [8]. For example, if a sudden
large-scale decline in wind power generation could be predicted
in advance, the transmission system operators could start up
cold reserve power plants, such as aged thermal power genera-
tors that are not usually in operation. Note that the time required
for the cold starting up of such power plants is generally several
hours. Accordingly, ideally, such fluctuations would need to be
predicted in good time to enable alternative generators being
started up in time.

The development of methodology for predicting wind power
output is considered an important research theme, not only for
transmission system operators but also for wind power produc-
ers. In most initial research on this subject, such prediction has
aimed to reduce the expected errors in the derived wind power
output. Therefore, the performance has been evaluated from the
viewpoint of the root mean squared error (RMSE) or mean ab-
solute error (MAE) of the predicted wind power [9]. However,
the relatively low average errors in the predicted wind power
sequence does not always facilitate the accurate prediction of
the timing of large-scale ramp events [10], [11]. For example,
Hou [12] has shown that the RMSE between predicted power se-
quence and the observed sequence is composed of three compo-
nents; i.e., the bias, the difference between standard deviations,
and the dispersion between two sequences. Here, the dispersion
intuitively implies the difference of the fluctuation timing cor-
responding to so-called phase errors [13]. This decomposition
implies that the reduction in RMSE does not always indicate an
improvement in prediction of the fluctuation timing directly. Ac-
cordingly, in recent years, various researchers have investigated
this ramp prediction challenge (see [2], [14], [15]).

Kamath [16], for example, has analyzed historical wind power
data to organize the characteristics of the ramp events in relation
to time (duration) and intensity. Utilizing such historical data
sets plays an important role in ramp event prediction; therefore
various data driven frameworks have been studied [17]–[24].
Several studies have suggested that the application of machine
learning methods [25], like auto regressive model [21], support
vector machine [17], [18], hidden Markov model [19], random
forest [17], [24], gradient boosted trees [23], wavelet trans-
form [21], [26], and artificial neural networks [17], [21], [22],
[27], particularly containing deep architectures [28]–[30], con-
tributes to improving the accuracy of ramp event prediction. An-
other important point of view for predicting wind ramp events
is utilizing the numerical weather prediction (NWP) model
[31]–[35]. In relevant studies, the results of the NWP model

have been used for the derivation of expected wind power out-
put and predicting impending ramp events. Therefore, further
improvements to the prediction accuracy have been attempted
by adopting the data driven scheme, while utilizing the NWP
results [19], [35].

The above-mentioned ramp prediction schemes can be clas-
sified roughly into two categories, namely, the direct scan-
ning scheme and the separate prediction scheme. In the for-
mer scheme, the impending ramp events are identified based on
the definition of a targeted ramp by directly scanning a time
series subsequence of the predicted wind power output. A prob-
lem of the direct approach is that the fluctuation in the pre-
dicted wind power sequence naturally contains the errors in the
predicted magnitude and the time of occurrence. For example,
wind power generators basically output electric power within
the range from zero to the rated power, so that the predicted
results focusing on reduction of expected errors could have a
tendency to be not extremely large or extremely small to avoid
significantly large errors. Consequently, the fluctuation in the
predicted subsequence could be smaller than the fluctuation in
the actual output sequence. This tendency has been reported in
the context of general wind power prediction scheme [36], [37];
for instance, the annual distributions of the ramp magnitude
derived from actual wind power and various prediction results
reported in [37] suggest this property. On the other hand, in the
separate prediction scheme, the ramp events are predicted sep-
arately from the predicted wind power sequence; this scheme
does not swallow the derived power generation sequence con-
taining prediction errors and predicts the timing of large-scale
fluctuations separately. The separate scheme is expected to fa-
cilitate early warning of the possible risk for the occurrence
of large-scale ramp events such that the predicted wind power
output sequences are hard to suggest.

In this study, we focused on the ramp alert task from the
viewpoint of the separate prediction scheme. We proposed a
framework for warning of ramp events, based on the supervised
classifiers [25] that were learned from the predicted wind power
sequence, derived by using the NWP results. This approach
provided a simple but effective way for warning of the risk of
a ramp occurrence. In particular, we addressed challenges, such
as the ramp prediction accuracy, based on classification algo-
rithms generally tending to be low, owing to the infrequency
of such ramp events [24]. This tendency is known as the class
imbalance problem [38]–[40] in the machine learning domain.
To the best of our knowledge, the class imbalance problem in
the ramp alert task has not been emphasized well, so that most
of the previous studies have not explicitly addressed an intrin-
sic difficulty in predicting rare wind power ramp events.1 In this
study, we adopted several data undersampling/oversampling ap-
proaches [41], [42] to deal with the class imbalance problem
relevant to the ramp alert task and propose a novel oversam-
pling approach called the error bootstrap oversampling (EBOS)

1In recent years, Gupta et al. [23] has stated the difficulty of predicting rare
ramp events, but no direct countermeasures have been taken. Our early work [24]
also has reported the difficulty, though only a simple data-sampling strategy has
been investigated.
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Fig. 1. Schematic image of ramp alert system. The system comprises the
power predictor and the ramp predictor. In the power predictor, the half-hourly
wind power output sequence, p̂Ht = (p̂t+1 , . . . , p̂t+ |H|), is derived by using
the predicted hourly meteorological field data, {x〈t+h 〉}, and the latest wind

power output information, pB∗t . In the ramp predictor, the occurrence of the ramp
up/down events, r̂ut+h and r̂dt+h , are predicted based on the power prediction

results, p̂Ht .

focusing on errors in wind power prediction results used for
the ramp event prediction. We also introduce the hybridiza-
tion [40] of these approaches and evaluate the data sampling
approaches experimentally by comparing them with the exist-
ing approaches. The contributions made by this study are the
following; (i) we explicitly discuss the class imbalance problem
in a wind power ramp alert framework based on the separate pre-
diction scheme, (ii) we propose a novel data sampling strategy
EBOS for alleviating the class imbalance problem in learning
ramp predictors, and (iii) we give evaluation results of the pro-
posed ramp alert frameworks by comparison with the direct
scanning scheme, based on real-world wind power data.

The rest of the paper is organized as follows. In Section II, we
introduce formally the ramp alert task and explain our proposed
ramp alert framework, based on wind power output prediction
results. In Section III, we focus on the class imbalance problem
in the ramp alert task and implement several data sampling ap-
proaches to address the problem. Our proposed approaches are
compared with several existing methods related to ramp pre-
diction accuracy by using the real-world data set in Section IV.
Finally, in Section V, we provide our concluding remarks.

II. RAMP ALERT BASED ON SEPARATE PREDICTION SCHEME

USING WIND POWER PREDICTION

A. Ramp Alert Framework

In this study, we focused on large-scale ramp events in wind
power output; the occurrence frequency of such events is low
throughout the year but they could affect the electric power
system. In particular, we aimed to provide auxiliary information
for system operations by predicting the occurrence of the ramp
events, in addition to the prediction of ordinary wind power,
which is called the ramp alert task in this study.

We introduced a hierarchical ramp alert scheme compris-
ing three subsystems. Fig. 1 shows a schematic image of our
proposed framework. In the first subsystem, ψ1 , the rough pre-
diction of the hourly wind power output sequence was derived
once daily by using the predicted hourly meteorological field
data provided by the NWP model once a day; this subsystem

outputs the expected wind power generation for each time slice
corresponding to the snapshot of the hourly weather forecast.
In the second subsystem, ψ2 , the sequence of half-hourly wind
power output was predicted every 30 minutes by utilizing the
latest wind power observations and the output of the first sub-
system. A set of these two subsystems, ψ1 and ψ2 , were called
the power predictors, in this study. The third subsystem, φ, pre-
dicted the occurrence of the ramp up/down events for the target
prediction horizons, based on the wind power output sequence
derived from the power predictor. This subsystem, φ, was called
the ramp predictor. Our procedure adjusted the prediction re-
sults every 30 minutes by utilizing the latest observations effec-
tively, while using the predicted meteorological field data. Such
data are useful for relatively long-term prediction but cannot be
updated frequently. In the following subsections, we introduce
briefly these subsystems for alerting to ramp events.

B. Rough Prediction of Hourly Wind Power Output

Let t be the index for indicating a time slice of 30 minutes
and let 〈t〉 = � t2 � be the corresponding hourly time slice; e.g.,
if t = 0 implies 00:00 in a certain day, then epoch time t =
5 implies 02:30, and its corresponding 〈t〉 implies 02:00. In
the first subsystem, the rough estimation result of the one-hour
wind power output, p〈t+h〉, was predicted based on the predicted
hourly meteorological field data, x〈t+h〉, where t indicates the
prediction timing and h ∈ H indicated the prediction horizon.
We used the data set D1 = {(x〈t+h〉, p∗〈t+h〉)}, composed of
pairs of x〈t+h〉 and the observed hourly power output, p∗〈t+h〉,
for learning the first subsystem; i.e.,

ψ1
〈h〉 : x〈t+h〉 �→ p̄〈t+h〉 ∀〈h〉 ∈ 〈H〉, (1)

where p̄〈t+h〉 is the prediction result of p〈t+h〉. The model
shown in (1) was independently learned for each predic-
tion horizon, 〈h〉 ∈ 〈H〉, so that the hourly sequence p̄

〈H〉
〈t〉 =

(p̄〈t+1〉, . . . , p̄〈t+ |H|〉) was obtained by concatenating the pre-
diction results.

In our implementation, we used a popular nonlinear regres-
sion model, the so-called random forests (RF) [43],2 which is
known to work well, particularly when the number of explana-
tory variables for the prediction of p̄〈t+h〉 is extremely large. At
the learning step, the RF model ψ1(·) was constructed from the
viewpoint of minimizing the RMSE between the predicted and
observed hourly wind power outputs in the given data set D1 .

C. Prediction of Half-Hourly Wind Power Output Sequence

The second subsystem, ψ2 , aimed to obtain the esti-
mation result of the half-hourly wind power output se-
quence, p̂Ht = (p̂t+1 , . . . , p̂t+ |H|), by using the data set, D2 =
{(pB∗t , p̄〈H〉〈t〉 ,pH∗t )}, as follows:

ψ2
h : (pB∗t , p̄

〈H〉
〈t〉 ) �→ p̂t+h ∀h ∈ H, (2)

2The RF implemented in this study is basically the same as the learning
architecture implemented in [17], [24]. A brief description of the mechanism is
described in Appendix.
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where pB∗t = (p∗t−|B|+1 , . . . , p
∗
t ) is the latest observed wind

power output subsequence. In this subsystem, the half-hourly
wind power output of the forecast horizon, h, i.e., pt+h , was
predicted based on the latest observation data sequence, pB∗t ,
and the hourly wind power prediction results, p̄

〈H〉
〈t〉 . The pre-

diction task given in (2) was modeled by the RF regressor. The
aim of this step was to achieve the update of the wind power
forecast result every 30 minutes. This was achieved by utilizing
the latest observed information, pB∗t , and deriving a half-hourly
prediction sequence by correcting the statistical errors involved
in the rough hourly prediction results, p̄

〈H〉
〈t〉 .

D. Alerting to Ramp Events Based on Classifiers

Now, let rut ∈ {0, 1} and rdt ∈ {0, 1} be the binary variables
for indicating ramp up/down events at the time slice t, where
1 indicates the occurrence and 0 indicates non-occurrence. The
third subsystem, φ, comprised a set of classifiers for alerting
to ramps and used the data set D3 = {(pB∗t , p̂Ht , ru∗t , rd∗t )}; we
firstly derived the first-order difference in the wind power se-
quence (pB∗t , p̂

H
t ),

Δpt

= (p∗t−|B|+2−p∗t−|B|+1 , . . . , p̂t+1 − p∗t , . . . , p̂t+|H| − p̂t−|H|−1),
(3)

and subsequently used it for predicting the occurrence of ramp
events, as follows:

φuh : Δpt �→ r̂ut+h ∀h ∈ H,
φdh : Δpt �→ r̂dt+h ∀h ∈ H. (4)

In this subsystem, the RF classifiers were modeled to alert ramp
up/down events for each forecast horizon h ∈ H individually.
Note that φuh was independently learned the ramp up events
for each horizon, h ∈ H, so that the 30-minute sequence r̂ut =
(r̂ut+1 , . . . , r̂

u
t+ |H|) was derived by concatenating the results. The

ramp down sequence r̂dt = (r̂dt+1 , . . . , r̂
d
t+ |H|) was derived in a

similar way.

III. CLASS IMBALANCE PROBLEM IN RAMP ALERT TASK

In this section, we focus particularly on the ramp predic-
tor and discuss a problem in ramp prediction. The classifiers
shown in (4) were expected to learn the relationship between the
predicted power sequence and the ramp occurrence. However,
ramp events of wind power generation do not occur frequently
throughout the year. Therefore, it was a difficult learning task
to predict the occurrence of such relatively rare events based
on a data set. Accordingly, the accuracy of the ramp alert task
based on naive implementation of the classifiers could be sig-
nificantly low. In the machine learning community, such issues
have been known to occur generally in classification problems
and are referred to as the class imbalance problem [40], [41].

A. Basic Idea of Data Sampling

In this study, we expect to improve the classifier-based
ramp alert accuracy from the viewpoint of alleviating the class

Fig. 2. Schematic image of data sampling methods; red curve shows the
observed power sequence, black curve shows the predicted power sequence,
green curve shows the first-order difference of the predicted sequence i.e., Δpt ,
and blue curve shows the synthetically generated errors εt . (a) RUS. (b) ROS.
(c) SMOTE. (d) EBOS.

imbalance by adjusting sample sizes used for learning ramp pre-
dictors. For the sake of explanation, we focus on ramp up events
in this section, although the same argument holds for ramp down
events. Let N be the number of the target sampling size, and
S1
h and S0

h be sets of ramp occurrences and non-occurrences
derived from the database, D3 , i.e.,

S1
h = {(Δpt , r

u∗
t+h)|ru∗t+h = 1}, and

S0
h = {(Δpt , r

u∗
t+h)|ru∗t+h = 0}. (5)

Since we focus on the ramp events occurred only a few times
a year, the sample sizes had the relationship |S1

h | � |S0
h |. The

basic idea of data sampling strategy is simple; learning data S1
h

or/and S0
h are reconstructed by resampling their instances, so

that |S1
h | and |S0

h | equals toN . Here, we introduce the following
sampling approaches.

1) Random Undersampling: The random undersampling
(RUS) approach [40] is a simple but effective method to alleviate
the class imbalance. As shown in Fig. 2(a) schematically, sam-
ples involved in majority class S0

h are randomly undersampled
until the majority class contains N = |S1

h | samples in the RUS
approach. The procedure is shown in Algorithm 1.

2) Random Oversampling: The random oversampling
(ROS) approach [40] is another simple method aiming to bal-
ance class distribution; samples involved in minority class S1

h ,
i.e., the data subset composed of ramp occurrence, are randomly
resampled as many as N = |S0

h | as shown in Fig. 2(b). Algo-
rithm 2 shows the procedure of the ROS approach.
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Algorithm 1: RUS Implementation for Under
sampling(.).

Input: S0
h , N .

while |S0
h | > N do

Randomly remove a datum from S0
h .

end while
Output: S0

h .

Algorithm 2: ROS Implementation for Oversampling(.).

Input: S1
h , N .

while N > |S1
h | do

Randomly duplicates a datum in S1
h .

end while
Output: S1

h .

Algorithm 3: SMOTE Implementation for Over-
sampling(.).

Input: S1
h , N .

while N > |S1
h | do

Randomly focus on a datum Δpt from S1
h .

Derive K-nearest neighbors {Δpt1 ,. . .,ΔptK} of Δpt .
Select a random number c ∈ (0, 1).
Generate K new samples

Δpnew
t = Δpt + c(Δptk −Δpt) (k = 1, . . . ,K), (6)

and add to S1
h .

end while
Output: S1

h .

3) Synthetic Minority Oversampling Technique: The syn-
thetic minority oversampling technique (SMOTE) [42] is one of
the other well-known oversampling approaches. In the context
of ramp prediction, the SMOTE utilizes the nearest neighbors
of a selected sample belonging to the minority class. It ran-
domly generates the synthetic input data for ramp occurrence
by deriving the weighted mean of the original and a neighbor.
Algorithm 3 shows the procedure of the SMOTE approach. The
synthetic sample, Δpnew

t , was generated by the weighted aver-
age of the surrounding minority class samples as shown in (6) in
Algorithm 3. Fig. 2(c) shows a schematic image of the SMOTE.

4) Error Bootstrap Oversampling: The above-mentioned
oversampling approaches, ROS and SMOTE, have been pro-
posed for general classification problems. However, we premise
to utilize the prediction result of the wind power output p̂Ht to
predict ramp events, as shown in (3) and (4). Considering the
mechanism of wind power prediction in a ramp alert task, we
proposed a novel oversampling approach, called the error boot-
strap oversampling (EBOS) approach in this study, to alleviate
the class imbalance problem. Algorithm 4 shows the proce-
dure of the proposed EBOS approach. This approach enabled
increasing various synthetic samples of the ramp occurrence for
learning classifiers such as SMOTE. Furthermore, the intensity
of the obtainable fluctuation under the ramp occurrence was

Algorithm 4: EBOS Implementation for Over-
sampling(.).

Input: S1
h , N , D1 , h.

{εtst
t } ← generateSyntheticErrors(D1):
Randomly divide D1 into Dlrn

1 and Dtst
1 .

Learn the predictors ψ1 and ψ2 by using Dlrn
1 .

Derive p̂Htst
t under Dtst

1 based on ψ1 and ψ2 .
Calculate εtst

t = p̂Htst
t − pH∗tstt for all p̂Htst

t in Dtst
1 .

while N > |S1
h | do

Randomly pickup p̂Ht from S1
h .

Calculate the weight

wh(p̂Htst
t ′ |p̂Ht ) ∝ exp(−|p̂t+h − p̂tst

t ′+h |), (7)

for all {p̂Htst
t ′ }.

Randomly pick up the index t′ according to the weight
wh(p̂Htst

t ′ |p̂Ht ).
Generate a synthetic sample Δpnew

t from

p̂Hnew
t = pH∗t + εtst

t ′ , (8)

and add to S1
h .

end while
Output: S1

h .

expected to be reproduced by utilizing bootstrap oversampling
of the plausible errors involved in the predicted wind power
output sequence. In the EBOS approach, we focused on the re-
lationship between the predicted power generation, p̂t+h , and
the error, p̂t+h − p̂tst

t ′+h , and we used the sampling weight de-
fined by the Laplacian kernel function as (7). This weight was
utilized for selecting an error sequence that had the similar pre-
dicted power at the target horizon, h, so as to provide plausible
synthetic samples. Fig. 2(d) shows an image of the EBOS; the
input used for learning the classifiers is derived from the pre-
diction result of the wind power output sequence.

B. Learning Ramp Predictors Based on Oversampled Data

The idea of data sampling works well for alleviating class
imbalance problem in general classification problems and it is
also expected to improve the accuracy of ramp prediction in our
context. Note that the alleviation effect of the class imbalance
problem depends largely on the suitability between the target
data and the concrete approach, so that it is difficult to discuss
the universal superiority of the specific data sampling approach.
However, here we briefly describe the expected characteristics
of the several oversampling methods introduced in the previ-
ous subsection by focusing on the learning framework of ramp
predictors introduced in Section II.A.

Firstly, the ROS simply increases minority data under the
ramp occurrence by resampling the wind power fluctuation se-
quence Δpt randomly from the existing samples. Though the
ROS alleviates the class imbalance problem while emphasiz-
ing situations where ramp events occur, this method does not
generate various data having new features to distinguish from
situations of ramp non-occurrence. Meanwhile, the SMOTE
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Algorithm 5: Hybrid Sampling Scheme.
Input: D3 , h, R.

Divide {(Δpt , r
u∗
t+h); t} into S1

h and S0
h based on (5).

Set N = �R|S0
h |+ (1−R)|S1

h |�.
S0
h ← undersampling(S0

h ,N).
S1
h ← oversampling(S1

h ,N, ...).
Output: S0

h ∪ S1
h for learning φuh .

synthetically generates data with new characteristics by
weighted average of the pair of wind power fluctuation se-
quences. This method is a promising approach to generate plau-
sible data observable under the ramp occurrence to mitigate the
class imbalance problem. However, Δpt represents a transition
of fluctuations in predicted wind power, so that the fluctuations
in the synthetic sample Δpnew

t given in (6) of Algorithm 3 tend
to be small, since the weighted average of arbitrary two values
v1 , v2 ∈ R has the following property,

|v1 + c(v2 − v1)| ≤ max(|v1 |, |v2 |), (9)

where c ∈ (0, 1). In prediction of ramp events based on the
fluctuations in the predicted power sequence, the SMOTE may
not be effective; because this approach cannot create new sam-
ples representing plausible large fluctuations. The proposed ap-
proach, the EBOS, samples error sequences of the predicted
power derived from the database, and generates synthetic pre-
diction results p̂Hnew

t given in (8) of Algorithm 4 by adding
plausible error sequences to an observation under the ramp oc-
currence. This method is expected to generate various types of
plausible predicted power fluctuation sequences for actual ramp
events in order to alleviate the class imbalance problem. Note
that the EBOS may generate sequences with various magnitude
of fluctuations over the original fluctuation sequences under the
ramp occurrence; this is the main difference between SMOTE
and EBOS.

C. Hybridization of Under/Oversampling Approaches

In the imbalanced class setting, hybrid sampling ap-
proaches [40] composed of the pair of under/oversampling
methods often achieve better classification than individual ap-
proaches. In the learning step of ramp predictors, we can also
introduce the hybrid sampling scheme. Let

N = �R|S0
h |+ (1−R)|S1

h |� (10)

be the number of the target sampling size, where R ∈ [0, 1] is
the sampling parameter. In the hybrid approach, the samples in-
volved in majority classS0

h are undersampled and those involved
in minority class S1

h are oversampled until both classes have N
samples. Note that the hybrid approach reduced to the under-
sampling scheme under R = 0 and the oversampling scheme
under R = 1. The procedure of hybrid sampling is shown in
Algorithm 5.

In this study, the three types of hybridization are defined,
i.e., “RUS+ROS”, “RUS+SMOTE”, and “RUS+EBOS”. For ex-
ample, in RUS+ROS, the RUS method is implemented at the
undersampling phase and the ROS method is implemented at

the oversampling phase. At the undersampling phase, the RUS
approach randomly eliminated samples involved in the majority
class S0

h so that |S0
h | = N holds where N is given as (10). At

the oversampling phase, the ROS approach randomly resampled
the minority class S1

h as many as N . In our implementation, the
sampling parameter R was tuned individually for each h from
the viewpoint of expected accuracy of ramp prediction at the
horizon h, based on 10-fold cross-validation [25].

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate our ramp alert scheme by using a
real-world data set. First, we explain our experimental setup and
briefly refer to the performance of our wind power predictor for
the input of the ramp predictor. Subsequently, we compare some
methods for dealing with the class imbalance problem in the
ramp alert task, and we discuss the effectiveness of the proposed
method for improving the accuracy of the ramp predictor.

A. Experimental Setup

In this evaluation, we used real-world wind power profiles
at 30-minute intervals, observed in Tohoku region, Japan; the
profiles consists of the sum of outputs of twenty wind farms in
this region and the total rated power output of the wind farms
is 440 MW. The data set comprised observations collected from
April 1st 2012 to March 31st 2013. We focused on the half-
hourly wind power output of the Tohoku area from thirty min-
utes to 48 hours ahead, i.e., H = {1, . . . , 96}, and we used the
observed wind power outputs of the previous 17 hours, i.e.,
B = {33, . . . , 0}, for our prediction. In addition, we focused on
the ramp events corresponding to the forecast horizons h ∈ H.
We used the predicted hourly meteorological data of the corre-
sponding area. These data were provided by a regional climate
model, called NuWFAS (Numerical Weather Forecasting and
Analysis System) [44], which has been developed by the Central
Research Institute of Electric Power Industry (CRIEPI) based
on the Weather Research and Forecasting (WRF) model [45].
The spatial resolution of the meteorological data was 3 km. We
focused particularly on the forecast result of the hourly wind
speed at an altitude of 60 m, provided once a day at 17:00 (JST)
for the next 76 h, and we extracted the subarea within 10 km
of the existing wind farms. The dimension of the input vector,
x〈t+h〉, was 820.

The evaluation procedure is given as follows. We extracted
one month from the original data set for validation, trained the
predictors by using the remaining eleven months, and evaluated
the predictors by using the validation set. This procedure was
repeated for all twelve months. In this numerical experiment, the
prediction accuracy of a certain month implied the evaluation
result of the held-out data subset by focusing on the correspond-
ing month. Since our ramp alert setup comprised the supervised
learning framework, the proposed scheme could be applied to
various ramp definitions [2] under the situation that the ramp
events are identified in the historical data set of the wind power
sequence. In this study, we targeted the total wind power output
in the area, and we focused on the fluctuations simultaneously
satisfying a ramp rate of more than 30[%] of the total capacity of



FUJIMOTO et al.: ALERTING TO RARE LARGE-SCALE RAMP EVENTS IN WIND POWER GENERATION 61

Fig. 3. Number of large-scale ramp events in the data set. (a) Number of ramp
down events. (b) Number of ramp up events.

the wind farms per six hours and averagely more than 5[%] per
hour [46]. Fig. 3 shows the number of large-scale ramp events in
this data set. The figure shows the seasonality in the occurrence
of the ramp events in Japan. Note that the occurrence rate of
these ramp events was less than 4% throughout the year; there-
fore, the class imbalanced problem would critically affect the
accuracy of the ramp prediction.

We used the mean absolute errors (MAE) for the wind power
prediction, i.e.,

MAEh =
1
T

∑

t

|p̂t+h − p∗t+h | (h ∈ H), (11)

and we used indices called the precision, the recall, and the
critical success index (CSI) for evaluation of the ramp predic-
tor [19]. For example, the prediction results for a ramp up event
for the prediction horizon h was evaluated as follows:

Precuh =
∑

t r
u∗
t+h r̂

u
t+h∑

t r̂
u
t+h

(h ∈ H), (12)

Recuh =
∑

t r
u∗
t+h r̂

u
t+h∑

t r
u∗
t+h

(h ∈ H), (13)

CSIuh =
∑

t r
u∗
t+h r̂

u
t+h

T −∑t(1− ru∗t+h)(1− r̂ut+h)

=
∑

t r
u∗
t+h r̂

u
t+h∑

tr
u∗
t+h(1−r̂ut+h)+

∑
t(1−ru∗t+h)r̂ut+h+

∑
tr
u∗
t+h r̂

u
t+h

=
∑

t r
u∗
t+h r̂

u
t+h∑

t r
u∗
t+h +

∑
t r̂

u
t+h −

∑
t r

u∗
t+h r̂

u
t+h

(h ∈ H).

(14)

The precision given in (12) is also known as the forecast ac-
curacy and indicates the ratio of actual ramp events among the
predicted ramp events. The recall given in (13) is also known
as the ramp capture or the hit percentage; it indicates the ratio
of correct prediction among the actual ramp events. The CSI
given in (14) is also known as the threat score and indicates the
ratio of the number of correct prediction to the number of whole
events except for the correct rejection events. These indices take
values in the interval [0, 1] where the larger value implies the
better prediction3. Note that the prediction of the ramp down
event was similarly evaluated by using rd∗t+h and r̂dt+h instead of
ru∗t+h and r̂ut+h in (12)–(14).

B. Evaluation of Wind Power Prediction

Firstly, we briefly evaluated our wind power prediction results
derived every 30 minutes, from the viewpoint of the prediction
error. Fig. 4(a) shows the monthly MAEs of the wind power pre-
dictor for each prediction horizon h ∈ H. The prediction results
were related to seasonality, i.e., the error was relatively small in
summer (July–September), when the frequency of ramp events
was low. However, it tended to be high in autumn and winter
(October–March), when the frequency of the ramp events was
relatively high. Although prediction errors tended to increase
monotonically with respect to the prediction horizon, the wind
power prediction scheme prevented quite large errors at the far
horizon. Fig. 4(b) also shows the power output prediction re-
sults of the simple persistence model [9] for reference, whose
prediction result was derived as p̂t+h = p∗t . In comparing these
figures, our power predictor showed the advantage of the relative
prediction accuracy.

C. Evaluation of Ramp Event Prediction

Subsequently, we evaluated the accuracy of the ramp alert
by comparing nine approaches, as shown in Table I. Note that
the direct scanning approach is one of the straightforward ways
for predicting ramp events; this approach identifies ramp events
by directly scanning the predicted power sequence according
to the ramp definition without using ramp predictors. We
also evaluate the naive approach which naively utilizes the
ramp predictor without taking any measures against the class
imbalance problem.

Fig. 5 shows the relationship between the annual CSI for
ramp prediction and the prediction horizon h. In Fig. 5(a), the

3When a denominator in (12)–(14) takes zero, the corresponding numerator
also takes zero. In this paper, we regard 0/0 as zero in accordance with the
conventional treatment of these metrics, though it is not well-defined mathe-
matically.
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TABLE I
RAMP ALERT APPROACHES COMPARED IN THE NUMERICAL EXPERIMENT

Fig. 4. Relationship between monthly mean absolute errors of the wind power
prediction and the prediction horizon. (a) Results of our proposed power pre-
dictor composed of RF regressors. (b) Results of persistence model.

direct approach shows relatively satisfactory results, particularly
at the short prediction horizons. However, the CSI of the naive
approach was remarkably low, and the result suggested the diffi-
culty of the separate prediction scheme for alerting to rare ramp
events. In addition, the experimental result showed that our pro-
posed hybrid sampling approaches RUS+ROS, RUS+SMOTE,
and RUS+EBOS were superior on average to the direct approach
at the long prediction horizons. Fig. 5(b) also shows the predic-
tion results of the ramp up events. The results showed a tendency
similar to that of the ramp down prediction. In this instance, the
proposed hybrid approach RUS+EBOS showed relatively satis-
factory results for most prediction horizons.

Fig. 5. Relationships between yearly CSI of ramp prediction and the predic-
tion time horizon; (a) results of ramp down, and (b) results of ramp up.

Fig. 6 shows the monthly CSI of six-hours and twelve-hours
ahead ramp up prediction for October 2012 [see Fig. 6(a) and
(b)] with a moderate number of ramp events, and March 2013
[see Fig. 6(c) and (d)] with a considerable number of ramp
events. As shown in the figure, the CSI values of the direct
method were relatively accurate for the prediction horizon of six-
hours ahead (i.e., h = 12) but the accuracy declined at twelve-
hours ahead (i.e., h = 24). In contrast, the CSI values of the
naive method were extremely low even at h = 12. This figure
also implied specifically that RUS and the proposed EBOS con-
tributed to improving the ramp alert accuracy. A hybrid of these
methods, i.e., RUS+EBOS, improved the accuracy drastically,
even at twelve-hours ahead. This result suggested an important
advantage of the proposed sampling strategy in alerting to rare
ramp events.

Fig. 7 shows the precision-recall plot of the ramp up alerting
result of March 2013 ath = 12, which corresponded to Fig. 6(c).
The figure shows that the SMOTE approach achieved a signifi-
cantly high precision value, while it had a low recall value. The
result implied the relatively considerable number of the unpre-
dicted ramp events. However, the RUS and the proposed EBOS
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Fig. 6. Monthly CSI for ramp up alert of October 2012 (moderate number of
ramp events) and March 2013 (relatively many ramp events). We focus on the
prediction horizon of h = 12 (i.e., six hours ahead) and h = 24 (i.e., 12 hours
ahead). (a) October 2012 (6 hours ahead). (b) October 2012 (12 hours ahead).
(c) March 2013 (6 hours ahead). (d) March 2012 (12 hours ahead).

Fig. 7. Plot of precision and recall for ramp up alert of March 2013. We
focused on the prediction horizon of h = 12 (i.e., six-hours ahead). The curves
in the figure represent the contour lines of the CSI.

approaches achieved relatively high recall values, while retain-
ing the precision values. Note that the RUS+EBOS approach
retained both the precision and recall values; consequently, the
forth-coming ramp events could be alerted meaningfully. Simi-
lar results were obtained for other seasons, other horizons, and
for ramp down events.

Fig. 8 shows a typical example of the wind power prediction
results for each prediction horizon, h ∈ H, and the correspond-
ing ramp events. In the observed wind power output, ramp up
events existed at 8.0–12.5 h and 39.0–41.5 h, and ramp down
events at 14.5–24.0 h and 47.5–48.0 h. The dynamics of the wind
power output sequence appeared well predicted on average by
our power predictor, but the prediction of fluctuation tended to
be smaller than it actually was. In the direct approach, the ramp
up event occurring at 8.0–12.5 h could not be alerted owing to
this tendency. In addition, the naive ramp prediction approach
had completely failed to identify any ramp events. However,
the proposed RUS+EBOS approach achieved relatively precise
prediction, which predicted the forthcoming ramp events.

These experimental results implied that the class imbalance
problem caused difficulty in realizing the ramp alert task. We
therefore suggest that the implementation of an appropriate

Fig. 8. An example of ramp alert. Black and red lines represent the observed
and predicted wind power outputs. Black boxes at the top/bottom of the figure
represent the ramp up/down events at the corresponding time slices. Note that
the ramp events predicted by the direct, naive, and RUS+EBOS approaches were
derived by using predicted wind power output (red line).

countermeasure, such as the RUS+EBOS, could contribute to
drastically improving the accuracy of the ramp alert task.

V. CONCLUSION

In this study, we focused on the ramp alert task by using
the prediction results of wind power output. In particular, we
addressed the class imbalance problem in the ramp alert task
and we proposed remedies to improve the accuracy. These in-
clude the error bootstrap oversampling (EBOS) technique and
several hybrid data sampling approaches. The proposed data
sampling strategy was expected to be effective for predicting
the rare ramp events explicitly labeled in the historical data set.
The experimental results, based on a real-world wind power
generation data set, indicated that the proposed methods, partic-
ularly the RUS+EBOS method, drastically improved the ramp
alert accuracy, even at the long prediction horizons.

We addressed the problem in the construction of a ramp pre-
dictor, based on the predicted result of the wind power output
sequence. However, several significant topics were not men-
tioned in this study. One of the important aspects for improving
the ramp alert accuracy is error reduction in the power predic-
tor; e.g., application of the deep learning framework [47] can
be expected as an effective approach to realize highly accurate
predictors [28]–[30]. Another significant aspect is handling the
uncertainty in wind power/ramp prediction [36], [48]–[50], par-
ticularly for real-world system operations. Accordingly, we are
planning to conduct further research to realize an appropriate
ramp alert system.

APPENDIX

RANDOM FORESTS

We briefly introduce the construction procedure of random
forests (RF) implemented in our scheme. The method is based
on the framework of bootstrap aggregating [51] and decision
trees [52] (please refer [43] for detail).

Firstly, we focus on the regression framework. Let x =
(x1 , . . . , xP ) ∈ RP be the vector of P input variables used
for the prediction, y ∈ R be the corresponding output, P =
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{1, . . . , P} be the variable index set, and

D = {(xn , yn ) | n ∈ N},
be the dataset used for training the RF predictor ψ where
N = {1, . . . , N} is the sample index set for N samples. In
the learning phase, we focus on the data subset N′ ⊂ N which
is randomly selected from the training set D so as to generate
new dataset

D′ = {(xn , yn ) | n ∈ N ′}.
The component of the RF, a decision tree, is grown by recur-
sively splitting D′ to subsets

D′−(p, θ) = {D′|xpn < θ}, and D′+(p, θ) = {D′|xpn ≥ θ},
by focusing on randomly selected variable index subsetP′ ⊂ P;
subsets are derived by selecting p ∈ P′ and θ that maximizes
the decrease of deviance,

{p̂, θ̂} = argmax
{p∈P′,θ}

∑

n∈N (D′)
(yn − μ(D′))2

−
∑

n∈N(D′−(p,θ))
(yn−μ(D′−(p, θ)))2−

∑

n∈N(D′+(p,θ))

(yn−μ(D′+(p, θ)))2,

where N (A) is the index subset involved in set A and μ(A) is
the average of outputs involved in A, i.e.,

μ(A) =

∑
n∈N (A) yn

|A| .

The recursive splitting procedure is described as hierarchical
binary decision rules composing a tree structure, so that the
original data setD is partitioned intoL subsetsAl (l ∈ 1, . . . , L)
where L is the number of leaves in the decision tree, i.e., the
number of subsets partitioned by the decision tree. The RF
regression model is composed of M decision trees {ψ(m )};
each decision tree outputs

ψ(m )(x) = μ(A(m )
l � x),

corresponding to the arbitrary x whereA(m )
l indicates the subset

partitioned by them-th decision tree. The final prediction result
of the RF corresponding to x is given as

ŷ = ψ(x) =
1
M

M∑

m=1

ψ(m )(x).

The procedure is almost the same for the binary classification
task. Let c ∈ {0, 1} be the output corresponding to the given
input x ∈ RP , and

D = {(xn , cn ) | n ∈ N},
be the dataset for training the RF predictor φ. A decision tree in
the RF is grown by recursively by focusing on randomly selected
N′ ⊂ N and P′ ⊂ P . The partitioning parameters p ∈ P′ and
θ are selected by maximizing the decrease of impurity,

{p̂, θ̂} = argmax
{p∈P′,θ}

g(D′)− g(D′−(p, θ))− g(D′+(p, θ)),

where g(A) is the Gini index of the subset A, i.e.,

g(A) = 1−
(∑

n∈N (A) cn

|A|

)2
−
(∑

n∈N (A)(1− cn )

|A|

)2
.

The RF classification model is composed of M decision trees
{φ(m )}; each tree outputs

φ(m )(x) =

⎧
⎪⎨

⎪⎩

0
(∑

n∈N (A(m )
l ) cn < |A

(m )
l |/2

)

1
(∑

n∈N (A(m )
l ) cn ≥ |A

(m )
l |/2

)
,

for given x. The final prediction result of the RF for x is given
according to the majority vote of M decision trees as

ĉ = φ(x) =

⎧
⎪⎨

⎪⎩

0
(∑M

m=1 φ
(m )(x) < M/2

)

1
(∑M

m=1 φ
(m )(x) ≥M/2

)
.
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