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Control of a Realistic Wave Energy Converter Model
Using Least-Squares Policy Iteration

Enrico Anderlini, David I. M. Forehand, Elva Bannon, and Mohammad Abusara

Abstract—An algorithm has been developed for the resistive
control of a nonlinear model of a wave energy converter using
least-squares policy iteration, which incorporates function ap-
proximation, with tabular and radial basis functions being used as
features. With this method, the controller learns the optimal power
take-off damping coefficient in each sea state for the maximization
of the mean generated power. The performance of the algorithm
is assessed against two online reinforcement learning schemes:
Q-learning and SARSA. In both regular and irregular waves, least-
squares policy iteration outperforms the other strategies, especially
when starting from unfavorable conditions for learning. Similar
performance is observed for both basis functions, with a smaller
number of radial basis functions underfitting the Q-function. The
shorter learning time is fundamental for a practical application
on a real wave energy converter. Furthermore, this paper shows
that least-squares policy iteration is able to maximize the energy
absorption of a wave energy converter despite strongly nonlinear
effects due to its model-free nature, which removes the influence
of modeling errors. Additionally, the floater geometry has been
changed during a simulation to show that reinforcement learning
control is able to adapt to variations in the system dynamics.

Index Terms—Function approximation, radial basis function
(RBF), reinforcement learning (RL), resistive control, wave energy
converter (WEC).

I. INTRODUCTION

AVE energy has the potential to become a significant
W contributor to the future energy mix thanks to a resource
of up to 2.1 TW of power worldwide [1], with a consequent re-
duction in greenhouse gas emissions. Nevertheless, wave energy
converters (WECs) are not economically viable yet, despite nu-
merous designs having been proposed over the years. A review
of some of the most promising, recent technologies can be found
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in [2]. The design of an effective control scheme can consider-
ably reduce the levelised cost of energy associated with WECs,
since it can bring about a gain in energy absorption with little
additional hardware costs.

Since the 1970s, multiple control strategies have been stud-
ied so as to maximise energy extraction. Thorough reviews of
the topic can be found in [3] for the initial analyses and in [4]
for more recent developments. By achieving resonance between
the device and the incident waves, complex-conjugate control
would result theoretically in optimal power absorption [3]. How-
ever, this is infeasible in practice because of the resulting large
motions of the WEC in energetic sea states and the associated
high loads. Hence, alternative control algorithms have been de-
veloped, which limit the motions, forces and power ratings of
the device [4]. It is possible to differentiate between two main
types of control schemes: time-averaged and real-time.

Time-averaged strategies assume stationary wave conditions
over a prescribed time, over which a constant, optimal control
setting is used [5]. In the case of reactive control, this is repre-
sented by the combination of damping and stiffness coefficients
of the Power Take-Off (PTO) unit that maximise energy gener-
ation in each sea state. A specific case occurs for zero stiffness:
resistive control. The optimal values are found through prelim-
inary simulations, which can constrain the force and displace-
ment, and then stored in a look-up table. Whereas time-averaged
schemes may be less efficient than real-time strategies, their
computational cost is lower.

Real-time algorithms consist of applying an optimal control
action at every time instant such that it is expected to maximize
energy generation over a short (in the order of one wave cycle)
future time horizon [4]. Examples are latching [6], declutch-
ing [7], simple-but-effective [8], and model predictive control
[9]-[11]. Whereas simple-but-effective control is computation-
ally light, since it relies on classical closed-loop controllers,
non-linear model predictive control and latching and declutch-
ing control based on Pontryagin’s principle can present a high
computational cost associated with their real-time optimization.
Solutions to reduce the computational costs are to use a linear
model in model predictive control and a moving window in
latching and declutching control, as for instance proposed by
[12]. Furthermore, the control operation is strongly affected by
the accuracy of the wave excitation force forecast.

As the performance of all aforementioned control schemes
depends on the quality of the model of the device dynamics,
modelling errors can decrease the generated power as well as
cause damage to the machines if the physical limits are exceeded
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in practice. Whereas a hierarchical robust controller has been
used to decrease the sensitivity of simple-but-effective control
to modelling errors and non-linear effects [13], the other control
strategies are negatively affected by modelling errors. An alter-
native approach to robust control based on fuzzy logic has been
proposed by [14]. Similarly, the authors proposed, in a previous
study, the application of an alternative strategy, reinforcement
learning (RL), to the control of WECs. This scheme does not
rely on a model of the WEC dynamics to obtain the control ac-
tion and is thus able to adapt to changes in the system response
due to ageing, e.g. the build-up of marine biofouling. Although
the algorithm described in [15] can be implemented on an actual
device, a test-case numerical study was run in that paper using a
linear model of a point absorber, a well known WEC technology
which comprises of a float whose size is small compared with
the characteristic wavelength [2].

In this article, RL is applied to the control of a realistic, non-
linear model of a WEC, whose accuracy was validated by the
developers against measurements on a prototype device [16]. In
the absence of costly experimental measurements, this study en-
ables the assessment of the convergence behaviour of RL when
non-linear effects are important. As in [16], only damping, or
resistive, control is analysed. This is known to be inferior in
performance to fully reactive control, which is in fact treated by
most other real-time control schemes, as described in [4]. How-
ever, the practical implementation of resistive control is simple.
Additionally, the optimization of only the damping coefficient
results in a simpler framework to demonstrate the applicability
of RL for the control for WECs, which can then be extended
to the treatment of combined damping and stiffness control.
In particular, here resistive control is implemented using least-
squares policy iteration (LSPI), an efficient RL algorithm [17].
Furthermore, its performance is assessed against two simpler
RL algorithms, SARSA and Q-learning [18]. In addition, the
effectiveness of function approximation in reducing the learning
time has been assessed using LSPI with radial basis functions
(RBFs) [17].

II. RESISTIVE CONTROL OF THE SEABASED WEC
A. System Description

The Seabased device is a point absorber with a direct-drive
PTO system. The development and testing of a number of full-
scale prototypes at Uppsala University is well described in the
literature [19]-[23]. The version studied in [16] is analysed
in this article, although the generator is now connected to the
electrical grid.

Fig. 1 shows a diagram of the device, which is inspired by
[16]. A small float, excited by incident waves, drives a linear,
permanent-magnet generator along vertical rails. The two bodies
are connected by a mooring line. When the distance between
the float and the translator decreases, the mooring line goes
slack and the translator is pulled downwards by a dedicated
spring. Additionally, springs at the upper and lower end stops
prevent the translator from breaking the casing in large waves.
The motion of the magnet induces electrical current in the coils
wound around the stator. Power absorption is controlled through
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Fig. 1. Diagram of the prototype Seabased WEC.

TABLE I
DISTANCE BETWEEN KERNELS, BANDWIDTH AND NUMBER OF
KERNELS USED IN THE STUDY OF LSPI WITH RBFs

5. (kNs/m)  p (kNs/m) M
10 10 10
10 20 10
20 10 5
20 20 5
20 40 5

a power electronic converter by setting the stator current I to
be proportional to the velocity of the translator. A second power
electronic converter controls the voltage across the capacitor
between the converters by setting the grid current. The wave
elevation ¢ is measured through a wave buoy sited 80 m from
the prototype at the Lysekil wave energy research site [21].

In Fig. 1, the same naming convention as in [16] is held, with
the values of the variables quantities being given in Table I in
[16]. In addition, I, , = 0.25 mand [ ; = 0.14 m are a measure
of the end stops length, as given in [21].

B. Mathematical Model

A weakly non-linear mathematical model of the system dy-
namics has been developed by [16]. Although the float is free
to move in all directions in reality, only the heave degree of
freedom is analysed because the influence of the other motions
is negligible [24]. Defining y and z as the float and translator
displacement respectively, the motions of the two bodies are
described by the following system of equations

(1, + ) (1) = Fult) — Bo(t) — But) — Fu (), (1
mpjj(t) = Fy(t) = Fem(t) — FS(t) + Fu(t) + Fi(t), (2)

where t indicates time, my, and m,, the mass of the float and
piston respectively, and m, the added mass of the float. F, is
the incident and diffracted wave excitation force, F) part of the
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float radiation force, Fj, the hydrostatic restoring force, F, the
tension in the wire connecting the float to the translator, F,, the
electromotive force, Fy the force of the restoring spring in Fig. 1,
F, and Fj the spring force of the upper and lower end stops,
respectively. The non-linearities are associated with Fy,, where
compression effects are ignored, F;, and Fj, which are activated
only if the end stops are reached, and Ft,,, which depends on
the exposure of the translator to the stator.

The electromotive, or control, force F,, is discussed in the
next section. The hydrostatic force is calculated as

Fy(t) = pgSwy(t), 3)

where p = 1025 kg/m? is the seawater density, g = 9.81 m/s?

the gravitational acceleration and Sy, the float waterplane area.
The F, part of radiation force is approximated through a

state-space system so as to reduce its computational cost [25]

Tgs (1) = Assos(t) + Byg(t)
Fi(t) = Cyxgs(l).

“
(&)

The matrices Ay, By and Cg are calculated with frequency-
domain system identification, as described in [25]. F} is given by
the convolution of the product of the radiation impulse response
function and the float velocity [26]. Furthermore, the radiation
impedance function has been computed using the commercial
software WAMIT for the vertical cylinder geometry described
in [16] for circular wave frequency values ranging from 0 rad/s
to 10 rad/s in steps of 0.005 rad/s. Furthermore, m, has been
calculated for the infinite wave frequency case.

Similarly, the wave excitation force F, is given by the con-
volution integral of the product of the wave elevation at the
float location and the diffraction impulse response function
[26], which has also been computed using WAMIT. In irregular
waves, a number of wave components have been superimposed
to obtain (. The amplitude of each wave has been obtained
from a wave spectrum, sampled at a circular wave frequency
step of 0.005 rad/s in order to prevent repeating the wave trace
within a 15-minute window, as the value is less than the Nyquist
frequency [27]. In order to obtain longer time series, individual
wave traces generated using a different seed to the random num-
ber generator have been joined. The connections are smoothed
using a 200-point filter over the last and first 20 s of each wave
trace.

The force of the spring connected to the translator is expressed
as [16]

Fy = Fy + kg, (6)
where Fj is a static force due to precharging, and k; is the spring

stiffness. Ignoring compression effects, the wire force is given
by [16]

ify>ax
else

_ _kw(y_x)
m—{o : ™
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with k,, being the wire stiffness. Similarly, the forces due to the
upper and lower end stops are given by [16]

| —ki(x =) x>,

Fu = {0 else ’ ®)
_ —kl(l'-i-l]) ifx <=1

Fi = {0 else ’ ©)

where k, and k are the equivalent stiffness values of the springs
in the upper and lower end stops respectively. [, and [} are the
distance of the two end stops from the vertical midpoint of the
translator at equilibrium, as shown in Fig. 1. In [16], itis possible
to find the values of Iy, [y, k1, Ky, kw, ks, My, my, Fy and Sy,

Using (3)-(9), (1)—~(2) have been expressed in the following
non-linear state-space form

2(t) = A=(t) + Bu(t,z) + Bw(t) + Bl(t,z,y), (10)
The state, input, noise and non-linear vectors are given by
z=[y § = & %], (11)
T
u = [0 _Fem(x)] ) (12)
w= [F.(t) 0], (13)
L= [-Fu(x.y) Fuley) - F+F@)+F)] .14
The state and input matrices are
i 0 1 0 0 o’
Sy Css
_'177,',|)f7+moc 0 0 0 _thrmgo
A= 0 0 1 r . (15)
0 0 —= 0 o’
L 0 Bss 0 0 Ass
0 0
1
my +1mM O
B = 0 0 (16)
0 1
o o

C. Resistive Control of the Translator

The motions of the float and the translator, and thus ultimately
the power absorption of the device, can be controlled through
the electrical behaviour of the generator. In particular, the elec-
tromotive force is proportional to stator current I and active
area Ag,.

ch - k‘rAfac(l')Im (17)

where & is the generator torque constant. If the current is con-
trolled (by power electronics) so that it is proportional to speed
such as I; = bz, with b being a constant, then (17) becomes

ch = kaAfac (I)‘T; or ch - ’YAfac (I’)ZL', (18)

where v = k. b is the PTO damping coefficient. The active area,
i.e. the overlap between stator and translator, is given by

0 if [z] > 0.5(1, + 1)
Ape =14 1 if [z] <0.5(1, — 1) ,
[0.5(1, +1s) — |z]] /s else
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Fig. 2.  Workflow diagram of the computer program used to simulate the
Seabased WEC.

with [, and [; being given in [16]. The generated power is
computed as

P(t) = Fun ()3 (2). (19)

RL is employed to find the optimal PTO damping coefficient,
v, in each sea state for the maximization of the energy genera-
tion. The values of ~y are assumed to be limited to 0—100 kNs/m.
The upper limit corresponds approximately to the case of no
load resistance in the experimental setting in [16].

D. Simulation System

Equation (10) has been discretized with a fourth-order Runge-
Kutta scheme [28], and solved with a time step of 0.002 s.
The controller is implemented as in (18). The workflow of the
program is similar to that described in [15], and it is summarised
in Fig. 2 with a block diagram.

III. REINFORCEMENT LEARNING

In the RL framework [29], an agent takes an action a in state s,
landing in a new state s’ while observing a reward . A Markov
decision process is used to model the action selection depending
on the value function Q(s, a), which represents an estimate of
the future reward. With time, the agent learns an optimal policy,
7, that maximizes the total reward.

A. Least-Squares Policy Iteration

LSPI is a powerful, off-line, off-policy RL algorithm. Whilst
still being model-free, the method, developed by [17], presents
an efficient use of the samples (s, a, s',r), which results in a
smaller learning time as compared with other strategies, such
as Q-learning and SARSA. Additionally, it automatically incor-
porates function approximation for the action-value function.
This means that the scheme is able to generalize for unseen
states, thus further shrinking the convergence time. In particu-
lar, a linear architecture is used for the approximation of ) due
to its simple implementation and ease of debugging and feature
engineering [17]. In matrix notation, this is expressed as [18]

Q(s,a) =~ ¢(s)" O, (20)

where © is the weight matrix and ¢ is the vector of arbitrary,
linearly independent, usually non-linear basis functions, or fea-
tures. ©. , indicates the a'" column of ©, with © having |.A|
columns, where A is the action space. ® and ¢ have J < |S]
rows, with S indicating the state space. Here, two basis functions
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= 0,4
e return ®

Fig. 4. LSPI algorithm, adapted from [17].

types are used: tabular and radial. The tabular representation is
the simplest and consists in assigning a separate weight for each
state-action pair [ 18]. Hence, for discrete states, this corresponds
to the exact representation (s, a), although its size is equal to
the state-action space (J = |S|). Conversely, in RBFs, the fea-
ture activation decays continuously away from the state-action
pair where the RBF is centred, s; for RBF j, spanning many
discrete states [18]

— 62

where 41; indicates the bandwidth of RBF j. RBFs are shown
graphically in Fig. 3.

LSPI consists of two main stages: policy evaluation (the critic)
and policy improvement (the actor) [17]. LSPI is defined as oft-
line because the algorithm is trained using samples that have
been previously recorded from observations of the environment.
The algorithm is summarized in Fig. 4. The discount factor is
set here to 74 = 0.95. The values of the weight matrix in (20)
can be computed from

1)

AO.,=b (22)

for each action, where the tilde indicates a learned variable. The
reader is referred to [17] for a full derivation of the equations for
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A and b, which are obtained from the least-squares fixed-point
approximation.

B. Application of LSPI to the Control of WECs

Employing a time-averaged approach, at the start of each
time-averaging period, or time horizon with duration Hgy,, an
action, which consists in a step change in the PTO damping
coefficient, is selected following the current policy. The state is
a combination of ~ and the sea state, as given by the significant
wave height H and energy wave period 7, [30]. Holding ~
constant during Hyy,, the reward is obtained as a function of
the mean generated power, P,,,. The selection of a new action
results in a new state, and the sample (s, a, s', ) is added to the
sample set W. After the collection of N; samples, the policy
is updated using the LSPI algorithm in Fig. 4. In the following
sections it is possible to find an accurate description of the
state and action spaces, the reward function and the exploration
strategy.

1) State Space: Similarly to [15], the discrete state-space
can be expressed as

i=1:1,
S - S‘Si,l,m - (Hs,ivTC,la’Ym)a l: 1: L7 (23)
m=1:M

As described in Section III-A, LSPI incorporates linear func-
tion approximation. With the tabular approach, J = ILM, i.e.
there is an entry in ® for each state-action value, or the ()-table
is exact. With RBFs, a smaller number of values can be used. In
fact, for the control of WECs, a hybrid approach is used, where
discrete sea states are still employed, while RBFs approximate
the control variable. I and L are determined from the wave data
at the deployment site, with steps of 1 m and 1 s being common
for Hy and T¢, respectively [30].

For the tabular approach, M = 11 has been selected, with ~y
ranging from 0 to 100 kNs/m in steps of 10 kNs/m. For function
approximation, 5 cases have been considered in order to study
the influence of the number of kernels, or centres, and bandwidth
on the learning behaviour of LSPI with RBFs. In Table 1, it is
possible to see the distance between kernels d, = s; — s;_1 and
bandwith p for each case as given in (21). The first kernel is
always sited at v = 0 kNs/m.

2) Action Space: The action space is defined as

A= {(l‘ (_AFYa 0, +A7)} ) (24’)
where Ay = v,,.1 — v . However, the states corresponding to
the maximum and minimum of the PTO damping coefficient are
constrained to two actions in order to avoid going beyond the
RL state space limits.

3) Reward Function: The same reward function as in [15]
is employed and the reader is referred there for a more detailed
explanation. A penalty p = —1 is returned if the constraints
max(z) > Iy + loy ormin(z) < —(l) + Ij,,,) are exceeded dur-
ing the time horizon h. This enables the algorithm to learn to
avoid actions that will result in possible damage to the device.
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Hence, the reward function is expressed as

m(sy) "
r = maxgn_,., m(s”)

P otherwise

if constraints met. (25)

The entries of the vector m, whose size is equal to the to-
tal number of discrete states |S| (valid for both tabular and
RBF methods), correspond to the average of up to 10 values
of Pyyg/ Hf that are stored for each discrete state, with older
values being overwritten by new ones once 10 values are regis-
tered. The indices o and p ensure that the maximization in (25)
is performed only over the values of m corresponding to the
current sea state, as given by Hg and 75,.

The power u must be an odd number to prevent rectifying
negative power values (in the case of reactive control). The
higher the value, the closer the cost function is to returning 1 for
the optimal control variable and O for all other settings in each
sea state. Here, uw = 25 has been used in order to aid convergence
in irregular waves.

4) Exploration Strategy: An e-greedy policy [29] selects the
action at the start of each time horizon h

arg max, e 4 Q(sy,a’) with probability 1 — ¢,

- { random action with probability ¢, » (26)

where €, is the exploration rate. max,c4 Q(sp,,a’) represents
the maximum action-value (i.e. a measure of the expected re-
ward) for the current state over all actions, with the action-
value function being given by the mapping in (20). This term
represents the selection of the action that results in maximum
expected total reward starting from the current state.

Greater exploration is desired at the start of RL control, while
the greedy action, i.e. such that it maximises the value function,
is preferred as the learned policy improves. Thus, the exploration
rate is obtained as

" {Zﬁ/m

with N (s;,) indicating the number of visits to the current dis-
crete state (hence, valid for both tabular and RBF approaches).
N, = 5 is the minimum number of encounters for random ex-
ploration, and the initial exploration rate is set to ¢y = 0.5.

if N(s,) < N.

if N(sp) > N.’ @7

C. Algorithm

The proposed LSPI algorithm for the resistive control of the
stator can be seen in Fig. 5. After initializing all variables, the al-
gorithm is run continuously until the device is disconnected, e.g.
due to maintenance. During each time horizon h, the policy is
applied in order to select a suitable action based on the encoun-
tered sea state, mean generated power and maximum translator
displacement. Furthermore, at the end of each horizon, the cur-
rent state, action, next state and reward are sampled and added
to W. Due to the finite memory of the controller computer, a
specified number of samples can be stored, say 10°. Therefore,
new samples will be stored only if they have not been recorded
before, with a difference greater than 10~ being acceptable for
the reward. Once the memory limit is reached, older values will
need to be overwritten, ensuring the sample range is broad, i.e.
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accounting for the different sea states and values of the PTO
damping coefficient.

As shown in Fig. 5, the policy is improved using the LSPI
algorithm in Fig. 4 every N;, = 40 time horizons. This oper-
ation can be performed off-line on separate computing cores
so0 as to reduce the computational effort and ensure the on-line
implementation is feasible.

A time horizon duration Hyy, = 107 has been chosen in reg-
ular waves, with 7" being the wave period, while Hry, = 150 s
in the analysed irregular waves because a JONSWAP spectrum
is used. This selection is based on a compromise between a fast
response and a stable algorithm. Irregular waves in particular
require a longer duration of the power averaging process due
to their stochastic nature. If a wider-banded wave spectrum is
adopted, the horizon length should be increased. Additionally,
this process is started only after Hry, 1 = 0.4HRy, so as to re-
move the influence of the transient effects associated with the
change in load resistance.

D. Q-Learning and SARSA

The performance of LSPI in the control of the WEC is com-
pared with Q-learning and SARSA. SARSA, which stands
for state-action-reward-state-action, and Q-learning are on-
line schemes that rely on discrete states and actions [29].
Hence, at each step, they update the Q-table with the following
equations [29]

M&MHQ®m+aP+w%§Q®@—Q@®}
(28)

Q(s,a) — Q(s,ay + a[r +7Q(s',a) — Q(s,a)}, (29)
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Fig. 6.  PTO damping coefficient selected by different RL control strategies
as compared with the optimal value in regular waves with unit amplitude and
T = 6 s starting from v = 0 kNs/m.

for Q-learning and SARSA respectively. « is the learning rate
and @’ the action applied in the future state. Hence, it is clear
that the main difference between the two algorithms is that
while SARSA is on-policy, i.e. it updates the value function
based on the policy it will follow, Q-learning is off-policy, i.e.
the update is based on the maximum possible Q-value in the
new state [29]. The application of Q-learning to the resistive
control of WECs is described in a previous publication [15],
with SARSA presenting an almost identical implementation.
Hence, the reader is referred to [15] for details. The initial
learning rate is set here to 0.4.

IV. SIMULATION RESULTS

A. Regular Waves

The behaviour of SARSA, Q-learning and LSPI has been as-
sessed against the optimal PTO damping coefficient, which has
been calculated using the Matlab optimization function finincon
in each sea state. This is to provide a benchmark of the control
variable that results in the maximum mean generated power.

Regular waves of unit amplitude and a wave period of 6 s
have been analysed first, with a wave trace lasting 3 hours. Two
different starting points have been selected, namely v = 0 and
~ = 100 kNs/m, as shown in Figs. 6 and 7, respectively. For the
RBFs, 6. = 10 kNs/m and ¢+ = 10 kNs/m, i.e. an almost tabular
approach has been used. For each figure, the same seed number
has been set to the random number generator for all algorithms,
selecting a particularly unfavourable number for Fig. 7 in order
to assess the convergence properties under difficult conditions.

In Fig. 8, it is possible to see the behaviour of the LSPI
algorithm for the RBF settings in Table I, when the starting
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as compared with the optimal value in regular waves with unit amplitude and
T = 6 s starting from v = 100 kNs/m.
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Fig.8. PTO damping coefficient selected by the LSPI algorithm with different
RBF settings in regular waves with unit amplitude and 7" = 6 s. The values of
0. and p are in kNs/m.

value of the PTO coefficient is v = 100 kNs/m. For all runs,
the same seed values is used as in Fig. 7. A longer wave trace
lasting 4 hours is employed.

The mean generated power corresponding to the run with
LSPI with RBFs and 6, = 10 kNs/m and p = 10 kNs/m in
Figs. 7(b) and 8 is plotted in Fig. 9.

B. Irregular Waves

In irregular waves, an 8-hour long wave trace with H;, = 2 m
and T, = 6 s withaJONSWAP spectrum [30] has been analysed,
typical of the Lysekil testing site [31]. In Fig. 10(a) and (b), the
learning behaviours of the three control algorithms are shown,
with the same setting being used for LSPI with RBFs as in
Fig. 7 throughout this section. The difference in mean generated
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as compared with the optimal value in irregular waves with Hy; = 2 m and
Te = 6 s and a JONSWAP spectrum starting from v = 100 kNs/m (a)—(b). (c)
Shows the difference in the mean generated power for the optimum (Pivg opt)
and the case of LSPI with RBFs (P,y4 LsP1)-

power between LSPI with RBFs and the optimal control setting
is shown in Fig. 10(c).

Nevertheless, real sea states actually last between 0.5 to 6
hours [30]. Therefore, in order to prove that RL is able to deal
with changing sea states, the control is tested in an additional
12-hour-long wave trace composed of the alternation of two sea
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as compared with the optimal value in irregular waves with two alternating sea
states (JONSWAP spectra with H; =2 mand 7, = 5 s, and Hy = 1 m and
Te = 6 s) starting from v = 100 kNs/m (a)—(b). (c) Shows the difference in the
mean generated power for the optimum (Pivg,opt) and the case of LSPI with
RBFs (Payg.Lsp1)-

states, so that I = L = 2. Both have a JONSWAP spectrum and
last for two hours before changing. The first one corresponds to
H, =2 m and T, = 5 s, while the second one has H; = 1 m
and T, = 6 s. Fig. 11(a) and (b) shows the learning behaviour
of the three RL algorithms. In Fig. 11(c), the difference in mean
power between LSPI with RBFs and the optimal control setting
in each sea state can be seen.

Furthermore, although RL is expected to result in adaptive
control, as it is model-independent [32], this was not proven
in the previous work on the control of WECs [15]. Hence, a
simple example is treated here to show the adaptivity of RL
to possible marine growth effects. Bio-fouling is expected to
affect the dynamics of the system mainly through an increase
in its inertia and especially drag force. However, in this simple
model, the viscous drag force is not considered. Hence, we treat
the case of a sudden increase in the radius and draught of the
floater to 1.75 m and 0.5 m, respectively (from 1.5 m and 0.4 m,
respectively, in [16]). These values have been assumed, as they
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result in a significant change in the optimal damping coefficient
in the analysed sea state. A full sensitivity analysis of the power
absorption and control of the device to the variations in floater
design as well as a realistic treatment of marine growth effects
go beyond the scope this study. The changes in the floater design
result in an increase in its mass (my,) of 2032.7 kg, in its surface
area of 2.5525 m? (note that these values are relative to the values
in [16]) as well as changes in the radiation approximation state-
space system, with the radiation coefficients being computed
with WAMIT.

The same sea state as in Fig. 10 is used in this simple ex-
ample, whereas the new geometry of the floater is employed.
In particular, a simulation is initialized with the final values of
Fig. 10(a) and (b) being set for each RL strategy. Addition-
ally, the same values of the m vector have been kept for each
scheme. This corresponds to initializing the reward function to
incorrect values for each discrete damping coefficient. For this
reason, the exploration rate (as well as the learning rate for Q-
learning and SARSA) is reinitialized with the same settings as in
Section III-B4.

In Fig. 12(a) and (b), the learning behaviours of the three
control algorithms are shown. The difference in mean generated
power between LSPI with RBFs and the optimal control setting
is shown in Fig. 12(c).

The computational time of the algorithm run at the start of
each time horizon has been less than 0.06 s on an i7 processor
with 16Gb RAM in all simulations run here. As this time is pro-
portional to the number of states, if, say, 100 sea states were to
be used, the computational time would increase to 0.3 s. Hence,
a practical implementation is realistic, particularly considering
the much longer time horizon duration.

V. DISCUSSION

A. Regular Waves

In this work, we define RL algorithms to have converged
towards a policy once the same PTO damping coefficient is
selected for longer than an hour. However, within the short
duration of the analysed wave traces, the exploration rate does
not fully decay. Hence, the definition of convergence is extended
to include a maximum of up to 5 distinct deviations from the
mean value of the selected y within the one-hour period, which
may be due to random actions being adopted.

In Fig. 6, it can be seen that all algorithms learn the opti-
mal PTO damping coefficient within 2.5 hours, with subsequent
wiggles, especially visible for Q-learning and SARSA, mainly
due to the exploration rate not having fully decayed. This fast
learning is because this is a benign case, with the optimal value
of v being very close to the starting PTO damping coefficient,
thus requiring little exploration before finding the optimum.
Conversely, Fig. 7 represents a more challenging scenario for
the RL algorithms. In particular, SARSA and Q-learning are
unable to converge to the optimal policy, and learn a subop-
timal policy instead, which results in less energy absorption
than the optimal policy. This problem could be solved with a
slower decay in the exploration and learning rates, which would
cause learning to be smoother, but also slower. This behaviour is
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Fig. 12.  PTO damping coefficient selected by different RL control strategies as

compared with the optimal value for the new floater geometry in irregular waves
with H; = 2mand 7, = 6 s and a JONSWAP spectrum. The initial conditions
are set based on the final settings of Fig. 10(a) and (b), respectively. (c) Shows
the difference in the mean generated power for the optimum (P,yg,opt) and the
case of LSPI with RBFs (Pyy¢ 1,5P1)-

particularly worrying in the case of extreme waves because if
this oscillation occurs on the boundary of the feasible damp-
ing coefficient envelope to prevent excessive displacements, it
could lead to failure. Conversely, LSPI with both tabular and
radial basis functions learns the optimal policy within 2.5 hours
in regular waves in Fig. 7(b).

Comparing the behaviour of LSPI with tabular features and
RBFs with §. = 10 kNs/m and . = 10 kNs/m in Figs. 6(b), 7(b)
and 10(b), the two approaches almost completely match, with
RBFs actually resulting in a stabler behaviour in regular waves
and greater exploration in irregular waves. This is expected
because almost the same number of kernels as discrete states are
used, with the bandwidth spanning the space between discrete
states. In Fig. 4, decreasing the number of kernels was expected
to result in faster learning because the RBFs are expected to
generalise the shape of the Q-function for unseen states and ac-
tions [18]. In fact, this is not the case, with LSPI with RBFs with
0. = 20 kNs/m (thus half as many kernels) and p = 20 kNs/m
taking longer to learn the optimal policy. Increasing the band-
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width of RBFs also augments the confusion in the controller,
as the overlap between distinct RBFs is increased spanning
multiple ~ values, thus causing the algorithm to diverge from
the optimal policy. These counter-intuitive results are believed
to be due to the small number of discrete states used, with
many more features being typical for standard RL problems
[17]. Hence, the use of 5 or less RBFs incurs in an underfitting
problem, i.e. using too coarse a model to fit the Q-function.
A minimum of 10 RBFs is recommended for the control of
WECs with LSPI. Additionally, setting the bandwidth to match
the distance between kernels seems to provide best behaviour.
Nevertheless, designing RBFs features needs care, and it is
likely to be device-specific.

B. Irregular Waves

Q-learning and SARSA are similarly unable to converge to-
wards the optimal policy in irregular waves as well, as shown
in Figs. 10 and 11. Again, this is an indicator that the explo-
ration and learning rates should be decreased more slowly for
these algorithms, thus resulting in longer learning times. Con-
versely, LSPI with both tabular and radial basis functions is able
to learn the optimal policy in less than 6 hours in each sea state,
despite some wiggles owing to the exploration rate not having
decayed fully yet in Fig. 11(b). In particular, the learning time
is lower than the 12 hours required by Q-learning for conver-
gence in irregular waves in [15], where a more benign linear
WEC model was used for validation. This diminished conver-
gence time is mainly due to the shorter time-averaging horizon
length employed in this study and, especially, the superior ca-
pacity of LSPI to learn using a small number of observations
[17]. Furthermore, as shown in Fig. 11(b), LSPI is able to pick
up learning in a specific sea state from where it left off the last
time the controller was in that sea state. This is a fundamental
consideration for a realistic application, since actual sea states
usually last for a shorter time than 6 hours [30].

As the Seabased device is tested in the Skagerrak strait [16], a
JONSWAP spectrum is appropriate due to its bounded, shallow-
water nature [30]. However, a JONSWAP spectrum is a single-
peaked spectrum with a relatively narrow frequency range [30].
This means that energy is contained mainly in a region close
to the peak wave period. As a result, determining the opti-
mal PTO damping coefficient for each sea state is simpler than
for wider-banded wave spectra, such as Bretschneider or even
double-peaked spectra. Although RL is expected to find the
global optimum [29], the learning process would be expected to
take longer if the latter spectra were used: a longer time hori-
zon length would be necessary. In particular, a double-peaked
spectrum would cause significant challenges to the convergence
behaviour. This will be the focus of future studies.

Being model-free, RL is proven to be able to adapt to changes
in the dynamics of the WEC in Fig. 12. Even though the reward
function is initialized with the wrong values, RL is able to con-
verge towards the optimal PTO damping coefficient with all
three analysed algorithms. However, it is important to note that
this is possible because the exploration rate is reset after the
change of the system dynamics. Therefore, during operation of
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a WEQ, it is necessary to reset the exploration rate after spe-
cific time intervals, say yearly, in order to pick up any possible
changes in the device response.

VI. CONCLUSION

An efficient RL algorithm has been suggested for the control
of a WEC, with its performance being compared with Q-learning
and SARSA. In particular, a non-linear model of the dynamics
of the Seabased point absorber, validated in a previous study,
has been used as a test case. As expected, despite the system
non-linearities, all control schemes are able to find the opti-
mal PTO damping coefficient from a random start in regular
waves because of their model-free nature. However, if the al-
gorithms are started with particularly unfavourable conditions,
only LSPI is able to converge within 2.5 hours, with higher
learning and exploration rates being required for Q-learning
and SARSA to converge. Unexpected results have been found
in the study of RBFs as features for function approximation with
LSPI: a smaller number of RBFs than discrete states does not
correspond to faster learning time. This is because a very small
number of discrete states has been employed, with the few RBF
kernels resulting in underfitting. Hence, although RBFs should
be preferred over tabular features as they presented a stabler
behaviour, their number should be high enough to prevent un-
derfitting, thus meaning that their design is likely to be specific
to the device dynamics.

In irregular waves, LSPI learns the optimal policy within 6
hours starting from unfavourable conditions, thus proving its
superior capacity of learning from a limited set of observations.
The same behaviour is observed when the controller is tested in
two sea states, alternating every 2 hours. Finally, RL is shown
to converge towards a new optimal policy after changing the
floater geometry, with the controller still being initialized with
the reward function valid for the older system. This proves the
adaptive nature of RL control, supporting its ability to account
for changes in the system dynamics, e.g. due to marine bio-
fouling.
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