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Abstract—Variable over voltage, excessive tap counts, and volt-
age regulator (VR) runaway condition are major operational
challenges in distribution network while accommodating gener-
ation from photovoltaics (PVs). The conventional approach to
achieve voltage control based on offline simulation for voltage set
point calculation does not consider forecast errors. In this work,
a stochastic optimal voltage control strategy is proposed while
considering load and irradiance forecast errors. Stochastic oper-
ational risks such as overvoltage and VR runaway are defined
through a chance constrained optimization (CCO) problem. This
classical formulation to mitigate runaway is further improved by
introducing a stochastic index called the Tap Tail Expectation.
Operational objectives such as power losses and excessive tap
count minimization are considered in the formulation. A sampling
approach is proposed to solve the CCO. Along with other volt-
age control devices, the PV inverter voltage support features are
coordinated. The simulation study is performed using a realistic
distribution system model and practically measured irradiance to
demonstrate the effectiveness of the proposed technique. The pro-
posed approach is a useful operational procedure for distribution
system operators. The approach can minimize feeder power losses,
avoid voltage violations, and alleviate VR runaway.

Index Terms—Distribution voltage control, photovoltaic (PV)
forecast errors, voltage regulator (VR) runaway.

I. INTRODUCTION

T HE RENEWABLE portfolio initiatives in various coun-
tries are acting as a stimulus for the growth of grid

connected renewable generation sources such as photovoltaics
(PVs). The global cumulative PV generation capacity is
expected to reach 200 GW by 2017 [1]. PV systems are mostly
integrated at the medium-voltage (MV) and low-voltage (LV)
distribution system levels. For instance, in Germany, where
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the installed peak capacity is 31 GWp, around 95% of PV
generation is connected to the LV and MV distribution grid [2].

One of the major operational challenges faced by distribution
network operators (DNOs) is voltage rise due to the integration
of PV [3]. During unity power factor (pf) operation of PV, the
DNOs control overvoltage by active power curtailment [4]. The
reactive power support functionality from the PV inverter inter-
face also can be utilized to control overvoltage [5]–[7]. This
functionality can be in the form of autonomous settings, such as
variation in power factor as active power varies [pf(P) setting]
or variation in reactive as voltage varies [Q(U) setting]. Unlike
autonomous settings, the voltage control setpoints can also
be communicated to the PV inverter through remote control
[8], [9]. Besides PV inverter voltage control features, classi-
cal equipments such as the on load tap changer (OLTC) and the
voltage regulator (VR) are also utilized to manage the voltage
in the network.

The challenge of voltage control is further intensified by the
fact that PV generation has an impact on the action of OLTC
and VR. The variable voltage rise due to the PV generation
results in an increase of OLTC and VR tap counts and hence
leads to an increased maintenance frequency of these devices.
VR operating at its limit due to reverse power tap changer
runaway is also another critical problem [10]. Under runaway
scenario, VR fails to control voltage at the regulated bus and
reaches lowest or highest tap limit. Runaway happens due to
the interaction between VR control settings and PV reactive
power support. It also depends upon several other factors such
as PV capacity, load and irradiance values, voltage setpoints of
devices, and distribution feeder topology. Clearly, the operation
of VR at its limit can result in extreme low or extreme high volt-
age on the feeder. Furthermore, during the runaway operation,
the controllability of VR is lost. A detailed assessment of the
effect of PV on VR runaway is presented in [11]. Some of these
challenges are addressed through supervisory control [12]–
[14]. However, all these efforts ignored the errors associated
with the load and PV generation forecasting [15], [16].

Since there is an element of randomness associated with
forecast errors, it is necessary to deal with this problem
via stochastic approaches. The probabilistic load flow (PLF)
analysis to evaluate the impact of PV generation is pro-
posed in [17]. Furthermore, probabilistic optimal power dis-
patch considering uncertainty in the presence of PV gener-
ation is formulated in [18]. The stochastic nature of output
from Distributed Generator (DG) is characterized through the
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Fig. 1. Voltage control of a radial distribution feeder [10].

probability distribution function (pdf) and subsequently the
expectation of power loss is formulated as an objective func-
tion for minimization [19]. However, the formulation in [19] did
not include different constraint violations in a stochastic sense.
A constrained PLF (CPLF) that examines constraint violations
while carrying out reactive power coordination is proposed in
[20]. The stochastic predictions of the power flows and voltage
levels in distribution systems having renewable energy gen-
eration is carried out in [21]. Analytical PLF-based chance
constrained optimization (CCO) is employed in [22] to achieve
reactive power coordination. Monte Carlo simulation (MCS)-
based stochastic optimization to calculate renewable energy pf
setpoints is proposed in [23]. The available literature does not,
however, consider the VR runaway in system operation, includ-
ing the forecast errors. This motivated us to pursue our research
effort to propose a stochastic framework that minimizes the risk
of VR runaway. In this work, a stochastic distribution voltage
control strategy is proposed. This paper is structured as follows.
In Section II, stochastic operation considering VR runaway
is formulated as a classical CCO problem. A CCO solution
strategy is proposed in Section III. Section IV defines an appro-
priate stochastic index, which further minimizes the risk of VR
runaway. Section V presents a case study to demonstrate the
effectiveness of the proposed approach. Section VI concludes
this paper.

II. DISTRIBUTION VOLTAGE CONTROL

The stochastic operation of the radial feeder shown in Fig. 1
is under consideration. In order to achieve an optimal oper-
ation, DNOs should consider different objectives and risks.
A CCO-based problem is formulated to achieve these objectives
in the presence of PV generation and load forecast errors. The
optimization design (or control) variables are the OLTC voltage
setpoints and the PV inverter voltage setpoints. The distribu-
tion system line data, load data, and PV/load forecast errors are
given problem parameters. Bus voltages and line currents in the
system are dependent variables. The problem is mathematically
formulated as follows.

A. Optimization Objective

DNOs wish to operate distribution feeders such that the
losses are minimum. The expected value of power loss should
be minimized in order to account for randomness in forecasting
errors, i.e.,

Minimize E(Ploss) (1)

where E(Ploss) represents the expected value of power losses
in the time horizon under consideration.

B. Optimization Constraints

1) Bus voltage: The primary objective of any feeder oper-
ational strategy is to maintain acceptable bus voltages.
When the forecast errors are considered, the bus volt-
age violation risk needs to be accounted for. Variance
minimization can be utilized if DNOs insist on maintain-
ing a flat voltage profile. Generally, the bus voltages are
required to stay within the specific band (0.95−1.05 p.u.)
[13], [24]. Therefore, minimizing the probability of vio-
lation of this band results in an acceptable voltage profile.
The voltage violation probability should be below the tol-
erance prescribed by a DNO. Pr(V ≤ V up

limit) ≥ αup
V is

defined as a constraint for the upper limit of the voltage

Pr(V > V up
limit) ≤ 1− αup

V . (2)

Similarly, for the lower limit of the voltage

Pr(V < V low
limit) ≤ 1− αlow

V . (3)

In (2) and (3), V up
limit, V

low
limit, α

low
V , and αup

V are design
parameters. These can be changed to suit the require-
ments of the DNO. 1− αup

V and 1− αlow
V indicate voltage

violation probabilities. Typically, a bus voltage violation
is restricted below 5% as per the the European standard
EN50160.

2) Power balance: In a practical distribution system, power
flow equality constraints must be satisfied for each
load and irradiance scenario under consideration. This
is achieved by a set of nodal current injection equa-
tions formulated in rectangular coordinates. The detailed
modeling of system components such as lines and trans-
formers in the current injection-based formulation is as
per [25] and [26].

3) Feeder current: The feeder current thermal capacity needs
to be considered in the following manner:

Pr(Ifeed > I limit
feed ) ≤ 1− αfeed

I . (4)

Typically, αfeed
I can be 95% [23]. I limit

feed changes from sea-
son to season. αfeed

I and I limit
feed can be adjusted as per the

operator needs.
4) PV generation: From a PV generation owner’s perspec-

tive, revenue should be maximized. This necessitates that
the injected active power should always satisfy the max-
imum power point tracker (MPPT) criterion. However,
in order to manage an overvoltage, active power curtail-
ment is unavoidable in some cases. The situation can be
best addressed by keeping the expectation of active power
curtailment below a specific limit (εpcurtail) i.e.,

E(Pcurtail) ≤ εpcurtail. (5)

This active power curtailment is typically 30% in
Germany [8]. However, one should aim for less active



AGALGAONKAR et al.: STOCHASTIC DISTRIBUTION SYSTEM OPERATION CONSIDERING VOLTAGE REGULATION RISKS 1317

power curtailment. εpcurtail is a tolerance, which can be
adjusted by the DNO. Furthermore, the PV generation
reactive power support is limited by its inverter apparent
power rating.

5) OLTC and VR: The OLTCs and VRs are primarily respon-
sible for feeder voltage control. Details of the techni-
cal operation of the OLTC mechanism can be found
in [27]. An operator typically specifies the particular
voltage setpoint to control the voltage of a regulated
bus. One of the major challenges in the presence of
PV generation is the excessive number of tap opera-
tions required to contain overvoltage. Although there are
some new power-electronic OLTCs that can withstand too
many tap changes, still many practical feeders operate
with conventional electromechanical OLTCs. For these
conventional OLTCs and VRs, excessive tap operations
reduce the operating life significantly thus requiring an
increased number of maintenances. Therefore, voltage
control should be achieved with a minimum number of
tap operations

E(Tapcounts) ≤ εTapcounts (6)

where E(Tapcounts) represents the expected value of tap
counts in the time horizon under consideration. εTapcounts
defines the maximum permissible tap counts.
Another challenge thrown by PV is VR runaway. A VR
runaway occurs due to the interactions between VR and
PV generation control settings. There are several opera-
tional scenarios when a VR runaway is possible. Detailed
description of the runaway phenomenon can be found in
[11]. This phenomenon results in the operation of the VR
either at the lowest or at the highest tap position. The VR
runaway also results in the extreme low or high voltage on
a feeder. Hence, avoiding operation of a VR at the extreme
tap position is essential. A tap violation probability for
VR is defined to mitigate the VR runaway, according to
the following constraints:

Pr(Tap > Tapuplimit) ≤ 1− αup
Tap

Pr(Tap < Taplowlimit) ≤ 1− αlow
Tap.

(7)

The regions beyond the Tap values Taplowlimit and Tapuplimit are
denoted as the nonpreferred zones. DNOs can mitigate the run-
away and maintain VR control margins by specifying Taplowlimit,
Tapuplimit, α

up
Tap, and αlow

Tap. The problem is solved through coor-
dination among various reactive power devices in the network.
The following section details the solution of this CCO problem.

III. CCO SOLUTION STRATEGY

Fig. 2 details the general flowchart of the proposed algorithm.
The proposed CCO solution algorithm has three major routines:
1) sample selection; 2) set point calculation; and 3) set point
validation. These three subroutines are described below.
Step 1) Sample selection: Both load and PV generation fore-

casting errors are considered in the particular time
horizon. The time horizon can be day ahead or hour

Fig. 2. CCO solution strategy general flowchart.

ahead based on the operators’ choice. In order to
solve the CCO problem, N independent identically
distributed sample scenarios are selected. Let F lim

x

denote the probability for which constraints defined
for decision variable vector x are violated. Let us also
denote α as the acceptable probability level for which
constraints are not violated. Hence, the acceptable con-
straint violation probability β is calculated as β =
1− α. A β-level robustly feasible optimization solu-
tion will satisfy F lim

x ≤ β. The number of N different
samples to obtain a robust solution are selected as

N ≥ n

βγ
− 1. (8)

where n represents the number of decision variables. If
the program is convex, then the extraction of these N
samples ensures that the obtained optimization solu-
tion is β-level robustly feasible with a probability no
smaller than 1− γ [28]. Given that convexity does not
hold for the problem under study, setpoint validation
is, therefore, employed in Step 3). Fig. 3 details the
general flowchart for this step.

Step 2) Setpoint calculation: This subroutine calculates the
setpoints of voltage control devices utilizing the N
samples chosen in Step 1). The optimization prob-
lem proposed in Section II is a NP-hard problem. It
involves nonlinear constraints and discrete variables
together with multiple operating scenarios. The prob-
lem is not simply solved for each load and PV power
sample, because the solution of the problem for every
sample will lead to N different PV and OLTC voltage
setpoints. In a practical setting, the network opera-
tor is interested in a unique PV and OLTC setpoints,
which will minimize the risk of runaway and volt-
age violation over a given time horizon. The solution
technique used here is based on an oriented discrete
descent method, which is a method adopted by the
industry for handling discrete variables in determin-
istic constraints [29]. This paper extends the use of
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Fig. 3. CCO solution strategy sample selection.

the oriented discrete descent method for handling dis-
crete variables in chance constraints. For N -samples
under consideration, the distribution load flow is run
for each sample ensuring the power flow equality con-
straints. Now after N power flow calculations, the
expected values of power losses and various constraint
violation probabilities can be calculated. If these val-
ues are not acceptable to the operator, then the PV
inverter setpoint or OLTC voltage setpoint is altered by
the oriented discrete descent method. First, the objec-
tive function is calculated for some initially assumed
values of the control variables (PV inverter setpoint
or OLTC voltage setpoint). The control variables are
then altered in discrete steps along all possible search
directions.
Again for all the new control variable values, the
corresponding new values of the objective functions
are computed. The partial derivatives of the objective
function with respect to all control variables are calcu-
lated. The partial derivatives are computed using the
differences of the objective function divided by the
corresponding variation in the setpoints. The control
setpoint with the highest partial derivative is the best
candidate to minimize the objective. Only the set-
point that corresponds to the highest value of the
partial derivative is altered to minimize the objective.
This procedure is repeated until satisfactory variables
for the objective function and constraint violation
probabilities are obtained. Fig. 4 details the general
flowchart for this step.

Step 3) Setpoint validation: The calculated setpoints in Step
2) are valid for N samples and they offer a β-level
robustly feasible solution [with a minimum probability
of (1-gamma)] only if the program is convex. The set-
point validation is carried out to overcome this issue.
Expression (8) in the Step 1) is utilized only to give

Fig. 4. CCO solution strategy setpoint calculate.

an initial estimate of the number of N minimum sam-
ples that must be considered if a certain violation
probability is desired. It should be emphasized that
because the problem is nonconvex, the set-points need
to be validated via MCS, i.e., the solution obtained
in Steps 1) and 2) cannot be considered as the final
solution. The calculated setpoints are validated by
choosing M samples such that M � N . MCS using
the calculated setpoints is run. The objective function
and constraint violation probabilities are checked for
these M samples. The initially chosen N samples are
increased if the validation results are not satisfactory.
Upon increasing these N samples, Steps 2) and 3) of
the algorithm are rerun until a satisfactory result is
obtained. The violation probability β or the confidence
parameter γ in (8) can be reduced to increase the value
of N . Fig. 5 details the general flowchart for this step.

As mentioned in the sample selection subroutine, the set-
points can be calculated for any time horizon. The operational
strategy proposed here is subdivided into two distinct time
horizons to minimize the impact of forecasting errors. First, a
day-ahead time horizon is considered. In this stage, the voltage
setpoints of the OLTC and PV generation are calculated. The
second stage is particularly useful when a day-ahead PV fore-
cast accuracy is lower. In the second stage, a shorter forecast
horizon of 1 h is considered. Hour-ahead PV forecast errors are
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Fig. 5. CCO solution strategy setpoint validation step.

lower as compared to day-ahead forecast errors [15]. The read-
justment of voltage setpoints is done considering an hour-ahead
forecast. While readjusting, the OLTC setpoints calculated
from the first stage remain the same. Only the PV generation
setpoints are readjusted. Communicating voltage setpoints to
OLTC and PV generation helps to achieve an efficient opera-
tion of a distribution system and mitigates the autonomous VR
runaway risk.

IV. TAP TAIL EXPECTATION

The CCO discussed above considers VR runaway risks by
enforcing constraints on tap violation probability. The pro-
posed CCO implementation calculates OLTC and PV inverter
setpoints such that the tap positions near the end of the VR
tap limit (±16) lie in the tail region of the VR tap pdf. The
parameters such as Tapuplimit, Tap

low
limit, and α defined in (7) are

designed to achieve this. However, its major disadvantage is
due to the fact that CCO does not give information about the
scenarios where Tap values are beyond Tapuplimit or Taplowlimit.
For instance, consider that the permissible probability of the
tap value being beyond +11 is 5%. Then in 95% of cases, it is
ensured that a VR will not operate beyond the value +11. But
the disadvantage is that in 5% of the cases there is no opera-
tional control at which tap position VR will operate. In 5% of
cases, a VR can be operating even at +16, which indicates the
runaway or lack of VR operational margin.

In order to mitigate this limitation, the Tap Tail Expectation
index is defined. Fig. 6 demonstrates the concept of Tap Tail
Expectation for VR runaway. The mathematical definition of
this risk measure is detailed as follows.

Fig. 6. Tap Tail Expectation to mitigate VR runaway.

Let F up
Tap(z) = Pr{Tap ≤ z} define the cumulative distri-

bution function (cdf) of a variable Tap. The Tapupα with a
confidence level α ∈ [0,1] is defined as

Tapupα = min{z|F up
Tap(z) ≥ α}. (9)

Tapupα is a lower α-percentile of the random variable Tap.
For example, suppose that the desired value of probability α is
95%. This indicates that for only 5% of instances, Tap attains
a value greater than or equal to Tapupα . Similarly, for the lower
limit of the VR, if the cdf is defined as F low

Tap(z) = Pr{Tap≥ z}
then

Taplowα = max{z|F low
Tap(z) ≥ α}. (10)

In other words, Tapupα should be less than Tapuplimit. Thus, the
constraints defined in (7) can also be written as

Tapupα ≤ Tapuplimit

Taplowα ≥ Taplowlimit.
(11)

The Tap Tail Expectation is an alternative risk measure that
takes into account the tail of probability distribution of vari-
able Tap. For the variable Tap and with confidence level α ∈
[0, 1], the Tap Tail Expectation is the mean of the tail distribu-
tion. If FTap(Tap

up
α ) < 1, then there is a possibility of a VR

operating above Tapupα value. Then the Tap Tail Expectation
E[Tailupα (Tap)] is calculated as follows [30]:

E[Tailupα (Tap)] = Ψα(Tap)Tap
up
α

+ (1−Ψα(Tap))E[Tap|Tap > Tapupα ]
(12)

Ψα(Tap) =
FTap(Tap

up
α )− α

1− α
. (13)

Thus, it can be seen that Tap Tail Expectation the weighted
average of (Tapupα ) and E[Tap|Tap > Tapupα ]. It should be
noted that similarly for the lower limit of a VR E[Taillowα (Tap)]
can be defined. The above Tap Tail Expectation indices can be
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incorporated in the proposed CCO strategy by replacing the
constraints in (7) by

E[Tailupα (Tap)] ≤ εupTaptail

E[Taillowα (Tap)] ≥ εlowTaptail.
(14)

By selecting an appropriate value of εupTaptail, ε
low
Taptail, DNOs

can control the shape of the VR tail probability distribution.
For instance, again consider that the permissible probability
of the tap value being beyond +11 is 5%. DNOs desire the
εupTaptail to be +12. Then, constraint in (14) will not only try
to have less than 5% probability above +11 but also will try
to have expected value of the tail less than or equal to +12.
This will avoid scenarios such as all the 5% operation of a VR
at +16, which is possible with classical constraints (7). Thus,
constraints defined in (14) will ensure an operational margin
for a VR.

In order to achieve this, all voltage control equipments and
PV inverter control features (e.g., reactive power injection and
active power curtailment) need to be coordinated to achieve
this. The effectiveness of modeling VR runaway in classical
CCO and using the Tap Tail Expectation is demonstrated in the
next section using a realistic distribution test system model.

V. CASE STUDY

A. System Model

The U.K. generic distribution system (UKGDS), displayed in
Fig. 7, is considered. The system is a 95-bus test system fed by
the substation transformer equipped with an OLTC (33/11 kV)
[31]. A base voltage of 11 kV and a base power of 100 kVA
are assumed. There are two PV plants considered in the sys-
tem each of 1 MW capacity. The PV inverter MVA capacity is
overrated such that the plant is able to operate at 0.95 lead/lag
pf during the peak active power injection. Practical irradiance
measurements carried out on a 5-s time scale at Loughborough,
England in the month of July 2012, are used. The base power
considered is 100 kVA, i.e., a load of 100 kVA is equivalent
to 1 p.u. The average value of peak solar generation is 7 p.u.
while that of load is 18 p.u. PV generation forecast errors are
modeled by a Gaussian distribution [32]. The PV generation
forecast error pdfs are shown in Figs. 8 and 9. A correlation
coefficient of 0.7 is considered between the two PV genera-
tors at bus 18 and bus 89. Correlation coefficient between PV
and load is assumed −0.68 in morning and 0.21 in afternoon
(after 12 noon) [33]. Load forecast errors are also modeled by
a Gaussian distribution [16], [34]. The load forecast errors are
shown in Figs. 10 and 11.

There are two VRs connected in the system, one between bus
54 and bus 75 (VR1), and the other between bus 24 and bus 23
(VR2). The OLTC and both VRs have an operational range +16
to −16. Timer controlled switched capacitors are widely used
in European distribution networks [35]. Two banks of switched
capacitors namely, C1 and C2, each of rating 200 kVAr at rated
voltage (1 p.u.), are assumed to be installed at bus 52. Capacitor
C1 is switched ON at 17:00 h and switched OFF at 3:00 h.
Capacitor C2 is switched ON at 17:00 h and switched OFF at

Fig. 7. UKGDS 95 bus test system.

8:00 h. The next section discusses various results obtained from
this example.

B. Results

Three different cases are studied to evaluate the performance
of the proposed strategy.
Case 1: Deterministic setpoint calculation.
Case 2: Classical CCO.
Case 3: CCO with Tap Tail Expectation.

For these three cases, first voltage control device setpoints
are designed. Then using these setpoints, a PLF is calcu-
lated to evaluate the operational performance of the system.
The upcoming sections discuss the detailed results and the
performance comparison.

1) Case 1. Deterministic Setpoint Calculation: In this case,
system voltage control is achieved by designing setpoints using
a deterministic optimization strategy. This strategy ignores
uncertainties associated with load and irradiance and assumes
that day-ahead load and irradiance profiles are known accu-
rately. Also, all the chance constraints are replaced by the deter-
ministic constraints. The deterministic optimization is setup and
a penalty function approach is utilized to avoid VR runaway as
proposed in [11]. The coordinated operation of OLTC, VR, and
PV plant is achieved and detailed voltage setpoint calculation is
carried out as per the procedure explained in [11]. In reality, PV
generation and load forecasts will have errors. These errors are



AGALGAONKAR et al.: STOCHASTIC DISTRIBUTION SYSTEM OPERATION CONSIDERING VOLTAGE REGULATION RISKS 1321

Fig. 8. PV generation day-ahead forecast error pdf.

Fig. 9. PV generation 15-min-ahead forecast error pdf.

Fig. 10. UKGDS day-ahead load forecast error pdf.

Fig. 11. UKGDS 15-min-ahead load forecast error pdf.

introduced and the PLF is run. The boxplots of the voltage mag-
nitudes at various buses over a day are shown in Fig. 12. It can
be observed that the probability of violating the voltage limits
is zero. However, pdfs for both the VRs are shown in Fig. 13,

Fig. 12. Case 1: Boxplot of UKGDS bus voltages.

Fig. 13. Case 1 VR operation pdfs: unacceptable tail distribution.

from which it can be observed that the probability of operation
at the tap position −16 (operational limit) for VR1 is 5.8% and
for VR2 is 4.3%. Also, 18.33% of VR1 operation and 14% of
VR2 operation happen in the tail region (Tap value below −10).
This indicates a fairly small VR operational margin in these
scenarios. This unsatisfactory operational performance of VRs
is because setpoint calculation is without considering forecast
errors. In order to alleviate this challenge, the following two
cases evaluate the proposed CCO-based strategies.

2) Case 2. Classical CCO: In order to avoid VR run-
away and maintain VR control margin, the classical CCO as
described in Section II is used. To minimize the VR runaway
probability, the constraints defined in (7) are considered. This
exercise designates regions beyond Tap values of ±10 of VR
as nonpreferred zones. Ideally, the optimization should result in
setpoints such that, the VR operation in the nonpreferred zone
becomes a zero-probability event, or the nonpreferred zone Tap
values should have very small probability. Hence, the setpoints
should make the nonpreferred zones lie in the tail region of
the VR Tap value pdf. In order to achieve this, the constraints
in (7) are employed. A 5% violation probability is permissi-
ble beyond Tap values +10 and −10. Based on the operator’s
experience, an appropriate choice of violation probability and
nonpreferred zones can be made to maintain a VR control mar-
gin. After defining these parameters, the classical CCO-based
coordination is simulated. The resultant Tap pdfs for both VRs
are shown in Fig. 14. The following observations can be made
comparing “Case 1” in Fig. 13 and “Case 2” in Fig. 14. It
can be observed that there is a reduction in the probability of
VR operation in the nonpreferred zone beyond the Tap value
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Fig. 14. Case 2. VR operation pdfs: reduction in nonpreferred zone probability.

Fig. 15. Case 2: Boxplot of UKGDS bus voltages.

TABLE I
CASE 2: PV GENERATION VOLTAGE SETPOINTS (P.U.) FROM 11:00 A.M.

TO 12:00 P.M.

±10. The probability of the operation below −10 is less than
5%. Similar to the VR operation, the violation probability is
defined for the voltage. Fig. 15 shows the boxplot of UKGDS
bus voltage magnitudes. It can be observed that the voltage at
the buses is maintained between 0.95− 1.05 p.u. The above
classical CCO-based reactive power coordination is achieved
with optimal PV generation setpoints. Optimal PV generation
setpoints for bus 18 and bus 89 are shown in Table I. Thus, the
formulation helps minimizing the VR runaway probability and
maintains bus voltages within their prescribed limits.

3) Case 3. CCO With Tap Tail Expectation: Closer obser-
vation of Fig. 16 indicates the limitation of the classical CCO.
There is still a small probability of VR operation at −16
(approximately 2%). This shows that the modeling of the viola-
tion probability as per (7), reduces the probability of operation
beyond the Tap value −10 to a value below 5%. But in the 5%
of the scenarios, there is no control at which position VR will
operate. As can be observed in Fig. 16, this can very well be
−16 indicating operation at the VR tap limit. Considering this
limitation, the Tap Tail Expectation as defined in Section IV is
used in the simulation.

Runaway related constraints are replaced by (14). The
εupTaptail and εlowTaptail parameter values are considered to be ±12.

Fig. 16. Case 2: Lack of control over the shape of VR tail distribution.

Fig. 17. Case 3 VR operation pdfs: satisfactory operational margin.

Fig. 18. Case 3: Boxplot of UKGDS bus voltages.

Fig. 17 shows the effectiveness of the Tap Tail Expectation. The
probability of runaway is reduced further and the VR opera-
tional margin is improved. This is because the expected value
of the Tap in the tail of the distribution is designed to be greater
than −12. Therefore, defining constraints using the Tap Tail
Expectation offers control over the tail region of Tap. In this
study, the Tap Tail Expectation is defined only for VRs. The
voltage optimization is carried out by defining the violation
probability. The resultant boxplot curves of the UKGDS bus
voltage magnitudes are shown in Fig. 18. The optimal PV gen-
eration set points for bus 18 and bus 89, for this case, are shown
in Table II.

As discussed in Section II, other operational targets such as
power loss minimization and tap operational counts minimiza-
tion are also considered in “Case 2” and “Case 3.” Table III
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TABLE II
CASE 3: PV GENERATION VOLTAGE SETPOINTS (P.U.) FROM 11:00 A.M.

TO 12:00 P.M.

TABLE III
UKGDS 95 BUS SYSTEM OPERATIONAL PERFORMANCE

shows the expected values of power loss in the network and
the tap counts for all the cases. Case 2 demonstrates the classi-
cal CCO-based approach and Case 3 demonstrates the Tap Tail
Expectation-based method. Case 1 is a deterministic method,
which ignores forecast errors. The methods demonstrated by
Cases 2 and 3 alleviate the challenges related to energy loss
and tap counts as compared to Case 1. In Case 2, power losses
are reduced by 8% and tap counts are reduced by 34% as com-
pared to Case 1. In Case 3, power losses are reduced by 4.5%
and tap counts are reduced by 23.5% as compared to Case 1.
Case 2 gives better performance than Case 3 for energy loss
and tap counts. However, the tap tail expectation-based method
(Case 3) helps the operator to predesign the VR control mar-
gin. The classical CCO-based approach (Case 2) can only have
a control over the probability of VR operation near the lim-
its, but it cannot control the VR operational margin. Thus,
the proposed CCO-based reactive power coordination through
classical and Tap Tail Expectation approaches are effective in
improving the operational performance of the system such as
network losses and the number of tap movements. The pro-
posed approach successfully minimizes the CCO computational
burden by choosing N representative samples based on (8).
The algorithm is programmed in MATLAB and runs on a sim-
ple Pentium IV computer, 2.53 GHz with 12 GB RAM. For
a day-ahead horizon planning, the solution is achieved in less
than 15 min. Note this is just a onetime calculation aimed at
calculating the OLTC setpoints for a day. Also, note that a
day-ahead planning step can be completely omitted by oper-
ators as the algorithm also has a second stage, which considers
shorter time interval and recalculates setpoints for PV inverter.
Operators can consider only the second stage. In this case study,
the second stage considers a 15-min-ahead time horizon. For
a 15-min-ahead horizon, the solution is achieved on a simple
Pentium IV computer, 2.53 GHz with 12 GB RAM in less than
2 min. If this algorithm is implemented using a higher perfor-
mance computer (such as Intel I3, I5, or I7), the solution for a
15-min-ahead planning interval can be achieved in few seconds.

These case studies can be summarized as follows.
1) The state-of-the-art distribution system voltage regulation

techniques do not consider forecast errors associated with
PV generation and load. In previous techniques, the phe-
nomenon of VR runaway is also not considered while
calculating operational setpoints of regulating devices
that control distribution feeder voltages.

2) The method considered in Case 1 is representative of the
present day practice. The solution calculated using the
methodology described in Case 1 does not hold true when
forecast errors are considered. This can lead to suboptimal
performance of distribution feeders. In Case 1, the power
losses and tap operations are higher; additionally, the VR
runaway phenomenon is not considered.

3) Considering these aspects, the authors propose two meth-
ods in this paper. These methods are demonstrated in
Cases 2 and 3. Both methods successfully alleviate the
limitations in Case 1 (present day practice).

VI. CONCLUSION

The conventional framework to achieve the distribution volt-
age control in the presence of PV generation does not consider
inevitable forecasting errors. It is essential to mitigate the oper-
ational risks such as overvoltage, excessive tap counts, and VR
Runaway, in the presence of PV and load forecast errors. This
is achieved via a stochastic optimization-based voltage con-
trol strategy. Two variants of CCO are proposed to minimize
the risk of VR runaway. A classical CCO considers the run-
away phenomenon by modeling the violation probability and
by defining Tap nonpreferred zones. An improvement to this
approach is proposed by defining the Tap Tail Expectation index
as part of the CCO constraints. The problem is solved using a
sample selection-based approach. The simulation study carried
out using a realistic distribution system model shows satisfac-
tory results. It is observed that both CCO-based approaches are
able to reasonably minimize the probability of VR runaway.
However, the classical CCO-based approach does not control
the shape of the tail probability distribution. In the classical
CCO approach, the expected value of the tail can lie near the
VR operational limit. The Tap Tail Expectation-based approach
offers control over the tail region of the Tap and offers a robust
operational margin for VR. Both these approaches also mini-
mize the power loss and excessive tap counts. These proposed
CCO-based strategies will be useful to DNOs to ensure effi-
cient and risk averse network operation in the presence of PV
generations.
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